Sitkin Island Alaska
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mercury Concentrations in Multiple Tissues of Kittlitz's Murrelets (Brachyramphus Brevirostris)
Marine Pollution Bulletin xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul Mercury concentrations in multiple tissues of Kittlitz's murrelets (Brachyramphus brevirostris) ⁎ Leah A. Kenneya, , Robb S.A. Kalera, Michelle L. Kisslingb, Alexander L. Bondc, Collin A. Eagles-Smithd a U.S. Fish and Wildlife Service, Anchorage, AK, USA b U.S. Fish and Wildlife Service, Juneau, AK, USA c Ardenna Research, Potton, Sandy, Bedfordshire SG19 2QA, United Kingdom d U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA ARTICLE INFO ABSTRACT Keywords: Mercury (Hg) is a non-essential, toxic metal that is distributed worldwide. Mercury biomagnifies in food webs Blood and can threaten the health of top predators such as seabirds. The Kittlitz's murrelet (Brachyramphus brevirostris) Eggshell is a seabird endemic to Alaska and the Russian Far East and is a species of conservation concern in the region. We Excrement determined Hg concentrations in eggshells, guano, blood, and feathers of Kittlitz's murrelets sampled from four Guano locations in Alaska. Mercury concentrations in eggshells, guano, and blood were low compared to other seabird Feather species. Mean Hg concentrations of breast feathers from Adak Island and Glacier Bay were significantly greater Seabird than those from Agattu Island or Icy Bay. Two Kittlitz's murrelets at Glacier Bay and one Kittlitz's murrelet at Adak Island had Hg concentrations above those associated with -
Alaska Region Revised 2020
Smithsonian Institution, National Museum of Natural History Repatriation Office Case Report Summaries Alaska Region Revised 2020 Alaska Alutiiq, Koniag, 1991 LARSEN BAY, KODIAK ISLAND Yu'pik In September 1991, the NMNH repatriated the human remains of approximately 1000 individuals from the Uyak (KOD-145) archaeological site to the Alaska Native village of Larsen Bay, and 144 funerary objects were repatriated in January 1992. The museum had received a request to repatriate these remains and artifacts in 1987, and a series of communications between the village and the Smithsonian resulted in the decision to repatriate the remains as culturally affiliated with the present day people of Larsen Bay. The burials had been excavated by a Smithsonian curator, Ales Hrdlicka, during a series of excavations in the 1930s, and dated from around 1000 B.C. to post-contact times. No report is available, but information on the site and the repatriation may be found in the following book: Reckoning With the Dead: the Larsen Bay Repatriation and the Smithsonian Institution. Edited by Tamara L. Bray and Thomas W. Killion. Published in 1994 by the Smithsonian Institution Press, Washington, D.C. Alaska Inupiat, Yu'pik, 1994 INVENTORY AND ASSESSMENT OF HUMAN REMAINS AND NANA Regional ASSOCIATED FUNERARY OBJECTS FROM NORTHEAST NORTON Corporation SOUND, BERING STRAITS NATIVE CORPORATION, ALASKA IN THE NATIONAL MUSEUM OF NATURAL HISTORY This report provides a partial inventory and assessment of the cultural affiliation of the human remains and funerary objects in the National Museum of Natural History (NMNH) from within the territorial boundaries of the Bering Strait Native Corporation. -
Source to Surface Model of Monogenetic Volcanism: a Critical Review
Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres. -
Resource Utilization in Atka, Aleutian Islands, Alaska
RESOURCEUTILIZATION IN ATKA, ALEUTIAN ISLANDS, ALASKA Douglas W. Veltre, Ph.D. and Mary J. Veltre, B.A. Technical Paper Number 88 Prepared for State of Alaska Department of Fish and Game Division of Subsistence Contract 83-0496 December 1983 ACKNOWLEDGMENTS To the people of Atka, who have shared so much with us over the years, go our sincere thanks for making this report possible. A number of individuals gave generously of their time and knowledge, and the Atx^am Corporation and the Atka Village Council, who assisted us in many ways, deserve particular appreciation. Mr. Moses Dirks, an Aleut language specialist from Atka, kindly helped us with Atkan Aleut terminology and place names, and these contributions are noted throughout this report. Finally, thanks go to Dr. Linda Ellanna, Deputy Director of the Division of Subsistence, for her support for this project, and to her and other individuals who offered valuable comments on an earlier draft of this report. ii TABLE OF CONTENTS ACKNOWLEDGMENTS . e . a . ii Chapter 1 INTRODUCTION . e . 1 Purpose ........................ Research objectives .................. Research methods Discussion of rese~r~h*m~t~odoio~y .................... Organization of the report .............. 2 THE NATURAL SETTING . 10 Introduction ........... 10 Location, geog;aih;,' &d*&oio&’ ........... 10 Climate ........................ 16 Flora ......................... 22 Terrestrial fauna ................... 22 Marine fauna ..................... 23 Birds ......................... 31 Conclusions ...................... 32 3 LITERATURE REVIEW AND HISTORY OF RESEARCH ON ATKA . e . 37 Introduction ..................... 37 Netsvetov .............. ......... 37 Jochelson and HrdliEka ................ 38 Bank ....................... 39 Bergslind . 40 Veltre and'Vll;r;! .................................... 41 Taniisif. ....................... 41 Bilingual materials .................. 41 Conclusions ...................... 42 iii 4 OVERVIEW OF ALEUT RESOURCE UTILIZATION . 43 Introduction ............ -
Late-Quaternary Geomorphic Processes: Effects on the Ancient Aleuts of Umnak Island in the Aleutians
Late-Quaternary Geomorphic Processes: Effects on the Ancient Aleuts of Umnak Island in the Aleutians ROBERT F. BLACK1 ABSTRACT. Glaciation, volcanic activity, marine processes and wind action affected in various ways the lives of the ancient Aleuts of Umnak Island, who first settled at Anangula about 8,400 BP following deglaciation some 3,000 years earlier. Expanding alpine glaciers reached the sea in places about 3,000 BP without the nearby peoples being much affected. A catastrophic eruption of Okmok Volcano about 8,250 BP is suggested as the cause of the abandonment of the oldest known siteof Anangula, and subsequentmigration westward into thecentral Aleutians. Cutting of strandflats between 8,250 and 3,000 BP led to the development of a very large, accessible, year- round food resource, and an apparent proliferationof settlements. In marked contrast to other parts of Beringia, Umnak Island became the site most favourable for human settlement. RfiSUMe: Les processus géomorphologiques fini-quaternaires et leurs conséquencespour les anciens Aléoutes de Me d’Umnak dans les Aléoutiennes. La glaciation, l’activite vol- canique, les processus marins et l’actiondu vent ont affect6 de diverses façonsla vie des anciens Aleoutes de l’ile d‘Umnak, qui s’établirent B Anangula vers 8400 AP, soit environ 3000 ans après la deglaciation. Les glaciers alpins en expansion atteignirentla mer par endroit vers 3000 AP sans que les habitants du voisinage soient beaucoup affectes. On suppose qu’une eruption catastrophique du volcan Okmok vers 8250 AP a caud l’abandon du plus vieux site COMU d’Anangula et une migration vers l’ouest jusqu’au centre des A16outiennes. -
Identifying Nesting Habitat of Kittlitz's
Kenney & Kaler: NestingShort habitat Notes of Kittlitz’s Murrelets 73 IDENTIFYING NESTING HABITAT OF KITTLITZ’S MURRELETS BRACHYRAMPHUS BREVIROSTRIS: OLD NESTS LEAD TO A NEW BREEDING RECORD LEAH A. KENNEY1 & ROBB S.A. KALER2 1Alaska Maritime National Wildlife Refuge, Homer, AK, USA ([email protected]) 2Migratory Bird Management, US Fish and Wildlife Service, Anchorage, AK, USA Received 2 September 2012, accepted 27 December 2012 Kittlitz’s Murrelet (Brachyramphus brevirostris) is one of the rarest Kittlitz’s Murrelets at Agattu Island (hereafter, Agattu). In 2009, the breeding seabirds in the North Pacific and one of the least known second year of the Agattu murrelet study, we revisited all previously in North America. With a patchy distribution in both Alaska and discovered nests and noted that several nest sites had increased the Russian Far East, the Kittlitz’s Murrelet population in Alaska plant cover compared with the surrounding area. Specifically, nest is estimated at 19 578 individuals (range 8 190–36 193; BirdLife scrapes where a murrelet chick survived for at least 10–15 days International 2012). Owing to its small population size, restricted contained dense mosses (Tetraplodon mnioides; a coprophilous moss distribution, and an apparent rapid population decline, the US Fish usually found growing on fecal materials and animal remains) and and Wildlife Service (USFWS) has proposed Kittlitz’s Murrelet as grasses (Poaceae). Kittlitz’s Murrelet adults provision their young a candidate species for listing under the Endangered Species Act with marine fishes at the nest scrape during the 24–40 day nestling (USFWS 2009). period (Day et al. 1999, Kaler et al. -
Biological Monitoring in the Central Aleutian Islands, Alaska in 2009-2015
AMNWR 2015/16 BIOLOGICAL MONITORING IN THE CENTRAL ALEUTIAN ISLANDS, ALASKA IN 2009-2015 Brie A. Drummond and Jeffrey C. Williams Key words: Alaska, Aleutian Islands, black-legged kittiwake, common murre, fork-tailed storm-petrel, Kasatochi Island, Koniuji Island, Leach's storm-petrel, Oceanodroma furcata, Oceanodroma leucorhoa, pelagic cormorant, Phalacrocorax pelagicus, Phalacrocorax urile, populations, productivity, red-faced cormorant, red-legged kittiwake, reproductive performance, Rissa brevirostris, Rissa tridactyla, thick-billed murre, Ulak Island, Uria aalge, Uria lomvia U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, Alaska 99603 December 2015 Cite as: Drummond, B. A. and J. C. Williams. 2015. Biological monitoring in the central Aleutian Islands, Alaska in 2009-2015. U.S. Fish and Wildl. Serv. Rep., AMNWR 2015/16. Homer, Alaska. Ulak Island from the ridge above the storm-petrel plot. TABLE OF CONTENTS Page INTRODUCTION ........................................................................................................................................... 1 STUDY AREA ............................................................................................................................................... 2 METHODS .................................................................................................................................................... 3 ACKNOWLEDGMENTS ............................................................................................................................... -
Adak Army Base and Adak Naval Operating Base and Or Common Adak Naval Station (Naval Air Station Adak) 2
N?S Ferm 10-900 OMB Mo. 1024-0018 (342) NHL - WWM, PACIFIC Eip. 10-31-84 Uncled States Department off the Interior National Park Service For NPS UM only National Register off Historic Places received Inventory Nomination Form date entered See instructions in How to Complete National Register Forms Type all entries complete applicable sections ' _______ 1. Name__________________ historic Adak Army Base and Adak Naval Operating Base and or common Adak Naval Station (Naval Air Station Adak) 2. Location street & number not (or publication city, town vicinity of state Alaska code 02 county Aleutian Islands code 010 3. Classification Category Ownership Status Present Use __ district X public __ occupied __ agriculture __ museum building(s) private __ unoccupied commercial park structure both work in progress educational private residence X site Public Acquisition Accessible entertainment religious object in process X yes: restricted government __ scientific being considered .. yes: unrestricted industrial transportation __ no ,_X military __ other: 4. Owner off Property name United States Navy street & number Adak Naval Station, U.S. Department of the Navy city, town FPO Seattle vicinity of state Washington 98791 5. Location off Legal Description courthouse, registry of deeds, etc. United States Navy street & number Adak Naval Station. U.S. Department of the Navy city, town FPO Seattle state Washington 98791 6. Representation in Existing Surveys y title None has this property been determined eligible? yes J^L no date federal _ _ state __ county local depository for survey records city, town state 7. Description Condition Check one Check one __ excellent __ deteriorated __ unaltered _K original site __ good X_ ruins _X altered __ moved date _.__._. -
Die-Off of Common Murres on the Alaska Peninsula and Unimak Island
SHORT COMMUNICATIONS 215 SI~~PSON, S., AND J. J. GALBRAITH. 1905. An inves- WETMORE, A. 1921. A study of the body temper- tigation into the diurnal variation of the body tem- ature of birds. Smithsonian Misc. Coll. 72:1-51. perature of nocturnal and other birds, and a few mammals. J. Physiol., 38:225-238. Accepted for publication 12 July 1971. A NORTHERLY WINTERING RECORD is more than 500 mi. NW of the nearest reported OF THE ELF OWL wintering locality. The bird was mist-netted in second-growth thorn (MICRATHENE WHITNEYI) forest near a harvested corn field. It was retained alive and taken to Tucson, Arizona. It appeared to be in good CHARLES A. ELY health and fed freely on insects given it on the nights Department of Zoology of 12-13 and 13-14 January, but suddenly fell dead Fort Hays Kansas State College Hays, Kansas 67601 from its perch late on the night of 13-14 January. Upon skinning the specimen, Crossin noted a circular AND area about 10 mm in diameter on the lower stomach. RICHARD S. CROSSIN The area was a dark bluish-green in color and resem- bled dermal tissue which has received a severe bruise. Neotropical Ornithological Foundation 1719 North Huachuca The cause of the affliction was not determined, but Tucson, Arizona 85705 may possibly have resulted from the intake of some chemical poisoning during feeding. The owl might Ligon (Misc. Publ., Mus. Zool., Univ. Michigan, No. have been afflicted before its capture, which could 136, 1968) investigated the winter range of the Elf account for its wintering far north of the recorded Owl in Mexico, chiefly by playing sound recordings winter range. -
Terrestrial Mollusks of Attu, Aleutian Islands, Alaska BARRY ROTH’ and DAVID R
ARCTK: VOL. 34, NO. 1 (MARCH 1981), P. 43-47 Terrestrial Mollusks of Attu, Aleutian Islands, Alaska BARRY ROTH’ and DAVID R. LINDBERG’ ABSTRACT. Seven species of land mollusk (2 slugs, 5 snails) were collected on Attu in July 1979. Three are circumboreal species, two are amphi-arctic (Palearctic and Nearctic but not circumboreal), and two are Nearctic. Barring chance survival of mollusks in local refugia, the fauna was assembled overwater since deglaciation, perhaps within the last 10 OOO years. Mollusk faunas from Kamchatka to southeastern Alaska all have a Holarctic component. A Palearctic component present on Kamchatka and the Commander Islands is absent from the Aleutians, which have a Nearctic component that diminishes westward. This pattern is similar to that of other soil-dwelling invertebrate groups. RESUM& Sept espbces de mollusques terrestres (2 limaces et 5 escargots) furent prklevkes sur I’ile d’Attu en juillet 1979. Trois sont des espbces circomborkales, deux amphi-arctiques (Palkarctiques et Nkarctiques mais non circomborkales), et deux Nkarctiques. Si I’on excepte la survivance de mollusques due auhasard dans des refuges locaux, cette faune s’est retrouvke de part et d’autre des eauxdepuis la dkglaciation, peut-&re depuis les derniers 10 OOO ans. Les faunes de mollusques de la pkninsule de Kamchatkajusqu’au sud-est de 1’Alaska on toutes une composante Holarctique. Une composante Palkarctique prksente sur leKamchatka et les iles Commandeur ne se retrouve pas aux Alkoutiennes, oil la composante Nkarctique diminue vers I’ouest. Ce patron est similaire il celui de d’autres groupes d’invertkbrks terrestres . Traduit par Jean-Guy Brossard, Laboratoire d’ArchCologie de I’Universitk du Qukbec il Montrkal. -
Harbor Seal Population Decline in the Aleutian Archipelago
MARINE MAMMAL SCIENCE, 24(4): 845–863 (October 2008) C 2008 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2008.00225.x Harbor seal population decline in the Aleutian Archipelago ROBERT J. SMALL Alaska Department of Fish and Game, Division of Wildlife Conservation, 1255 West 8th Street, Juneau, Alaska 99811, U.S.A. E-mail: [email protected] PETER L. BOVENG National Marine Mammal Laboratory, NOAA/Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, Washington 98115, U.S.A. G. VERNON BYRD U.S. Fish and Wildlife Service, Alaska Maritime National Wildlife Refuge, 95 Sterling Hwy, Homer, Alaska 99603, U.S.A. DAVID E. WITHROW National Marine Mammal Laboratory, NOAA/Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, Washington 98115, U.S.A. ABSTRACT Populations of Steller sea lions, northern fur seals, and northern sea otters declined substantially during recent decades in the Bering Sea and Aleutian Islands region, yet the population status of harbor seals has not been assessed adequately. We de- termined that counts obtained during skiff-based surveys conducted in 1977–1982 represent the earliest estimate of harbor seal abundance throughout the Aleutian Islands. By comparing counts from 106 islands surveyed in 1977–1982 (8,601 seals) with counts from the same islands during a 1999 aerial survey (2,859 seals), we observed a 67% decline over the ∼20-yr period. Regionally, the largest decline of 86% was in the western Aleutians (n = 7 islands), followed by 66% in the central Aleutians (n = 64 islands), and 45% in the eastern Aleutians (n = 35 islands). -
Observation and Modeling of Source Effects in Coda Wave Interferometry at Pavlof Volcano Matthew M
Boise State University ScholarWorks Center for Geophysical Investigation of the Shallow CGISS Publications and Presentations Subsurface (CGISS) 5-1-2009 Observation and Modeling of Source Effects in Coda Wave Interferometry at Pavlof Volcano Matthew M. Haney Boise State University Kasper van Wijk Boise State University Leiph A. Preston Sandia National Laboratories David F. Aldridge Sandia National Laboratories This document was originally published by Society of Exploration Geophysicists in The Leading Edge. Copyright restrictions may apply. DOI: 10.1190/1.3124930 SPECIALSeismic SECTION: modeling S e i s m i c m o d e l i n g Observation and modeling of source effects in coda wave interferometry at Pavlof volcano MATTHEW M. HANEY, U.S. Geological Survey Alaska Volcano Observatory KASPER VAN WIJK, Boise State University LEIPH A. PRESTON and DAVID F. ALDRIDGE, Sandia National Laboratories orting out source and path eff ects for seismic waves Sat volcanoes is critical for the proper interpretation of underlying volcanic processes. Source or path eff ects imply that seismic waves interact strongly with the volcanic subsurface, either through partial resonance in a conduit (Garces et al., 2000; Sturton and Neuberg, 2006) or by random scattering in the heterogeneous volcanic edifi ce (Wegler and Luhr, 2001). As a result, both source and path eff ects can cause seismic waves to repeatedly sample parts of the volcano, leading to enhanced sensitivity to small changes in material properties at those locations. Th e challenge for volcano seismologists is to detect and reliably interpret these subtle changes for the purpose of monitoring eruptions. We examine seismic records of repeating explosions from Pavlof volcano, Alaska, during its 2007 eruption.