Staphylococcus Debuckii Sp. Nov., a Coagulase-Negative Species from Bovine Milk

Total Page:16

File Type:pdf, Size:1020Kb

Staphylococcus Debuckii Sp. Nov., a Coagulase-Negative Species from Bovine Milk TAXONOMIC DESCRIPTION Naushad et al., Int J Syst Evol Microbiol DOI 10.1099/ijsem.0.003457 Staphylococcus debuckii sp. nov., a coagulase-negative species from bovine milk Sohail Naushad,1,2,* Uliana Kanevets,1 Diego Nobrega,1,2 Domonique Carson,1,2 Simon Dufour,2,3 Jean-Philippe Roy,2,4 P. Jeffrey Lewis2,5 and Herman W. Barkema1,2 Abstract A novel type strain, designated SDB 2975T (=CECT 9737T=DSM 105892T), of the novel species Staphylococcus debuckii sp. nov. isolated from bovine milk is described. The novel species belongs to the genus Staphylococcus and showed resistance to tetracycline and was oxidase- and coagulase-negative, catalase-positive, and Gram-stain-positive. Phylogenetic relationships of Staphylococcus debuckii SDB 2975T to other staphylococcal species were inferred from 16S rRNA gene and whole- genome-based phylogenetic reconstruction. The 16S rRNA gene comparisons showed that the strain is closely related to Staphylococcus condimenti (99.73 %), Staphylococcus piscifermentans (99.66 %), Staphylococcus carnosus (99.59 %) and Staphylococcus simulans (98.03 %). Average nucleotide identity (ANI) values between S.taphylococcus debuckii SDB 2975T and its closely related Staphylococcus species were 83.96, 94.5, 84.03 and 78.09 %, respectively, and digital DNA–DNA hybridization (dDDH) values were 27.70, 58.02, 27.70 and 22.00 %, respectively. The genome of Staphylococcus debuckii SDB 2975T was sequenced with PacBio and Illumina technologies and is 2 691 850 bp long, has a G+C content of 36.6 mol% and contains 2678 genes and 80 RNAs, including six copies of each5S rRNA, 16S rRNA and 23S rRNA genes. Biochemical profiling and a newly developed PCR assay enabled differentiation of Staphylococcus debuckii SDB 2975T and three other SDB strains from its closest staphylococcal species. Differentiation was also achieved by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF). Genes unique to Staphylococcus debuckii were identified and a PCR- based assay was developed to differentiate Staphylococcus debuckii from other staphylococcal species. In conclusion, the results of phylogenetic analysis along with the ANI values <95 %, and dDDH values <70 % from closely related species along with the phenotypic and biochemical characteristics and specific MALDI-TOF profiles demonstrated that Staphylococcus debuckii SDB 2975T represents a novel species within the genus Staphylococcus, named Staphylococcus debuckii sp. nov. (SDB 2975T=CECT 9737T=DSM 105892T). Non-aureus staphylococci (NAS), commonly known as genus Staphylococcus are Gram-positive cocci that occur coagulase-negative staphylococci (CNS), are the most fre- singly, in pairs, short chains and irregular grape-like clusters quently isolated organisms from bovine mastitis milk [9]. Since its description, classification of the genus Staphy- worldwide [1–4]. NAS belong to the genus Staphylococcus, lococcus has been under active revisions [10–12]. Many new first described in 1884 [5], and currently (as of September Staphylococcus species have been described in the last 2018) consists of 51 species and 28 subspecies (www.bac- decade [13–16]. However, in the past, description of novel terio.net/staphylococcus.html), out of which 25 NAS species staphylococcal species was solely based upon morphological are most commonly identified from bovine milk in Canada, and biochemical characteristics [9, 17]. However, these the phylogeny, distribution, virulence and antimicrobial methods do not always identify Staphylococcus species reli- resistance profiles of those 25 NAS species were described ably [15, 18, 19]. Many new rules of genome-based classifi- recently [2, 6–8]. Morphologically, the members of the cation and methods of identification have been published in Author affiliations: 1Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary AB, Canada; 2Canadian Bovine Mastitis and Milk Quality Research Network, St-Hyacinthe, QC, Canada; 3Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe QC, Canada; 4Department of Clinical Sciences, Faculte de medecine vet erinaire, Universite de Montreal, 3200 Rue Sicotte, St-Hyacinthe, Quebec, Canada; 5Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada. *Correspondence: Sohail Naushad, [email protected] Keywords: novel species; coagulase-negative staphylococci; bovine intramammary infection; whole-genome sequencing; virulence factors; antimicrobial resistance. Abbreviations: ANI, average nucleotide identity; ARG, antimicrobial resistant gene; CAS, coagulase-negative staphylococci; dDDH, digital DNA–DNA hybridization; GGDC, Genome-to-Genome Distance Calculator; ML, maximum-likelihood; MSA, multiple sequence alignment; NAS, non-aureus staphy- lococci; OGRI, overall genome related index; WGS, whole-genome sequencing. One supplementary table is available with the online version of this article. 003457 ã 2019 The Authors Downloaded from www.microbiologyresearch.org by This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. IP: 54.70.40.11 1 On: Sat, 22 Jun 2019 10:18:51 Naushad et al., Int J Syst Evol Microbiol the last decade [20–24]. With the advent of next-generation Each of them was originally assigned as Staphylococcus pisci- sequencing technologies, bacterial species are currently fermentans with scores of 1.757, 1.831 and 1.864, respec- being recognized based on whole-genome sequences, aug- tively. These scores are within the ‘probable genus mented with matrix-assisted laser desorption/ionization identification’ only, with insufficiently reliable species time-of-flight mass spectrometry (MALDI-TOF MS) demarcation. Following more analyses, we eventually and phenotypic and chemotypic characterization [23–26]. named them Staphylococcus debuckii SDB 3462 (MQM ID Two prokaryotic bacteria are typically regarded as different 3462) isolated from fourth quarter (right rear) of a cow 15 species if genomic DNA exhibits a DNA–DNA hybridiza- days after calving and Staphylococcus debuckii SDB 5244 tion (DDH) value <70 % [27, 28], with the DDH value (MQM ID 5244) and Staphylococcus debuckii SDB 5264 reflecting relatedness or similarity between two genomes. (MQM ID 5264), both isolated from the same second quar- However, after several studies proposed the replacement of ter (left rear) of a cow 5 and 13 days after calving, DDH with pairwise genome-sequence derived similarity respectively. indices, the overall genome related index (OGRI) has become an alternative (to DDH) accepted standard for pro- PHYLOGENY karyotic speciation [20, 23, 24]. Like DDH, OGRI can be Core genome (Fig. 1) and 16S rRNA gene (Fig. 2) trees of used to check if a strain belongs to a known species by cal- T culating the relatedness between genome sequences of novel staphylococcal species showed that strain SDB 2975 was strains and type strain of a species [24]. Recently, average most closely related to Staphylococcus condimenti (99.73 %), nucleotide identity (ANI) and digital DDH (dDDH) have S. piscifermentans (99.66 %), S. carnosus (99.59 %) and S. been most widely used for bacterial species demarcation simulans (98.03 %), with percentage similarity (16S – rRNA gene) for each species shown in parentheses. How- [13, 26, 29 31]. The proposed and generally accepted spe- T cies boundary for ANI and dDDH values are 95~96 and ever, apart from distinct branching of strain SDB 2975 in 70 %, respectively [24]. the phylogenetic trees, the 16S rRNA gene sequences simi- larities were not distinct enough for determining the species. Following recommended guidelines [17, 32] and the new Traditionally, newly discovered bacterial strains in most rules of classification [20, 24], herein we describe strain SDB T T T cases have been defined as members of the same species if 2975 (=CECT 9737 =DSM 105892 ) as the type strain of they share 97 % or greater 16S rRNA gene sequence similar- the novel species Staphylococcus debuckii sp. nov. We also ity [23, 34, 35]. However, many studies have pointed out report the phenotypic and chemotypic characterization of S. limitations in 16S rRNA gene-based classification of prokar- debuckii, along with the whole-genome sequencing (WGS), yotes, and in many cases bacteria have been misclassified as genome annotation and characterization and phylogenetic members of incorrect taxonomic groups [36–39]. The avail- characteristics. We also generated MALDI-TOF profiles to ability of the whole genomes has enabled resolving many distinguish Staphylococcus debuckii from other closely incorrect taxonomical relationships [40, 41]. In order to related staphylococcal species. compute the core genome phylogeny of Staphylococcus debuckii, complete genomes of S. carnosus LTH 3730 ISOLATION AND HOME HABITAT (CP016760.1), S. condimenti DSM 11674T (NZ_CP015114), Strain SDB 2975T was isolated from the milk of the right S. simulans FDAARGOS_124 (NZ_CP014016.1) and S. pis- fore quarter of an eighth lactation cow at 35 days-in-milk cifermentans NCTC13836 (NZ_LT906447.1) were down- housed in a tie-stall herd in Quebec, Canada. The cow pro- loaded from the NCBI. Genome sequences of 25 other bovine duced on average 29 kg of milk per day on a preceding dairy NAS species were
Recommended publications
  • Intramammary Infections with Coagulase-Negative Staphylococcus Species
    Printing of this thesis was financially supported by Printed by University Press, Zelzate ISBN number: 9789058642738 INTRAMAMMARY INFECTIONS WITH COAGULASE-NEGATIVE STAPHYLOCOCCUS SPECIES IN BOVINES - MOLECULAR DIAGNOSTICS AND EPIDEMIOLOGY - KARLIEN SUPRÉ 2011 PROMOTORS/PROMOTOREN Prof. dr. Sarne De Vliegher Faculteit Diergeneeskunde, UGent Prof. dr. Ruth N. Zadoks Royal (Dick) School of Veterinary Studies, University of Edinburgh; Moredun Research Institute, Penicuik, Schotland Prof. dr. Freddy Haesebrouck Faculteit Diergeneeskunde, UGent MEMBERS OF THE EXAMINATION COMMITTEE/LEDEN VAN DE EXAMENCOMMISSIE Prof. dr. dr. h. c. Aart de Kruif Voorzitter van de examencommissie Prof. dr. Mario Vaneechoutte Faculteit Geneeskunde en Gezondheidswetenschappen, UGent Dr. Margo Baele Directie Onderzoeksaangelegenheden, UGent Dr. Lic. Luc De Meulemeester MCC-Vlaanderen, Lier Prof. dr. Geert Opsomer Faculteit Diergeneeskunde, UGent Prof. dr. Marc Heyndrickx Instituut voor Landbouw en Visserijonderzoek (ILVO), Melle Dr. Suvi Taponen University of Helsinki, Finland Prof. dr. Ynte H. Schukken Cornell University, Ithaca, USA INTRAMAMMARY INFECTIONS WITH COAGULASE-NEGATIVE STAPHYLOCOCCUS SPECIES IN BOVINES - MOLECULAR DIAGNOSTICS AND EPIDEMIOLOGY - KARLIEN SUPRÉ Department of Reproduction, Obstetrics, and Herd Health Faculty of Veterinary Medicine, Ghent University Dissertation submitted in the fulfillment of the requirements for the degree of Doctor in Veterinary Sciences, Faculty of Veterinary Medicine, Ghent University INTRAMAMMAIRE INFECTIES MET COAGULASE-NEGATIEVE
    [Show full text]
  • A Novel Approach to Eliminate Detection of Contaminating Staphylococcal Species Introduced During Clinical Testing
    RESEARCH ARTICLE A novel approach to eliminate detection of contaminating Staphylococcal species introduced during clinical testing Wanyuan Ao, Adrianne Clifford, Maylene Corpuz, Robert Jenison* Great Basin Corporation, Salt Lake City, Utah, United States of America * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 We describe here a strategy that can distinguish between Staphylococcus species truly a1111111111 present in a clinical sample from contaminating Staphylococcus species introduced during the testing process. Contaminating Staphylococcus species are present at low levels in PCR reagents and colonize lab personnel. To eliminate detection of contaminants, we describe an approach that utilizes addition of sufficient quantities of either non-target Staph- OPEN ACCESS ylococcal cells (Staphylococcus succinus or Staphylococcus muscae) or synthetic oligonu- Citation: Ao W, Clifford A, Corpuz M, Jenison R cleotide templates to helicase dependent isothermal amplification reactions to consume (2017) A novel approach to eliminate detection of Staphylococcus-specific tuf and mecA gene primers such that contaminating Staphylococ- contaminating Staphylococcal species introduced cus amplification is suppressed to below assay limits of detection. The suppressor template during clinical testing. PLoS ONE 12(2): e0171915. DNA is designed with perfect homology to the primers used in the assay but an internal doi:10.1371/journal.pone.0171915 sequence that is unrelated to the Staphylococcal species targeted for detection. Input Editor: Baochuan Lin, Defense Threat Reduction amount of the suppressor is determined by a mathematical model described herein and is Agency, UNITED STATES demonstrated to completely suppress contaminating levels of Staphylococcus while not Received: October 25, 2016 negatively impacting the appropriate clinical assay limit of detection.
    [Show full text]
  • Virulence Factors in Staphylococcus Associated with Small Ruminant Mastitis: Biofilm Production and Antimicrobial Resistance Genes
    antibiotics Article Virulence Factors in Staphylococcus Associated with Small Ruminant Mastitis: Biofilm Production and Antimicrobial Resistance Genes Nara Cavalcanti Andrade 1, Marta Laranjo 1 , Mateus Matiuzzi Costa 2 and Maria Cristina Queiroga 1,3,* 1 MED–Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; [email protected] (N.C.A.); [email protected] (M.L.) 2 Federal University of the São Francisco Valley, BR 407 Highway, Nilo Coelho Irrigation Project, s/n C1, Petrolina 56300-000, PE, Brazil; [email protected] 3 Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal * Correspondence: [email protected]; Tel.: +351-266-740-800 Abstract: Small ruminant mastitis is a serious problem, mainly caused by Staphylococcus spp. Different virulence factors affect mastitis pathogenesis. The aim of this study was to investigate virulence factors genes for biofilm production and antimicrobial resistance to β-lactams and tetracyclines in 137 staphylococcal isolates from goats (86) and sheep (51). The presence of coa, nuc, bap, icaA, icaD, blaZ, mecA, mecC, tetK, and tetM genes was investigated. The nuc gene was detected in all S. aureus isolates and in some coagulase-negative staphylococci (CNS). None of the S. aureus isolates carried the bap gene, while 8 out of 18 CNS harbored this gene. The icaA gene was detected in Citation: Andrade, N.C.; Laranjo, M.; S. aureus and S. warneri, while icaD only in S. aureus. None of the isolates carrying the bap gene Costa, M.M.; Queiroga, M.C.
    [Show full text]
  • Table of Contents
    An Investigation of Staphylococcus aureus and Related Species From Flood Affected and Other Environmental Sources A Thesis in Molecular Microbiology by Nadeesha Samanmalee Jayasundara BSc (Environmental Conservation & Management) School of Biomedical Science, Institute of Health & Biomedical Innovation Queensland University of Technology Brisbane, Australia Thesis submitted to Queensland University of Technology in fulfilment of the requirements for the degree of Masters of Applied Science (Research) May 2014 2 Abstract The genus Staphylococcus consists of 45 species and is widely distributed across environments such as skin and mucous membranes of humans and animals, as well as in soil, water and air. S. aureus and S. epidermidis are the most commonly associated species with human infections. Hence, most studies have focused on clinical and clinically sourced staphylococci. In addition, S. haemoliticus, S. intermidius, S. delphini, and S. saprophiticus are also considered potentially pathogenic members of the genus. Although staphylococci are distributed in various environments, there have been very few studies examining residential air as a reservoir of clinically significant pathogens, particularly Staphylococcus species. As a result, airborne transmission of staphylococci, and associated health risks, remains unclear. This study included not only residential air but also air samples from flood affected houses. Flood water can be considered as a potential carrier of pathogenic bacteria, because flood water can be affected by residential septic systems, municipal sanitary sewer systems, hospital waste, agricultural lands/operations and wastewater treatment plants. Even after the flood waters recede, microorganisms that are transported in water can remain in soil, in or on plant materials and on numerous other surfaces. Therefore, there is a great concern for use of previously flooded indoor and outdoor areas.
    [Show full text]
  • Current Challenges of Veterinary Microbiological
    POST. MIKROBIOL., CURRENT CHALLENGES OF VETERINARY MICROBIOLOGICAL 2018, 57, 3, 270–277 http://www.pm.microbiology.pl DIAGNOSTICS CONCERNING THE SUSCEPTIBILITY DOI: 10.21307/PM-2018.57.3.270 OF STAPHYLOCOCCI TO ANTIBIOTICS Magdalena Kizerwetter-Świda*, Dorota Chrobak-Chmiel, Magdalena Rzewuska Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Poland Submitted in April, accepted in May 2018 Abstract: Staphylococci belong to bacteria often isolated from clinical material obtained from animals. Unlike in human medicine, in veterinary, different species of coagulase-positive staphylococci are isolated from clinical specimens, and exceptStaphylococcus aureus, Staphylococcus pseudintermedius, and other species are also often recognized. Recently, the taxonomy of staphylococci has been updated, therefore, now it is necessary to recognize the new species as well. Currently, coagulase-negative staphylococci are considered an important group of opportunistic pathogens. The accurate identification of species within the genus Staphylococcus is important because, according to the EUCAST and CLSI recommendations, the interpretation of the results of susceptibility testing for S. aureus and coagulase-negative staphylococci is different. Furthermore, the resistance to methicillin in S. aureus strains is detected using a cefoxitin disk, whereas in the case of S. pseudintermedius – using an oxacillin disk. An important problem for veterinary microbiological laboratories
    [Show full text]
  • Gronkowce Izolowane Od Zwierząt Jako Źródło Genów Kodujących Wielolekooporność Na Antybiotyki O Krytycznym Znaczeniu Dla Zdrowia Publicznego
    626 DOI: 10.21521/mw.5789 Med. Weter. 2017, 73 (10), 626-631 Artykuł przeglądowy Review Gronkowce izolowane od zwierząt jako źródło genów kodujących wielolekooporność na antybiotyki o krytycznym znaczeniu dla zdrowia publicznego MAGDALENA KIZERWETTER-ŚWIDA, JOANNA PŁAWIŃSKA-CZARNAK* Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego, ul. Ciszewskiego 8, 02-786 Warszawa *Katedra Higieny Żywności i Ochrony Zdrowia Publicznego, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 159, 02-776 Warszawa Otrzymano 30.05.2017 Zaakceptowano 03.07.2017 Kizerwetter-Świda M., Pławińska-Czarnak J. Staphylococci isolated from animals as a source of genes that confer multidrug resistance to antimicrobial agents of critical importance to public health Summary Antimicrobial resistance (AMR) is a global public health issue. Multidrug resistance (MDR) genes that confer resistance to antimicrobials from different classes are of particular importance in the spread of AMR. Moreover, some of these MDR genes are involved in resistance to critically important antimicrobial agents used in human and veterinary medicine. Staphylococci isolated from animals and humans harbor a wide range of resistance genes, including MDR genes. Location of MDR genes on mobile genetic elements facilitate the exchange of these genes between staphylococci of animal and human origin. The emergence of resistant Staphylococcus spp. is probably linked to therapeutic or prophylactic antimicrobial use through not only direct selection of the corresponding resistance, but also indirect selections via cross-resistance and co-resistance. Judicious use of antibiotics and the knowledge of the genetics of MRD genes and other resistance genes is indispensable to counteract further dissemination of staphylococcal MDR genes.
    [Show full text]
  • Posted 01/14
    FINAL REPORT BioReD: Biomarkers and Tools for Reductive Dechlorination Site Assessment, Monitoring and Management SERDP Project ER-1586 November 2013 Frank Löffler Kirsti Ritalahti University of Tennessee Elizabeth Edwards University of Toronto Carmen Lebrón NAVFAC ESC Distribution Statement A This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
    [Show full text]
  • The Genera Staphylococcus and Macrococcus
    Prokaryotes (2006) 4:5–75 DOI: 10.1007/0-387-30744-3_1 CHAPTER 1.2.1 ehT areneG succocolyhpatS dna succocorcMa The Genera Staphylococcus and Macrococcus FRIEDRICH GÖTZ, TAMMY BANNERMAN AND KARL-HEINZ SCHLEIFER Introduction zolidone (Baker, 1984). Comparative immu- nochemical studies of catalases (Schleifer, 1986), The name Staphylococcus (staphyle, bunch of DNA-DNA hybridization studies, DNA-rRNA grapes) was introduced by Ogston (1883) for the hybridization studies (Schleifer et al., 1979; Kilp- group micrococci causing inflammation and per et al., 1980), and comparative oligonucle- suppuration. He was the first to differentiate otide cataloguing of 16S rRNA (Ludwig et al., two kinds of pyogenic cocci: one arranged in 1981) clearly demonstrated the epigenetic and groups or masses was called “Staphylococcus” genetic difference of staphylococci and micro- and another arranged in chains was named cocci. Members of the genus Staphylococcus “Billroth’s Streptococcus.” A formal description form a coherent and well-defined group of of the genus Staphylococcus was provided by related species that is widely divergent from Rosenbach (1884). He divided the genus into the those of the genus Micrococcus. Until the early two species Staphylococcus aureus and S. albus. 1970s, the genus Staphylococcus consisted of Zopf (1885) placed the mass-forming staphylo- three species: the coagulase-positive species S. cocci and tetrad-forming micrococci in the genus aureus and the coagulase-negative species S. epi- Micrococcus. In 1886, the genus Staphylococcus dermidis and S. saprophyticus, but a deeper look was separated from Micrococcus by Flügge into the chemotaxonomic and genotypic proper- (1886). He differentiated the two genera mainly ties of staphylococci led to the description of on the basis of their action on gelatin and on many new staphylococcal species.
    [Show full text]
  • Staphylococcus Aureus in Companion Animals: an Infection Source for the Community?
    Aus dem Institut für Mikrobiologie und Tierseuchen des Fachbereichs Veterinärmedizin der Freien Universität Berlin Staphylococcus aureus in companion animals: An infection source for the community? Inaugural-Dissertation zur Erlangung des Grades eines PhD of Biomedical Sciences an der Freien Universität Berlin vorgelegt von Szilvia Vincze Tierärztin aus Budapest Berlin 2014 Journal-Nr. 3756 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Lothar H. Wieler Zweiter Gutachter: Univ.-Prof. Dr. Barbara Kohn Dritter Gutachter: Univ.-Prof. Dr. Uwe Rösler Deskriptoren (nach CAB-Thesaurus): Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, cats, dogs, horses, epidemiology, wound infections, zoonoses, genotypic variation, genotypes Tag der Promotion: 27.02.2015 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. ISBN: 978-3-86387-578-7 Zugl.: Berlin, Freie Univ., Diss., 2014 Dissertation, Freie Universität Berlin D 188 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürfen. This document is protected by copyright law. No part of this document may be reproduced in any form by any means without prior written authorization of the publisher.
    [Show full text]
  • Two-Component Signal Transduction System Saers Positively Regulates Staphylococcus Epidermidis Glucose Metabolism
    Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 908121, 12 pages http://dx.doi.org/10.1155/2014/908121 Research Article Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism Qiang Lou,1 Yijun Qi,1 Yuanfang Ma,1 and Di Qu2 1 Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng 475004, China 2 Key laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China Correspondence should be addressed to Yuanfang Ma; [email protected] and Di Qu; [email protected] Received 30 August 2013; Accepted 21 November 2013; Published 23 January 2014 Academic Editors: D. Maiorano, H. Okamura, and M. Shiraishi Copyright © 2014 Qiang Lou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE) combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS). Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated.
    [Show full text]
  • Laboratory Procedure
    LABORATORY PROCEDURE BD Phoenix™ PMIC/ID Panels BD Phoenix™ PMIC Panels BD Phoenix™ PID Panels INTENDED USE The BD Phoenix™ Automated Microbiology System is intended for the in vitro rapid identification (ID) of Gram Positive bacteria from pure culture belonging to the genera Staphylococcus, Enterococcus, and other Gram Positive cocci and Gram Positive bacilli. The BD Phoenix Automated Microbiology System is also intended for the quantitative determination of antimicrobial susceptibility by minimal inhibitory concentration (MIC) of most Gram Positive bacteria from pure culture belonging to the genera Staphylococcus and Enterococcus. SUMMARY AND EXPLANATION OF THE TEST Micromethods for the biochemical identification of microorganisms were reported as early as 19181. Several publications reported on the use of the reagent-impregnated paper discs and micro-tube methods for differentiating enteric bacteria1-9. The interest in miniaturized identification systems led to the introduction of several commercial systems in the late 1960s, and they provided advantages in requiring little storage space, extended shelf life, standardized quality control, and ease of use. Many of the tests used in the Phoenix ID panels are modifications of the classical methods. These include tests for fermentation, oxidation, degradation and hydrolysis of various substrates. In addition to these, the Phoenix system utilizes chromogenic and fluorogenic substrates as well as single carbon source substrates in the identification of organisms10,11. The modern broth microdilution test used today has origins in the tube dilution test used in 1942 by Rammelkamp and Maxon to determine in vitro antimicrobial susceptibility testing of bacterial isolates from clinical specimens12. The broth dilution technique involves exposing bacteria to decreasing concentrations of antimicrobial agents in liquid media by serial two-fold dilutions.
    [Show full text]
  • Review Memorandum
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K181663 B. Purpose for Submission: To obtain clearance for the ePlex Blood Culture Identification Gram-Positive (BCID-GP) Panel C. Measurand: Bacillus cereus group, Bacillus subtilis group, Corynebacterium, Cutibacterium acnes (P. acnes), Enterococcus, Enterococcus faecalis, Enterococcus faecium, Lactobacillus, Listeria, Listeria monocytogenes, Micrococcus, Staphylococcus, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Streptococcus, Streptococcus agalactiae (GBS), Streptococcus anginosus group, Streptococcus pneumoniae, Streptococcus pyogenes (GAS), mecA, mecC, vanA and vanB. D. Type of Test: A multiplexed nucleic acid-based test intended for use with the GenMark’s ePlex instrument for the qualitative in vitro detection and identification of multiple bacterial and yeast nucleic acids and select genetic determinants of antimicrobial resistance. The BCID-GP assay is performed directly on positive blood culture samples that demonstrate the presence of organisms as determined by Gram stain. E. Applicant: GenMark Diagnostics, Incorporated F. Proprietary and Established Names: ePlex Blood Culture Identification Gram-Positive (BCID-GP) Panel G. Regulatory Information: 1. Regulation section: 21 CFR 866.3365 - Multiplex Nucleic Acid Assay for Identification of Microorganisms and Resistance Markers from Positive Blood Cultures 2. Classification: Class II 3. Product codes: PAM, PEN, PEO 4. Panel: 83 (Microbiology) H. Intended Use: 1. Intended use(s): The GenMark ePlex Blood Culture Identification Gram-Positive (BCID-GP) Panel is a qualitative nucleic acid multiplex in vitro diagnostic test intended for use on GenMark’s ePlex Instrument for simultaneous qualitative detection and identification of multiple potentially pathogenic gram-positive bacterial organisms and select determinants associated with antimicrobial resistance in positive blood culture.
    [Show full text]