American Golden-Plover Pluvialis Dominica Kingdom: Animalia FEATURES Phylum: Chordata the American Golden-Plover Is 10.5 Inches Long

Total Page:16

File Type:pdf, Size:1020Kb

American Golden-Plover Pluvialis Dominica Kingdom: Animalia FEATURES Phylum: Chordata the American Golden-Plover Is 10.5 Inches Long American golden-plover Pluvialis dominica Kingdom: Animalia FEATURES Phylum: Chordata The American golden-plover is 10.5 inches long. The Class: Aves breeding adult has black feathers on the ventral side Order: Charadriiformes and dark feathers with black and yellow markings on the upper side. A white stripe in a question-mark Family: Charadriidae shape extends from above the eye to the neck. The ILLINOIS STATUS nonbreeding bird is gray-brown, with the back and upper side darker than the underside of the bird. common, native BEHAVIORS This bird is a common migrant in Illinois. It is found in wet fields, pastures and grassy mudflats eating insects and other aquatic invertebrates. It is most numerous in central Illinois during spring migration and less common during fall migration when most sightings are along Lake Michigan. Spring migrants begin arriving in late March. Fall migration starts in late August. The species winters in South America. The loss of wetland and grassland habitats affects this species as it migrates through Illinois. At times, more than half of the world’s population of this bird is present in a few eastern Illinois counties. ILLINOIS RANGE © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. © SteveByland/pond5.com Aquatic Habitats temporary water supplies; wet prairies and fens; marshes; Lake Michigan Woodland Habitats none Prairie and Edge Habitats edge © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources..
Recommended publications
  • Meinmahla Kyun Wildlife Sanctuary Myanmar
    Meinmahla Kyun Wildlife Sanctuary Myanmar EAAF NETWORK SITE CODE FOR OFFICE USE ONLY: E A A F 1 4 0 Site Information Sheet on East Asian-Australasian Flyway Network Sites (SIS) – 2017 version Available for download from http://www.eaaflyway.net/about/the-flyway/flyway-site-network/ 1 of 22 Information Sheet on EAA Flyway Network Sites | Meinmahla Kyun Wildlife Sanctuary [EAAF140] Categories approved by Second Meeting of the Partners of the East Asian-Australasian Flyway Partnership in Beijing, China 13-14 November 2007 - Report (Minutes) Agenda Item 3.13 Notes for compilers: 1. The management body intending to nominate a site for inclusion in the East Asian - Australasian Flyway Site Network is requested to complete a Site Information Sheet. The Site Information Sheet will provide the basic information of the site and detail how the site meets the criteria for inclusion in the Flyway Site Network. When there is a new nomination or an SIS update, the following sections with an asterisk (*), from Questions 1-14 and Question 30, must be filled or updated at least so that it can justify the international importance of the habitat for migratory waterbirds. 2. The Site Information Sheet is based on the Ramsar Information Sheet. If the site proposed for the Flyway Site Network is an existing Ramsar site then the documentation process can be simplified. 3. Once completed, the Site Information Sheet (and accompanying map(s)) should be submitted to the Secretariat. Compilers should provide an electronic (MS Word) copy of the Information Sheet and, where possible, digital versions (e.g.
    [Show full text]
  • The Wrybill <I>Anarhynchus Frontalis</I>: a Brief Review of Status, Threats and Work in Progress
    The Wrybill Anarhynchus frontalis: a brief review of status, threats and work in progress ADRIAN C. RIEGEN '1 & JOHN E. DOWDING 2 •231 ForestHill Road, Waiatarua, Auckland 8, NewZealand, e-maih riegen @xtra.co. nz; 2p.o. BOX36-274, Merivale, Christchurch 8030, New Zealand, e-maih [email protected]. nz Riegen,A.C. & Dowding, J.E. 2003. The Wrybill Anarhynchusfrontalis:a brief review of status,threats and work in progress.Wader Study Group Bull. 100: 20-24. The Wrybill is a threatenedplover endemic to New Zealandand unique in havinga bill curvedto the right.It is specializedfor breedingon bareshingle in thebraided riverbeds of Canterburyand Otago in the SouthIsland. After breeding,almost the entirepopulation migrates north and wintersin the harboursaround Auckland. The speciesis classifiedas Vulnerable. Based on countsof winteringflocks, the population currently appears to number4,500-5,000 individuals.However, countingproblems mean that trendsare difficult to determine. The mainthreats to theWrybill arebelieved to be predationon thebreeding grounds, degradation of breeding habitat,and floodingof nests.In a recentstudy in the MackenzieBasin, predation by introducedmammals (mainly stoats,cats and possibly ferrets) had a substantialimpact on Wrybill survivaland productivity. Prey- switchingby predatorsfollowing the introductionof rabbithaemorrhagic disease in 1997 probablyincreased predationrates on breedingwaders. A recentstudy of stoatsin the TasmanRiver showedthat 11% of stoat densexamined contained Wrybill remains.Breeding habitat is beinglost in somerivers and degraded in oth- ers,mainly by waterabstraction and flow manipulation,invasion of weeds,and human recreational use. Flood- ing causessome loss of nestsbut is alsobeneficial, keeping nesting areas weed-free. The breedingrange of the speciesappears to be contractingand fragmenting, with the bulk of the popula- tion now breedingin three large catchments.
    [Show full text]
  • The All-Bird Bulletin
    Advancing Integrated Bird Conservation in North America Spring 2014 Inside this issue: The All-Bird Bulletin Protecting Habitat for 4 the Buff-breasted Sandpiper in Bolivia The Neotropical Migratory Bird Conservation Conserving the “Jewels 6 Act (NMBCA): Thirteen Years of Hemispheric in the Crown” for Neotropical Migrants Bird Conservation Guy Foulks, Program Coordinator, Division of Bird Habitat Conservation, U.S. Fish and Bird Conservation in 8 Wildlife Service (USFWS) Costa Rica’s Agricultural Matrix In 2000, responding to alarming declines in many Neotropical migratory bird popu- Uruguayan Rice Fields 10 lations due to habitat loss and degradation, Congress passed the Neotropical Migra- as Wintering Habitat for tory Bird Conservation Act (NMBCA). The legislation created a unique funding Neotropical Shorebirds source to foster the cooperative conservation needed to sustain these species through all stages of their life cycles, which occur throughout the Western Hemi- Conserving Antigua’s 12 sphere. Since its first year of appropriations in 2002, the NMBCA has become in- Most Critical Bird strumental to migratory bird conservation Habitat in the Americas. Neotropical Migratory 14 Bird Conservation in the The mission of the North American Bird Heart of South America Conservation Initiative is to ensure that populations and habitats of North Ameri- Aros/Yaqui River Habi- 16 ca's birds are protected, restored, and en- tat Conservation hanced through coordinated efforts at in- ternational, national, regional, and local Strategic Conservation 18 levels, guided by sound science and effec- in the Appalachians of tive management. The NMBCA’s mission Southern Quebec is to achieve just this for over 380 Neo- tropical migratory bird species by provid- ...and more! Cerulean Warbler, a Neotropical migrant, is a ing conservation support within and be- USFWS Bird of Conservation Concern and listed as yond North America—to Latin America Vulnerable on the International Union for Conser- Coordination and editorial vation of Nature (IUCN) Red List.
    [Show full text]
  • Spur-Winged Lapwing Vanellus Spinosus
    Spur-winged Lapwing Vanellus spinosus Class: Aves Order: Charadriiformes Family: Charadriidae Characteristics: Also known as the spur-winged plover (not to be confused with the recently renamed masked lapwing of Australasia), this lapwing is a wading bird identified by their striking white cheek feathers, black head cap, brown wings against a black body and long black legs. Behavior: In Africa, lapwings don’t travel far outside their home area but merely make short movements to find wetter areas of their habitats. They spend Range & Habitat: their time searching the marshy ground for small invertebrates. Marshes and wetland habitats of central Africa Reproduction: Because of their large range, these birds have variable breeding seasons. Spur-winged lapwings nest in solitary monogamous pairs, often with other mixed species bird nesting colonies. The large nesting groups help protect the birds in the colonies against predation. The lapwing pair will build a nest in a scrape on the ground sometimes lined with vegetation. The female lays 2 eggs that are yellow with brownish black mottling. They hatch after a 28-day incubation period and both sexes help feed the young. If they double-clutch, the male tends the older chicks while the female incubates the second brood (Sacramento Zoo). Lifespan: over 15 years in Diet: captivity, up to 15 years in the Wild: Invertebrates wild. Zoo: softbill, feline diet, capelin, mealworms and insectivore diet Special Adaptations: Spur- Conservation: winged lapwings have a unique Spur-winged lapwings are abundant in their range in Africa and as such call that acts as an alert when are listed as Least Concern by IUCN.
    [Show full text]
  • List of Shorebird Profiles
    List of Shorebird Profiles Pacific Central Atlantic Species Page Flyway Flyway Flyway American Oystercatcher (Haematopus palliatus) •513 American Avocet (Recurvirostra americana) •••499 Black-bellied Plover (Pluvialis squatarola) •488 Black-necked Stilt (Himantopus mexicanus) •••501 Black Oystercatcher (Haematopus bachmani)•490 Buff-breasted Sandpiper (Tryngites subruficollis) •511 Dowitcher (Limnodromus spp.)•••485 Dunlin (Calidris alpina)•••483 Hudsonian Godwit (Limosa haemestica)••475 Killdeer (Charadrius vociferus)•••492 Long-billed Curlew (Numenius americanus) ••503 Marbled Godwit (Limosa fedoa)••505 Pacific Golden-Plover (Pluvialis fulva) •497 Red Knot (Calidris canutus rufa)••473 Ruddy Turnstone (Arenaria interpres)•••479 Sanderling (Calidris alba)•••477 Snowy Plover (Charadrius alexandrinus)••494 Spotted Sandpiper (Actitis macularia)•••507 Upland Sandpiper (Bartramia longicauda)•509 Western Sandpiper (Calidris mauri) •••481 Wilson’s Phalarope (Phalaropus tricolor) ••515 All illustrations in these profiles are copyrighted © George C. West, and used with permission. To view his work go to http://www.birchwoodstudio.com. S H O R E B I R D S M 472 I Explore the World with Shorebirds! S A T R ER G S RO CHOOLS P Red Knot (Calidris canutus) Description The Red Knot is a chunky, medium sized shorebird that measures about 10 inches from bill to tail. When in its breeding plumage, the edges of its head and the underside of its neck and belly are orangish. The bird’s upper body is streaked a dark brown. It has a brownish gray tail and yellow green legs and feet. In the winter, the Red Knot carries a plain, grayish plumage that has very few distinctive features. Call Its call is a low, two-note whistle that sometimes includes a churring “knot” sound that is what inspired its name.
    [Show full text]
  • Foot-Trembling in the Spur-Winged Plover (Vanellus Miles Novaehollandiae)
    Notornis, 2001, Vol. 48: 59-60 0029-4470 0The Ornithological Society of New Zealand, Inc. 2001 SHORT NOTE Foot-trembling in the spur-winged plover (Vanellus miles novaehollandiae) BRUCE R. KEELEY 13 The Glebe, Howick, Auckland 1705 millkee@ nznetgen. nz A range of distinct foot and leg movements, associated alternately It was not clear whether or not the foot made with feeding behaviour, has been described in several contact with the mud, though at times it appeared to be Palearctic-breeding charadriids, and the possible adaptive 'leg-shaking' rather than 'foot-tapping' that was involved. significance of such movements in the search and There was no obvious correlation between the foot capture of prey has been debated (Simmonds 1961a, b; movement and any subsequent capture of prey Sparks 1961). The range of movements has been broadly While, amongst the lapwings (Subfamily Mnellinae), divided into 'foot-trembling' (involving 1 leg at a time), similar behaviour is well documented in the Eurasian and 'foot-paddling' (where both feet are involved), lapwing (Cramp 1983), perusal of literature on the spur- (Simmonds 1961b). Species in which this behaviour had winged plover/masked lapwing yielded only 2 references: been observed included Eurasian lapwing (Knellus Barlow (1983), in describing elements of feeding vanellus), little ringed plover (Charadrius dubius), ringed behaviour which must be learned bv/J iuvenile ~lovers. plover (C. hiaticula), Kentish plover (C. alexandrinus), refers to 'the foot tremor, the lunge, the stab'; and Frith and dotterel (C, morinellus). (1969) states that 'on wet ground they shuffle 1 foot In New Zealand. foot-tremblingu in the black-fronted and stand on the other, and they thus flush prey animals.' dotterel (C.
    [Show full text]
  • Helminth Parasite Communities in Four Species of Shorebirds (Charadriidae) on King Island, Tasmania
    Papers and Proceedings of the Royal Society of Tasmania, Volume 132, 1998 49 HELMINTH PARASITE COMMUNITIES IN FOUR SPECIES OF SHOREBIRDS (CHARADRIIDAE) ON KING ISLAND, TASMANIA by Albert G. Canaris and John M. Kinsella (with six tables and three text-figures) CANARIS, A.G. & KINSELLA, J.M., 1998 (31 :xii): Helminth parasite communities in four species of shorebirds (Charadriidae) on King Island, Tasmania. Pap. Proc. R. Soc. Tasm., 132: 49-57. https://doi.org/10.26749/rstpp.132.49 ISSN 0080-4703. PO Box 717, Hamilton, Montana, USA 59840 (formerly Department of Biological Sciences, University of Texas at El Paso) (AGC); and Department of lnfectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA 32611 QMK). Helminth community composition and structure were examined among two resident shorebird species, red-capped plover, Charadrius ruficapillus (N = 20), and masked lapwing, Vanellusmiles (N = 5), and two migrants, ruddy turnstone, Arenaria interpres (N = 20), and curlew sandpiper, Calidrisfe rruginea (N = 5), on King Island, Tasmania in March-April 1993, prior to northward migration to the nesting grounds. The total number of species of helminths recovered was 28 and life cycles of at least 19 of these were occurring on the island. Twenty-fivespecies were categorised as generalists and three were undetermined. One to three species of helminths were dominant in each host species. Eight species, to various degrees, were common among the four species of host. Most sharing occurred in the mucosa! trematode guild. Similarities between resident Charadrius ruficapillus and migrant A. interpres was 32.7%, while the mean number of species and mean number of helminths were significantlyhigher in A.
    [Show full text]
  • Plover, Snowy
    Plovers — Family Charadriidae 193 Snowy Plover Charadrius alexandrinus Nesting on beaches, dunes, and salt flats, the Snowy Plover is among San Diego County’s scarcest and most threatened breeding birds. In 1993 the U.S. Fish and Wildlife Service listed it as threatened along the entire Pacific coast. Thorough surveys from 1995 to 1998 put the county’s breeding population between 240 and 325 individuals, most concentrated in two areas, Camp Pendleton and the Silver Strand (Powell et al. 2002). Surveys from 1978 to 1998 suggest the decline of this once common bird has continued. When not breeding the Snowy Plover is more wide- spread along the county’s coast but it is not much Photo by Anthony Mercieca more numerous, in spite of considerable migration. Human disturbance of the remaining habitat and a high level of predation mean that intensive manage- single breeding season, some individuals shift from site to site, although most remain at one site. ment is needed to sustain the population. These variables considered, about half the population Breeding distribution: Powell et al. (2002) surveyed San breeds in Camp Pendleton, with six to eight nests per year Diego County’s coastline intensively from 1994 to 1998 at the mouths of Aliso and French creeks (F4) and 67 to and provided an exhaustive view of the Snowy Plover’s 88 at the Santa Margarita River mouth (G4). The high distribution. Their detailed table enumerated nests rather count of individual plovers was 120 at the latter site 11 than birds per site; because of multiple clutches per year, June 1997 (B.
    [Show full text]
  • Breeding Biology of the Mountain Plover
    BREEDING BIOLOGY OF THE MOUNTAIN PLOVER WALTER D. GRAUL The Mountain Plover (Charadrius montanus) is an endemic species of western North America, breeding on the shortgrass prairie mainly east of the Rocky Mountains and wintering in similar habitat from California and Texas to northern Mexico. Apart from a few anecdotal reports, detailed informa- tion on the breeding biology of the species comes from a single study (Laun 1957). In 1969, I began a study of the Mountain Plover on its Colorado breeding grounds. This paper describes various aspects of the breeding biology of the species and discusses their adaptive significance. Other aspects of the behavior of the Mountain Plover have been published elsewhere (Graul1973a, 1973b,l974). STUDY AREA AND METHODS I studied these plovers on two areas in northern Weld Co., northeastern Colorado. The major area consisted of 16 km ’ just southwest of Keota. The second area was on the International Biological Programs’ Pawnee Site, approximately 64 km northwest of Keota. This general area is part of the high shortgrass prairie (elevation about 1470 m) and consists of gently rolling hills with extensive flats and intermittent streams. Most observations were confined to areas covered predominantly by blue grama grass (Bout&ma gracilis) and/or buffalo grass (Buchloe dactyloides), since I observed that Mountain Plovers prefer such areas. In these areas other common plants include western wheat grass (Agropyron smithii), fourwing saltbush (Atriplex canescens) , and prickly pear cactus (Opuntia polycantha) . The climate of the area during the breeding season is hot and dry. Average yearly precipitation ranges from 30 to 38 cm, although precipitation is unevenly distributed on a yearly, seasonal, and area-to-area basis (Badaracco 1971).
    [Show full text]
  • Masked Lapwings)
    ATSB Bird Information Sheet No.3 MMaasskkeedd LLaappwwiinnggss Managing bird strike risk at Australian airports MASKED LAPWING Vanellus miles Strike Risk ATSB rank 14* Between 1991 and 2001 there were 143 bird strikes reported to ATSB which involved “plovers” (Masked Lapwings). Of these: 7% resulted in damage to aircraft 2.8% had an effect on planned flight 35% involved more than 1 bird *Ranking and figures were obtained from The Hazard Posed to Aircraft by Birds (ATSB 2002). http://www.atsb.gov.au/aviation/research/birdstrike.cfm Prior to breeding season, Masked Lapwings form flocks. During breeding season Masked Lapwings pair off, become highly territorial and are reluctant to move from their territory even for large aircraft. This makes them particularly prone to being struck. Ian Montgomery About Masked Lapwings \ Masked Lapwing Masked Lapwings at Airports Vanellus miles Masked Lapwings are attracted to the airport environment to either Other Names feed or nest. Plover, Masked Plover or Spur-winged They prefer barren, rocky ground or short grass to build nests. These Plover surfaces are also ideal for feeding on insects and other invertebrates in Size the soil. Length 30-37cm; wingspan 75-85cm; They tend to be a seasonal problem for airports, particularly weight 230-400g. immediately before, during and just after the breeding season. Identification When undertaking bird counts or reporting strikes, it is important to Adults have a black crown head, light differentiate between Masked Lapwings and the migrating plovers brown upperparts, white underneath, (such as Pacific Golden, Grey, Red-capped, Sand, or Oriental Plover) reddish legs and a yellow fleshy ‘mask’ at and dotterels (such as Red-kneed and Black-fronted Dotterel).
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]
  • Migratory Shorebird Guild
    Migratory Shorebird Guild Piping Plover Charadrius melodus Sanderling Calidris alba Semipalmated Plover Charadrius semipalmatus Red Knot Calidris canutus Black-bellied Plover Pluvialis squatarola Marbled Godwit Limosa fedoa American Golden Plover Pluvialis dominica Buff-breasted Sandpiper Tryngites subruficollis Wimbrel Numenius phaeopus White-rumped Sandpiper Calidris fuscicollis Long-billed Curlew Numenius americanus Pectoral Sandpiper Calidris melanotos Greater Yellowlegs Tringa melanoleuca Purple Sandpiper Calidris maritima Lesser Yellowlegs Tringa flavipes Stilt Sandpiper Calidris himantopus Solitary Sandpiper Tringa solitaria Wilson’s Snipe Gallinago gallinago delicata Spotted Sandpiper Actitis macularia American Avocet Recurvirostra Americana Upland Sandpiper Bartramia longicauda Least Sandpiper Calidris minutilla Semipalmated Sandpiper Calidris pusilla Short-billed Dowitcher Limnodromus griseus Western Sandpiper Calidris mauri Long-billed Dowitcher Limnodromus scolopaceus Dunlin Calidris alpina Contributors: Felicia Sanders and Thomas M. Murphy DESCRIPTION Photograph by SC DNR Taxonomy and Basic Description The migratory shorebird guild is composed of birds in the Charadrii suborder. Migrants in South Carolina represent three families: Scolopacidae (sandpipers), Charadriidae (plovers) and Recurvirostridae (avocets). Sandpipers are the most diverse family of shorebirds. Their tactile foraging strategy encompasses probing in soft mud or sand for invertebrates. Plovers are medium size birds, with relatively short, thick bills and employ a distinctive foraging strategy. They stand, looking for prey and then run to feed on detected invertebrates. Avocets are large shorebirds with long recurved bills and partial webbing between the toes. They feed employing both tactile and visual methods. Shorebirds are characterized by long legs for wading and wings designed for quick flight and transcontinental migrations. Migrations can span continents; for example, red knots migrate from the Canadian arctic to the southern tip of South America.
    [Show full text]