Structural Basis for Σ1 Receptor Ligand Recognition Hayden R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Role for Sigma Receptors in Stimulant Self Administration and Addiction
Pharmaceuticals 2011, 4, 880-914; doi:10.3390/ph4060880 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review A Role for Sigma Receptors in Stimulant Self Administration and Addiction Jonathan L. Katz *, Tsung-Ping Su, Takato Hiranita, Teruo Hayashi, Gianluigi Tanda, Theresa Kopajtic and Shang-Yi Tsai Psychobiology and Cellular Pathobiology Sections, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 16 May 2011; in revised form: 11 June 2011 / Accepted: 13 June 2011 / Published: 17 June 2011 Abstract: Sigma1 receptors (σ1Rs) represent a structurally unique class of intracellular proteins that function as chaperones. σ1Rs translocate from the mitochondria-associated membrane to the cell nucleus or cell membrane, and through protein-protein interactions influence several targets, including ion channels, G-protein-coupled receptors, lipids, and other signaling proteins. Several studies have demonstrated that σR antagonists block stimulant-induced behavioral effects, including ambulatory activity, sensitization, and acute toxicities. Curiously, the effects of stimulants have been blocked by σR antagonists tested under place-conditioning but not self-administration procedures, indicating fundamental differences in the mechanisms underlying these two effects. The self administration of σR agonists has been found in subjects previously trained to self administer cocaine. The reinforcing effects of the σR agonists were blocked by σR antagonists. Additionally, σR agonists were found to increase dopamine concentrations in the nucleus accumbens shell, a brain region considered important for the reinforcing effects of abused drugs. -
Download Product Insert (PDF)
PRODUCT INFORMATION SA 4503 Item No. 26241 CAS Registry No.: 165377-44-6 Formal Name: 1-[2-(3,4-dimethoxyphenyl) ethyl]-4-(3-phenylpropyl)- O piperazine, dihydrochloride O Synonyms: AGY 94806, Cutamesine MF: C23H32N2O2 • 2HCl 441.4 FW: N Purity: ≥98% Supplied as: A crystalline solid N • 2HCl Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures SA 4503 is supplied as a crystalline solid. Aqueous solutions of SA 4503 can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of SA 4503 in PBS, pH 7.2, is approximately 5 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description SA 4503 is a sigma-1 (σ1) receptor agonist that is selective for σ1 over σ2 receptors in a radioligand 1,2 binding assay using guinea pig brain homogenates (Kis = 4.6 and 63 nM, respectively). SA 4503 (10 μM) reduces light-induced cell death, decreases in σ1 expression, disruption of the mitochondrial membrane potential, and activation of caspase-3/7 in murine 661W cells, effects that are blocked by the σ1 receptor antagonist BD 1047 (Item No. 22928).2 In vivo, SA 4503 (10 mg/kg) increases extracellular acetylcholine concentrations in the frontal cortex and improves step-through latency in a passive avoidance test in rats with scopolamine-induced memory impairment.3 SA 4503 reduces working and reference memory errors induced by a time delay and MK-801 (Item No. 10009019) in a radial arm maze in rats when administered 4 at a dose of 0.3 mg/kg, effects which are ameliorated by the σ1 antagonist NE-100 (Item No. -
Demonstration and Affinity Labeling of a Stereoselective Binding Site for A
Proc. Nati. Acad. Sci. USA Vol. 82, pp. 940-944, February 1985 Neurobiology Demonstration and affinity labeling of a stereoselective binding site for a benzomorphan opiate on acetylcholine receptor-rich membranes from Torpedo electroplaque (cholinergic receptor/ion channel/photoaffinity labeling/N-aliyl-N-normetazocine/phencyclidine) ROBERT E. OSWALD, NANCY N. PENNOW, AND JAMES T. MCLAUGHLIN Department of Pharmacology, New York State College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 Communicated by R. H. Wasserman, October 3, 1984 ABSTRACT The interaction of an optically pure benzo- Benzomorphan opiates have been shown to inhibit the morphan opiate, (-)-N-allyl-N-normetazocine [(-)-ANMC], binding of [3H]PCP to central nervous system synaptic mem- with the nicotinic acetylcholine receptor from Torpedo electro- branes (15, 16) and to modify the activity of serum cholines plaque was studied by using radioligand binding and affinity terase (17). Some opiate derivatives, in particular the benzo- labeling. The binding was complex with at least two specific morphans, can inhibit the binding of [3H]perhydrohistrioni- components having equilibrium dissociation constants of 0.3 cotoxin and [3H]PCP to the Torpedo AcChoR (18, 19). In the jiM and 2 jiM. The affinity of the higher affinity component present studies, a radioactive optically pure benzomorphan, was decreased by carbamoylcholine but not by a-bungaro- (-)-[3H]N-allyl-N-normetazocine {(-)-[3H]ANMC}, was toxin. The effect of carbamoylcholine was not blocked by a- used to measure reversible binding to and affinity labeling of bungarotoxin. In comparison, the affinity of [3Hlphencycli- the Torpedo electroplaque AcChoR. Specific binding was dine, a well-characterized ligand for a high-affinity site for shown to be complex with at least one component having noncompetitive blockers on the acetylcholine receptor, is in- lower affinity in the presence rather than the absence of cho- creased by carbamoylcholine and the increase is blocked by a- linergic effectors. -
Involvement of the Sigma-1 Receptor in Methamphetamine-Mediated Changes to Astrocyte Structure and Function" (2020)
University of Kentucky UKnowledge Theses and Dissertations--Medical Sciences Medical Sciences 2020 Involvement of the Sigma-1 Receptor in Methamphetamine- Mediated Changes to Astrocyte Structure and Function Richik Neogi University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-8716-8812 Digital Object Identifier: https://doi.org/10.13023/etd.2020.363 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Neogi, Richik, "Involvement of the Sigma-1 Receptor in Methamphetamine-Mediated Changes to Astrocyte Structure and Function" (2020). Theses and Dissertations--Medical Sciences. 12. https://uknowledge.uky.edu/medsci_etds/12 This Master's Thesis is brought to you for free and open access by the Medical Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Medical Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
Regulatory Strategies for Promoting the Safe Use of Prescription Opioids and the Potential Impact of Overregulation
REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Wissenschaftliche Prüfungsarbeit zur Erlangung des Titels „Master of Drug Regulatory Affairs“ der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Dr. Katja Bendrin aus Torgau Bonn 2020 Betreuer und Erster Referent: Dr. Birka Lehmann Zweiter Referent: Dr. Jan Heun REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Acknowledgment │ page II of VII Acknowledgment I want to thank Dr. Birka Lehmann for her willingness to supervise this work and for her support. I further thank Dr. Jan Heun for assuming the role of the second reviewer. A big thank you to the DGRA Team for the organization of the master's course and especially to Dr. Jasmin Fahnenstich for her support to find the thesis topic and supervisors. Furthermore, thank you Harald for your patient support. REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Table of Contents │ page III of VII Table of Contents 1. Scope.................................................................................................................................... 1 2. Introduction ......................................................................................................................... 2 2.1 Classification of Opioid Medicines ................................................................................................. -
The Organic Chemistry of Drug Synthesis
The Organic Chemistry of Drug Synthesis VOLUME 2 DANIEL LEDNICER Mead Johnson and Company Evansville, Indiana LESTER A. MITSCHER The University of Kansas School of Pharmacy Department of Medicinal Chemistry Lawrence, Kansas A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY AND SONS, New York • Chichester • Brisbane • Toronto Copyright © 1980 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Cataloging in Publication Data: Lednicer, Daniel, 1929- The organic chemistry of drug synthesis. "A Wiley-lnterscience publication." 1. Chemistry, Medical and pharmaceutical. 2. Drugs. 3. Chemistry, Organic. I. Mitscher, Lester A., joint author. II. Title. RS421 .L423 615M 91 76-28387 ISBN 0-471-04392-3 Printed in the United States of America 10 987654321 It is our pleasure again to dedicate a book to our helpmeets: Beryle and Betty. "Has it ever occurred to you that medicinal chemists are just like compulsive gamblers: the next compound will be the real winner." R. L. Clark at the 16th National Medicinal Chemistry Symposium, June, 1978. vii Preface The reception accorded "Organic Chemistry of Drug Synthesis11 seems to us to indicate widespread interest in the organic chemistry involved in the search for new pharmaceutical agents. We are only too aware of the fact that the book deals with a limited segment of the field; the earlier volume cannot be considered either comprehensive or completely up to date. -
Psychedelics for Brain Injury: a Mini-Review
Washington University School of Medicine Digital Commons@Becker Open Access Publications 1-1-2021 Psychedelics for brain injury: A mini-review Shariq Mansoor Khan Gregory T Carter Sunil K Aggarwal Julie Holland Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs MINI REVIEW published: 29 July 2021 doi: 10.3389/fneur.2021.685085 Psychedelics for Brain Injury: A Mini-Review Shariq Mansoor Khan 1*, Gregory T. Carter 2, Sunil K. Aggarwal 3 and Julie Holland 4 1 Washington University School of Medicine in St. Louis, St. Louis, MO, United States, 2 Department of Physical Medicine & Rehabilitation, St. Luke’s Rehabilitation Institute, Spokane, WA, United States, 3 Advanced Integrative Medical Sciences Institute, Seattle, WA, United States, 4 Private Practitioner, New York, NY, United States Objective: Stroke and traumatic brain injury (TBI) are among the leading causes of disability. Even after engaging in rehabilitation, nearly half of patients with severe TBI requiring hospitalization are left with major disability. Despite decades of investigation, pharmacologic treatment of brain injury is still a field in its infancy. Recent clinical trials have begun into the use of psychedelic therapeutics for treatment of brain injury. This brief review aims to summarize the current state of the science’s relevance to neurorehabilitation, and may act as a resource for those seeking to understand the precedence for these ongoing clinical trials. Methods: Narrative mini-review of studies published related to psychedelic therapeutics and brain injury. Results: Recent in vitro, in vivo, and case report studies suggest psychedelic pharmacotherapies may influence the future of brain injury treatment through modulation of neuroinflammation, hippocampal neurogenesis, neuroplasticity, and brain complexity. -
Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG . -
The Sigma-1 Receptor Antagonist, S1RA, Reduces Stroke Damage, Ameliorates Post-Stroke Neurological Deficits and Suppresses the Overexpression of MMP-9
Mol Neurobiol DOI 10.1007/s12035-017-0697-x The Sigma-1 Receptor Antagonist, S1RA, Reduces Stroke Damage, Ameliorates Post-Stroke Neurological Deficits and Suppresses the Overexpression of MMP-9 Pilar Sánchez-Blázquez1,2 & Andrea Pozo-Rodrigálvarez1 & Manuel Merlos2 & Javier Garzón1 Received: 16 January 2017 /Accepted: 26 July 2017 # The Author(s) 2017. This article is an open access publication Abstract The glutamate N-methyl-D-aspartate receptor deletion of σ1R nor wild-type mice that were pre-treated with (NMDAR) plays an essential role in the excitotoxic neural the σ1R agonist PRE084 showed beneficial effects after damage that follows ischaemic stroke. Because the sigma-1 S1RA administration with regard to stroke infarction. S1RA- receptor (σ1R) can regulate NMDAR transmission, exoge- treated mice showed faster behavioural recovery from stroke; nous and putative endogenous regulators of σ1R have been this finding complements the significant decreases in matrix investigated using animal models of ischaemic stroke. As both metalloproteinase-9 (MMP-9) expression and reactive agonists and antagonists provide some neural protection, the astrogliosis surrounding the infarcted cortex. Our data indicate selective involvement of σ1Rs in these effects has been that S1RA, via σ1R, holds promising potential for clinical questioned. The availability of S1RA (E-52862/MR309), a application as a therapeutic agent for ischaemic stroke. highly selective σ1R antagonist, prompted us to explore its therapeutic potential in an animal model of focal cerebral is- Keywords Sigma 1 receptor . S1RA . Stroke . chaemia. Mice were subjected to right middle cerebral artery Neuroprotective effects . MMP-9 . Astrogliosis occlusion (MCAO), and post-ischaemic infarct volume and neurological deficits were determined across a range of inter- vals after the stroke-inducing surgery. -
The Organic Chemistry of Drug Synthesis
THE ORGANIC CHEMISTRY OF DRUG SYNTHESIS VOLUME 3 DANIEL LEDNICER Analytical Bio-Chemistry Laboratories, Inc. Columbia, Missouri LESTER A. MITSCHER The University of Kansas School of Pharmacy Department of Medicinal Chemistry Lawrence, Kansas A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY AND SONS New York • Chlchester • Brisbane * Toronto • Singapore Copyright © 1984 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Cataloging In Publication Data: (Revised for volume 3) Lednicer, Daniel, 1929- The organic chemistry of drug synthesis. "A Wiley-lnterscience publication." Includes bibliographical references and index. 1. Chemistry, Pharmaceutical. 2. Drugs. 3. Chemistry, Organic—Synthesis. I. Mitscher, Lester A., joint author. II. Title. [DNLM 1. Chemistry, Organic. 2. Chemistry, Pharmaceutical. 3. Drugs—Chemical synthesis. QV 744 L473o 1977] RS403.L38 615M9 76-28387 ISBN 0-471-09250-9 (v. 3) Printed in the United States of America 10 907654321 With great pleasure we dedicate this book, too, to our wives, Beryle and Betty. The great tragedy of Science is the slaying of a beautiful hypothesis by an ugly fact. Thomas H. Huxley, "Biogenesis and Abiogenisis" Preface Ihe first volume in this series represented the launching of a trial balloon on the part of the authors. In the first place, wo were not entirely convinced that contemporary medicinal (hemistry could in fact be organized coherently on the basis of organic chemistry. -
Drug Delivery System for Use in the Treatment Or Diagnosis of Neurological Disorders
(19) TZZ __T (11) EP 2 774 991 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 10.09.2014 Bulletin 2014/37 C12N 15/86 (2006.01) A61K 48/00 (2006.01) (21) Application number: 13001491.3 (22) Date of filing: 22.03.2013 (84) Designated Contracting States: • Manninga, Heiko AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 37073 Göttingen (DE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO •Götzke,Armin PL PT RO RS SE SI SK SM TR 97070 Würzburg (DE) Designated Extension States: • Glassmann, Alexander BA ME 50999 Köln (DE) (30) Priority: 06.03.2013 PCT/EP2013/000656 (74) Representative: von Renesse, Dorothea et al König-Szynka-Tilmann-von Renesse (71) Applicant: Life Science Inkubator Betriebs GmbH Patentanwälte Partnerschaft mbB & Co. KG Postfach 11 09 46 53175 Bonn (DE) 40509 Düsseldorf (DE) (72) Inventors: • Demina, Victoria 53175 Bonn (DE) (54) Drug delivery system for use in the treatment or diagnosis of neurological disorders (57) The invention relates to VLP derived from poly- ment or diagnosis of a neurological disease, in particular oma virus loaded with a drug (cargo) as a drug delivery multiple sclerosis, Parkinsons’s disease or Alzheimer’s system for transporting said drug into the CNS for treat- disease. EP 2 774 991 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 774 991 A1 Description FIELD OF THE INVENTION 5 [0001] The invention relates to the use of virus like particles (VLP) of the type of human polyoma virus for use as drug delivery system for the treatment or diagnosis of neurological disorders.