Coastal and Shoreface Habitats of the Ediacaran Macrobiota, the Central Flinders Ranges, South Australia

Total Page:16

File Type:pdf, Size:1020Kb

Coastal and Shoreface Habitats of the Ediacaran Macrobiota, the Central Flinders Ranges, South Australia Journal of Sedimentary Research, 2020, v. 90, 1463–1499 Research Article DOI: 10.2110/jsr.2020.029 EDIACARAN LIFE CLOSE TO LAND: COASTAL AND SHOREFACE HABITATS OF THE EDIACARAN MACROBIOTA, THE CENTRAL FLINDERS RANGES, SOUTH AUSTRALIA 1 2 2 1 WILLIAM J. MCMAHON,* ALEXANDER G. LIU, BENJAMIN H. TINDAL, AND MAARTEN G. KLEINHANS 1Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands 2Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K. [email protected] ABSTRACT: The Rawnsley Quartzite of South Australia hosts some of the world’s most diverse Ediacaran macrofossil assemblages, with many of the constituent taxa interpreted as early representatives of metazoan clades. Globally, a link has been recognized between the taxonomic composition of individual Ediacaran bedding-plane assemblages and specific sedimentary facies. Thorough characterization of fossil-bearing facies is thus of fundamental importance for reconstructing the precise environments and ecosystems in which early animals thrived and radiated, and distinguishing between environmental and evolutionary controls on taxon distribution. This study refines the paleoenvironmental interpretations of the Rawnsley Quartzite (Ediacara Member and upper Rawnsley Quartzite). Our analysis suggests that previously inferred water depths for fossil-bearing facies are overestimations. In the central regions of the outcrop belt, rather than shelf and submarine canyon environments below maximum (storm-weather) wave base, and offshore environments between effective (fair-weather) and maximum wave base, the succession is interpreted to reflect the vertical superposition and lateral juxtaposition of unfossiliferous non-marine environments with fossil-bearing coastal and shoreface settings. Facies comprise: 1, 2) amalgamated channelized and cross-bedded sandstone (major and minor tidally influenced river and estuarine channels, respectively), 3) ripple cross-laminated heterolithic sandstone (intertidal mixed-flat), 4) silty-sandstone (possible lagoon), 5) planar-stratified sandstone (lower shoreface), 6) oscillation-ripple facies (middle shoreface), 7) multi-directed trough- and planar-cross-stratified sandstone (upper shoreface), 8) ripple cross-laminated, planar-stratified rippled sandstone (foreshore), 9) adhered sandstone (backshore), and 10) planar-stratified and cross-stratified sandstone with ripple cross-lamination (distributary channels). Surface trace fossils in the foreshore facies represent the earliest known evidence of mobile organisms in intermittently emergent environments. All facies containing fossils of the Ediacaran macrobiota remain definitively marine. Our revised shoreface and coastal framework creates greater overlap between this classic ‘‘White Sea’’ biotic assemblage and those of younger, relatively depauperate ‘‘Nama’’-type biotic assemblages located in Namibia. Such overlap lends support to the possibility that the apparent biotic turnover between these assemblages may reflect a genuine evolutionary signal, rather than the environmental exclusion of particular taxa. INTRODUCTION the Flinders Ranges, in which Reginald Sprigg originally discovered Precambrian macrofossils (Sprigg 1947), ultimately lent its name to the Late Ediacaran macrofossils (~ 574–539 Ma) offer critical information Ediacaran System (Knoll et al. 2004, 2006). As an important global focal about the early evolutionary history of large and complex multicellular point for studies of Ediacaran life with a long history of research (e.g., organisms (Linnemann et al. 2019; Matthews et al. 2020). How the Glaessner and Daily 1959), it is essential that the preserved depositional Ediacaran macrobiota relate to extant animals, their life habits, and the environments of the Rawnsley Quartzite are both well studied and robustly conditions under which their fossils were preserved are fundamental understood. questions whose answers require an understanding of the environments inhabited by the organisms, evidence of which is archived in the Detailed accounts of previously proposed facies schemes for the sedimentary record. This study presents revised interpretations of the Rawnsley Quartzite have been provided in a number of recent publications sedimentary facies and stratigraphic architecture of the siliciclastic and will not be repeated here (e.g., Gehling 2000; Tarhan et al. 2017; Reid Ediacaran-age Rawnsley Quartzite of South Australia, whose eponymous et al. 2020). However, it is worth noting that early descriptions of the unit Ediacara Member hosts one of the world’s most taxonomically diverse favored intertidal and lagoonal depositional environments for the fossil- assemblages of the Ediacaran macrobiota (e.g., Droser et al. 2006, 2017; bearing facies (Jenkins et al. 1983) (Table 1). Gehling (2000) provided Gehling and Droser 2013; Droser and Gehling 2015). The Ediacara Hills in detailed descriptions of the sedimentary facies at a large number of previously undocumented Rawnsley Quartzite sections from across the * Present Address: Energy & Environment Institute, University of Hull, Flinders Ranges, and reinterpreted the fossiliferous parts of the succession Cottingham Road, Hull HU6 7RX, U.K. to comprise five facies, four of which were considered to have been Published Online: November 2020 Open Access CC-BY 4.0. Copyright Ó 2020, SEPM (Society for Sedimentary Geology) 1527-1404/20/090-1463 Downloaded from http://pubs.geoscienceworld.org/sepm/jsedres/article-pdf/90/11/1463/5213716/i1527-1404-90-11-1463.pdf by guest on 13 January 2021 1464 W.J. MCMAHON ET AL. JSR deposited below effective (fair-weather) wave base (and three beneath maximum (storm-wave) base) (see Gehling and Droser 2013, their Fig. 1). Since that seminal study, most sedimentological research on the unit has focused solely on fossil-bearing facies, predominantly at one location (Nilpena; Fig. 1; though see Reid et al. 2020). Furthermore, interpretations of Rawnsley Quartzite depositional environments have remained relatively or sandy shoals Shallow subtidal unchanged (Table 1). Our revised environmental framework, presented following fieldwork at five sections in the central and western reaches of the Flinders Ranges (Fig. 1A), considers Gehling’s (2000) inferred water depths to be overestimations at these locations. We demonstrate that all se used in this study. Note that observed fossil-bearing facies of the Ediacara Member fall within the marine shoreface complex—the seaward-sloping ramp extending from the Not described low-tide mark to the lower limit of the fair-weather wave base (e.g., Reinson 1984; Pemberton et al. 2012) (Fig. 2), in addition to a number of distinct coastal environments. This finding contrasts with previous studies, which considered the marine shoreface complex to be only scarcely fossiliferous (Gehling and Droser 2013 (their Table 1); Tarhan et al. 2015; Not described Not described Not described Not described Not described Not described Reid et al. 2020). GEOLOGICAL SETTING The Ediacaran Rawnsley Quartzite, presently divided in ascending order into the Chace Quartzite Member, The Ediacara Member, and The Upper 2 Not described Not described Not described Not described Not described Not described Not described Not described Rawnsley Quartzite, crops out over an outcrop belt of 20,000 km in the vicinity of the Flinders Ranges of South Australia (Fig. 1). Following formalization of the Chace Quartzite and Ediacara Member (Jenkins 1975; Reid and Preiss 1999), Gehling (1982, 2000) demonstrated that: 1) the 678910 Chace Quartzite Member, for which a sandflat-to-supratidal depositional FACIES environment was assigned, is separated from overlying strata by a distinct combined flow incised valley (Fig. 1B), and 2) the fossiliferous Ediacara Member Upper wave-base Shoreface Oscillatory and comprised all deposits from the base of this valley-contact to the topmost fossiliferous facies. The upper Rawnsley Quartzite was proposed to extend from the first unfossiliferous facies overlying the Ediacara Member to the disconformable contact with overlying Cambrian-age deposits (Fig. 1). Gehling (2000) demonstrated the variable stratigraphic thickness (10–300 m) of the Ediacara Member across the Flinders Ranges (though see flows canyon fill discussion in Sequence Stratigraphic Evolution, below) and identified Sediment gravity Subwave-base upper Intertidal Intertidal valley-shaped incisions that are occasionally tractable at outcrop (Fig. 1B). Considering its occurrence disconformably beneath a notable erosional facies, in this study interpreted as the product of seismic activity and represented in a number of facies. ’’ hiatus of unknown duration (i.e., an incised sequence boundary), the Chace Quartzite Member should be more appropriately treated as a distinct formation with respect to the rest of the Rawnsley Quartzite. In this study prodelta prodelta shelf we do not explicitly address the Chace Quartzite Member, and instead mass-flow Delta-front or Delta-front or ‘‘ focus on the rest of the Rawnsley Quartzite (the Ediacara Member and the Upper Rawnsley Quartzite) at four locations across its central outcrop belt: 1) Brachina Gorge, 2) Bunyeroo Gorge, 3) Moralana, and 4) Wilpena Pound (Figs. 1, 3, 4). prodelta prodelta Mixed-flat Lagoon? Lower shoreface Middle shoreface Upper shoreface Foreshore Backshore Distributary channels Delta-front or Delta-front or Delta-front Delta-front Sheet-flow Wave-base Shoreface Intertidal Lagoon or neritic FACIES ANALYSIS Methodology
Recommended publications
  • New Ediacara Fossils Preserved in Marine Limestone and Their Ecological Implications
    OPEN New Ediacara fossils preserved in SUBJECT AREAS: marine limestone and their ecological PALAEONTOLOGY GEOLOGY implications Zhe Chen1, Chuanming Zhou1, Shuhai Xiao2, Wei Wang1, Chengguo Guan1, Hong Hua3 & Xunlai Yuan1 Received 22 November 2013 1LPS and LESP, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, Accepted 2Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, 3State Key Laboratory 7 February 2014 of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China. Published 25 February 2014 Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and Correspondence and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an requests for materials erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551– should be addressed to 541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of Z.C. (zhechen@ several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or nigpas.ac.cn) or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. S.H.X. ([email protected]) he Ediacara biota, exemplified by fossils preserved in the Ediacara Member of South Australia, provides key information about the origin, diversification, and disappearance of a distinct group of soft-bodied, mac- T roscopic organisms on the eve of the Cambrian diversification of marine animals1–3.
    [Show full text]
  • The Influence of Environmental Setting on the Community Ecology of Ediacaran Organisms
    bioRxiv preprint doi: https://doi.org/10.1101/861906; this version posted December 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The influence of environmental setting on the community ecology of Ediacaran organisms 2 3 Emily G. Mitchell1, Nikolai Bobkov2,3, Natalia Bykova2,4, Alavya Dhungana,5, Anton 4 Kolesnikov2,6, 7, Ian R. P. Hogarth8,9 Alexander G. Liu10, Tom M.R. Mustill10,11, Nikita 5 Sozonov2,3, Shuhai Xiao4 and Dmitriy V. Grazhdankin2,3 . 6 7 [email protected] 8 9 1Department of Zoology, University of Cambridge, UK. 10 2Institute of Petroleum Geology and Geophysics, Novosibirsk, Russian Federation. 11 3Novosibirsk State University, Russian Federation. 12 4Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, United States. 13 5 Department of Earth Sciences, Durham University, UK. 14 6Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation. 15 7Department of Geography, Moscow Pedagogical State University, Moscow, Russian 16 Federation. 17 8Department of Chemical Engineering, University of Cambridge, UK. 18 9Current address: University College London, UCL Institute for Innovation and Public 19 Purpose, UK. 20 10Department of Earth Sciences, University of Cambridge, UK. 21 11Current address: Gripping Films, St. John's Church Road, London, England, E9 6EJ. 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/861906; this version posted December 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Ediacaran Life Close to Land: Coastal and Shoreface Habitats of the Ediacaran Macrobiota, the Central Flinders Ranges, South Australia
    Journal of Sedimentary Research, 2020, v. 90, 1463–1499 Research Article DOI: 10.2110/jsr.2020.029 EDIACARAN LIFE CLOSE TO LAND: COASTAL AND SHOREFACE HABITATS OF THE EDIACARAN MACROBIOTA, THE CENTRAL FLINDERS RANGES, SOUTH AUSTRALIA 1 2 2 1 WILLIAM J. MCMAHON,* ALEXANDER G. LIU, BENJAMIN H. TINDAL, AND MAARTEN G. KLEINHANS 1Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands 2Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K. [email protected] ABSTRACT: The Rawnsley Quartzite of South Australia hosts some of the world’s most diverse Ediacaran macrofossil assemblages, with many of the constituent taxa interpreted as early representatives of metazoan clades. Globally, a link has been recognized between the taxonomic composition of individual Ediacaran bedding-plane assemblages and specific sedimentary facies. Thorough characterization of fossil-bearing facies is thus of fundamental importance for reconstructing the precise environments and ecosystems in which early animals thrived and radiated, and distinguishing between environmental and evolutionary controls on taxon distribution. This study refines the paleoenvironmental interpretations of the Rawnsley Quartzite (Ediacara Member and upper Rawnsley Quartzite). Our analysis suggests that previously inferred water depths for fossil-bearing facies are overestimations. In the central regions of the outcrop belt, rather than shelf and submarine canyon environments below maximum (storm-weather) wave base,
    [Show full text]
  • The Advent of Animals: the View from the Ediacaran SPECIAL FEATURE
    The advent of animals: The view from the Ediacaran SPECIAL FEATURE Mary L. Drosera,1 and James G. Gehlingb,c aDepartment of Earth Sciences, University of California, Riverside, CA 92521; bSouth Australia Museum, Adelaide, SA 5000, Australia; and cUniversity of Adelaide, Adelaide, SA 5000, Australia Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved December 9, 2014 (received for review April 15, 2014) Patterns of origination and evolution of early complex life on this relationships within the Ediacara Biota and, importantly, reveals the planet are largely interpreted from the fossils of the Precam- morphologic disparity of these taxa. brian soft-bodied Ediacara Biota. These fossils occur globally and However, although fossils of the Ediacara Biota are not easily represent a diverse suite of organisms living in marine environments. classified with modern taxa, they nonetheless provide the record Although these exceptionally preserved fossil assemblages are typi- of early animals. One of the primary issues is that they are soft- cally difficult to reconcile with modern phyla, examination of the bodied and preserved in a manner that is, in many cases, unique to morphology, ecology, and taphonomy of these taxa provides keys to the Ediacaran. An alternative venue for providing insight into these their relationships with modern taxa. Within the more than 30 million organisms and the manner in which they fit into early animal evo- y range of the Ediacara Biota, fossils of these multicellular organisms lution is offered by examination of the paleoecology, morphology, demonstrate the advent of mobility, heterotrophy by multicellular and taphonomy of fossils of the Ediacara Biota.
    [Show full text]
  • Multicellular Life and Changes to Ecosystems
    Evidence for Multicellular Life and Changes to Ecosystems 1 Microbial ecosystems • Microbialites are well known from 3.5 Ga to the present • >2000 fossil locations in WA • Photosynthesis at 2.4 Ga caused the Great Oxidation Event • Distribution now limited by grazers Stromatolite from Bitter Springs Formation (850 Ma), Amadeus Basin, Australia (J St John 2015, Creative Commons) Microbialites are deposits that have resulted from microbes trapping and binding sediment and/or precipitating minerals. These are possibly the first ecosystems on Earth. They include stromatolites, thrombolites, dendrolites and MISS (microbially induced sedimentary structures). The oldest microbialite fossils are from the Dresser Formation in the Pilbara, 3.5 billion years ago. Microbial mats were the dominant form of life for 3 billion years until the evolution of grazers severely limited their distribution. Microbialites are also a disaster fauna that moves into ecological sites during and after extinctions, but are normally limited by grazers. Although microbialite fossils are the result of many cells living together, they are not evidence of multicellular life. Microbial mats exhibit some specialisation, but not true multicellularity. 2 Early multicellular life • 2.1 Ga colonial organism, Gabon, Africa − Time of Great Oxidation Event 10 cm diameter fossil from − Trace fossils indicate possible Gabon. movement B Potin 2015, Creative Commons • 1.56 Ga seaweed (?), North China − Up to 30 cm long, 8 cm wide − Probably photosynthetic Linear (1) and tongue-shaped (2) fossils from Gauyuzhuang Formation. Coates et al 2015 https://doi.org/10.3389/fpls.2014.00737 Open Access Multicellular organisms have arisen independently in a variety of plant lineages, but probably only once in the animals.* The colonial organisms found in 2.1-billion-year-old Franceville deposits in Gabon appeared during the Great Oxidation Event.
    [Show full text]
  • Ediacaran Biozones Identified with Network Analysis Provide Evidence for Pulsed Extinctions of Early Complex Life
    ARTICLE https://doi.org/10.1038/s41467-019-08837-3 OPEN Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life A.D. Muscente1,11, Natalia Bykova 2, Thomas H. Boag3, Luis A. Buatois4, M. Gabriela Mángano4, Ahmed Eleish5, Anirudh Prabhu5, Feifei Pan5, Michael B. Meyer6, James D. Schiffbauer 7,8, Peter Fox5, Robert M. Hazen9 & Andrew H. Knoll1,10 1234567890():,; Rocks of Ediacaran age (~635–541 Ma) contain the oldest fossils of large, complex organisms and their behaviors. These fossils document developmental and ecological innovations, and suggest that extinctions helped to shape the trajectory of early animal evolution. Conventional methods divide Ediacaran macrofossil localities into taxonomically distinct clusters, which may represent evolutionary, environmental, or preservational variation. Here, we investigate these possibilities with network analysis of body and trace fossil occurrences. By partitioning multipartite networks of taxa, paleoenvironments, and geologic formations into community units, we distinguish between biostratigraphic zones and paleoenvir- onmentally restricted biotopes, and provide empirically robust and statistically significant evidence for a global, cosmopolitan assemblage unique to terminal Ediacaran strata. The assemblage is taxonomically depauperate but includes fossils of recognizable eumetazoans, which lived between two episodes of biotic turnover. These turnover events were the first major extinctions of complex life and paved the way for the Cambrian radiation of animals. 1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA. 2 Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Novosibirsk 630090, Russia. 3 Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA. 4 Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7n 5E2, Canada.
    [Show full text]
  • Population Structure of the Oldest Known Macroscopic Communities from Mistaken Point, Newfoundland Author(S): Simon A
    Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland Author(s): Simon A. F. Darroch , Marc Laflamme and Matthew E. Clapham Source: Paleobiology, 39(4):591-608. 2013. Published By: The Paleontological Society DOI: http://dx.doi.org/10.1666/12051 URL: http://www.bioone.org/doi/full/10.1666/12051 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Paleobiology, 39(4), 2013, pp. 591–608 DOI: 10.1666/12051 Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland Simon A. F. Darroch, Marc Laflamme, and Matthew E. Clapham Abstract.—The presumed affinities of the Terminal Neoproterozoic Ediacara biota have been much debated. However, even in the absence of concrete evidence for phylogenetic affinity, numerical paleoecological approaches can be effectively used to make inferences about organismal biology, the nature of biotic interactions, and life history.
    [Show full text]
  • ESS261H Earth System Evolution Course Journal Volume 1, April 2021
    ESS261 Journal, volume 1 (2021) i ESS261H Earth System Evolution Course Journal Volume 1, April 2021 ------------------------------------------------------------------------------------------------------------------------------- Co-Editors: Carl-Georg Bank Megan Swing Joe Moysiuk Heriberto Rochin Banaga Department of Earth Sciences University of Toronto 22 Ursula Franklin Street Toronto, Ontario M5S 3B1 ii This is a collection of student papers written as an assessment in the course ESS261H Earth System Evolution in the winter 2021 term. For questions or comments please contact the course instructor Carl-Georg Bank [email protected] ESS261 Journal, volume 1 (2021) i Introduction from Asia is outlined by Yuan, where fossils from Chengjiang rival those found from the The Earth system -- the lithosphere, atmosphere, Burgess Shale. All of the aforementioned hydrosphere, and biosphere -- has evolved over contributions have described discoveries that billions of years and is the home for all known have played significant roles in the life, including humans. It is a delicate home, it understanding of life and evolution on Earth and is a fascinating home, and it challenges us to will continue to do so for centuries to come. better understand its balances. This course took us on a journey through the 4.567 billion years 2. Our understanding about past life is still of Earth's history, and the papers in this journal growing. This section includes various papers mark the culmination of student work. The relating such new discoveries and discussing journal is split into four parts: their significance for understanding life’s many changes over the eons. 1. Lagerstätten have been crucial in not just Relationships between form, function, producing significant fossils, but have also and phylogeny are a common theme underlying advanced our knowledge of the Earth system as these papers, nicely capturing the classic trifecta snapshots in time.
    [Show full text]
  • Criteria for Distinguishing Microbial Mats and Earths
    CRITERIA FOR DISTINGUISHING MICROBIAL MATS AND EARTHS GREGORY J. RETALLACK Department of Geological Sciences, University of Oregon, 1275 East 13th Avenue, Eugene, Oregon 97302, USA e-mail: [email protected] ABSTRACT: Microbial earths are communities of microscopic organisms living in well-drained soil. Unlike aquatic microbial mats and stromatolites, microbial earths are sheltered from ultraviolet radiation, desiccation, and other surficial hazards within soil cracks and grain interstices. Currently, such ecosystems are best known in small areas of unusually cold, hot, or saline soils unfavorable to multicellular plants and animals. During the Precambrian, microbial earths may have been more widespread, but few examples have been reported. This review outlines a variety of features of modern microbial earths that can be used to distinguish them from aquatic microbial mats and stromatolites in the fossil record. Microbial earths have vertically oriented organisms intimately admixed with minerals of the soil, whereas microbial mats are laminated and detachable from their mineral substrate as flakes, skeins, and rollups. Microbial earths have irregular relief, healed desiccation cracks, and pressure ridges, whereas microbial mats have flexuous, striated domes, and tufts. Microbial earths form deep soil profiles with downward variations in oxidation, clay abundance, and replacive nodular subsurface horizons, whereas microbial mats form as caps to unweathered, chemically reduced sedimentary layers. Microbial earths develop increasingly differentiated soil profiles through time, whereas microbial mats build upward in laminar to domed increments. Microbial earths are found in nonmarine sedimentary facies, whereas microbial mats form in lacustrine, floodplain, and marine sedimentary facies. Microbial mats and stromatolites are known back to the oldest suitably preserved sedimentary rocks in the 3458 Ma Apex Chert and 3430 Ma Strelley Pool Formation (respectively) of the Pilbara region of Western Australia.
    [Show full text]
  • (South Australia): Assessment of Paleoenvironmental Proxies and the Timing of ‘Ferruginization’
    Palaeogeography, Palaeoclimatology, Palaeoecology 434 (2015) 4–13 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Depositional and preservational environments of the Ediacara Member, Rawnsley Quartzite (South Australia): Assessment of paleoenvironmental proxies and the timing of ‘ferruginization’ Lidya G. Tarhan a,⁎,MaryL.Droserb, James G. Gehling c a Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven 06511, USA b Department of Earth Sciences, University of California-Riverside, 900 University Ave., Riverside, CA 92521, USA c South Australian Museum and the University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia article info abstract Article history: The paleoenvironmental setting in which the Ediacara Biota lived, died and was preserved in the eponymous Received 15 July 2014 Ediacara Member of the Rawnsley Quartzite of South Australia is an issue of longstanding interest and recent Received in revised form 17 April 2015 debate. Over the past few decades, interpretations have ranged from deep marine to shelfal to intertidal to ter- Accepted 23 April 2015 restrial. Here we examine the evidence in support of and against various paleoenvironmental interpretations Available online 3 May 2015 of the fossiliferous Ediacara Member, as well as exploring in depth a range of paleoenvironmental proxies that have historically been employed in such studies. We emphasize the importance of reconciling Keywords: Ediacara Biota paleoenvironmental analysis with an understanding of sedimentological processes and outline which proxies Ediacara Member are consistent with this approach. A careful assessment of paleoenvironmental parameters is essential to the South Australia reconstruction of the depositional and early diagenetic history of the Ediacara Biota and thus the physical, chem- Paleoenvironment ical and biological factors that shaped the development and the fossilization of these earliest examples of com- Marine plex life.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Review On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota Shuhai Xiao1 and Marc Laflamme1,2 1 Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 2 Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada Ediacara fossils document an important evolutionary many Ediacara fossils remain phylogenetically unresolved episode just before the Cambrian explosion and hold even at the kingdom level. critical information about the early evolution of macro- scopic and complex multicellular life. They also Glossary represent an enduring controversy in paleontology. Alternate symmetry: alternate arrangement of segments or tubes or frondlets How are the Ediacara fossils related to living animals? in the two halves of an Ediacara fossil along a midline. Also known as How did they live? Do they share any evolutionary ‘‘symmetry of glide reflection.’’ Examples include rangeomorphs, ernietto- patterns with other life forms? Recent developments morphs and vendomorphs.
    [Show full text]
  • Phyllozoon and Aulozoon: Key Components of a Novel Ediacaran
    Geological Magazine Phyllozoon and Aulozoon: key components of www.cambridge.org/geo a novel Ediacaran death assemblage in Bathtub Gorge, Heysen Range, South Australia 1 2 Original Article James G. Gehling and Bruce Runnegar 1 2 Cite this article: Gehling JG and Runnegar B. Palaeontology, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia and Department of Phyllozoon and Aulozoon: key components of a Earth, Planetary and Space Sciences and Molecular Biology Institute, University of California, Los Angeles, CA novel Ediacaran death assemblage in Bathtub 90095-1567, USA Gorge, Heysen Range, South Australia. Geological Magazine https://doi.org/10.1017/ Abstract S0016756821000509 The recognition of fossiliferous horizons both below and above the classical Ediacara levels of Received: 12 December 2020 the Flinders Ranges, South Australia, significantly expands the potential of this candidate Revised: 5 May 2021 Accepted: 10 May 2021 World Heritage succession. Here we document a small window into the biology and taphonomy of the late Ediacaran seafloor within the new Nilpena Sandstone Member of the Rawnsley Keywords: Quartzite in Bathtub Gorge, northern Heysen Range. A 1 m2 slab extracted from the gorge, Phyllozoon; Ediacaran; Australia; now on permanent display at the South Australian Museum, has a death assemblage dominated palaeoecology; taphonomy by the erniettomorph Phyllozoon hanseni Jenkins and Gehling 1978 and a newly named Author for correspondence: macroscopic tubular body fossil – Aulozoon soliorum gen. et sp. nov. – on its fine sandstone Bruce Runnegar, Email: [email protected] bed sole. The orientations and juxtaposition of these taxa suggest overprinting of an in situ benthic Phyllozoon community by sand-filled tubes of Aulozoon carried in by a storm wave-base surge.
    [Show full text]