Epidemiology and Transmission of Lymphatic Filariasis in Southern Sudan

Total Page:16

File Type:pdf, Size:1020Kb

Epidemiology and Transmission of Lymphatic Filariasis in Southern Sudan Epidemiology and Transmission of Lymphatic Filariasis in Southern Sudan BY: ELTAYA HASSAN AWAD ELKARAM B. Sc. (General) Zoology Faculty of Science Omdurman Islamic University Qualifying M.Sc Zoology University of Khartoum A thesis Submitted in Fulfillment of the Requirements of the Master Degree in A Thesis Submitted in Fulfillment of the Requirements of the Zoology Master Degree in Zoology Department of Zoology Faculty of Science Department of Zoology Faculty of Science University of Khartoum ******************************************************* May 2007 ABSTRACT This study on Lymphatic Filariasis and its vectors has been carried out at Bahr El Jebal State (Juba and Terkaka towns) between the periods August 2004 – September 2004 and April 2005 – June 2005 . Mosquitoes , the vectors of this disease , were collected using Pyrethrum spray (Knock down ). This insect survey showed that Anopheles gambiae s.s. is the common species in Juba area but in Terkaka Culex quinquefasciatus is the common species . All insect components namely head , thorax and abdomen were dissected in search of the parasites. The result revealed that the parasite , causing Elephantiasis (chronic filariasis ) is Wuchereria bancrofti. From the total number of mosquitoes collected (2729) only 81 individuals were found infected : 60 Anopheles and 21 Culex The overall rate of the mosquitoes which carried the first , second and third stages of the parasite was 2.9 %, but the rate of mosquitoes which carried the infective stage (L3) reached its maximum at Rajaf west (4.2 %) . The observations showed that the disease is prevalent in Juba and Terkaka . Males were more affected by the disease than females specially in the villages. A similar visit was also made to Blue Nile State being a second area where this disease prevailed . الخﻻصة تمت هذه الدراسة لمرض الفﻻريا الليمفية و العائل الناقل له بوﻻية بحر الجبل )مدينتي جوب ـا وتركاكا( في الفترة من أغسطس 2004 – سبتمبر 2004 و ابريل 2005 – يونيو 2005 . تم جمع البعوض ) العائل الناقل ( لهذا المرض بواسطة الرش ال ـرذاذي لمبي ـد الب ـايريثرم . اوضح المسح الحشري لهذه الد ارسة ان انوفيليس قامبيا س .س. اكثر اﻻنواع شيوعا في منطقة جوب ـا اما في تركاكا فبعوض كيولكس كوينكيفاسكياتس هو اكثر اﻻنواع شيوعا . للبحث عن الطفيل تم التشريح ﻻجزاء جسم البعوضة الثﻻث ـة ، الـرأس ، ال ـصدر وال ـبطن واظهرت النتائج بأن الطفيل المسبب لمرض داء الفيل هو يوشيريريا بانكروفتي . من العدد الكلي للبعوض )2729( الذي تم جمعه وجد ان 81 بعوض ـة فقـط مـصابة : 60 انوفيليس و 21 كيوليكس . المعدل للبعوض المصاب الذي يحمل اﻻطوار اﻻول , الثاني والثال ـث للطفي ـل 9.2% لك ـن المعدل للبعوض الذي يحمل الطور الثالث المعدي )ل3( وصل اقصاه ف ـي منطقـة الرج ـاف غـرب . )%2.4( اوضحت المشاهدة بأن المرض يتفشى في جوبا وتركاكا . الرجال اكثر اصابة بالمرض م ـن النساء و خاصة في القرى . تضمنت هذه الد ارسة زيارة مشابهة لوﻻية النيل اﻻزرق كمنطقة ثانيه يتفشى بها هذا المرض. Chapter One INTRODUCTION AND LITERATURE REVIEW 1.1 INTRODUCTION Lymphatic Filariasis (LF) is a major cause of clinical morbidity and an impediment to socioeconomic development affecting some 80 countries in the tropics and subtropics (Farid et. al., 2003). And it puts at risk more than a billion people. Over 120 million people have already been affected by it, over 40 million of them are seriously incapacitated with the disease. One third of this number is in Africa and most of the remainder are in South Asia (particularly India), the Pacific and America. In tropical and subtropical areas where Lymphatic Filariasis is wellestablished, the prevalence of infection is continuing to increase. A primary cause of this increase is the rapid and unplanned growth of cities, which creates numerous breeding sites for the mosquitoes that transmit the disease (WHO, 2000). The causative agent of Lymphatic Filariasis in a nematode which belong to the following systematic status : Kingdom: Animalia. Phylum: Nematoda. Class: Secerneutea. Subclass: Spiruria. Order: Spirurida. Suborder: Spirurina. Family: Filariidae. Subfamily : Filarioidea Genus: Wuchereria Species:bancrofti.( www.keepbair alive, com/ para. Html).2006 1 Lymphatic Filariasis is evidently endemic in Sudan; this is based on previous published (Satti and Abd El-Nur,1974) and unpublished data of scattered spot surveys and hospital records (lymphoedema or/hydrocele). Of the 26 Sudanese States, 12 states are considered LF endemic areas (Farid et. al., 2003). These include the 10 Southern States in addition to South Dar-Fur and Blue Nile States. The total population of these states is around 8 millions and depending on Rajaf and Radom studies, 3 millions are at risk of having the disease, two thirds of them are in Southern State. A report of Ministry of Health stated that between 1948 to 1968 some 7957 cases were recorded although details and parasitological verification of these cases were not presented. Lymphatic Filariasis is a parasitic disease that is spread by mosquitoes (Anopheles, Culex, Aedes and Mansonia), caused by three nematode worms of the Family Filariidae. These are Wuchereria bancrofti, Brugia malayi and Brugia timori. There are fifteen species of filarial worms recorded from mammals and which can develop in mosquitoes. They include four species and Wuchereria bancrofti is one of them (Nelson, 1959). The latter is responsible for 90% of worldwide infections with 9% caused by Brugia malayi in southeast and eastern Asia and only 1% is reserved for Brugia timori in the Pacific Region (Michael and Bundy, 1997). Lymphatic Filariasis or Bancroftian disease depends on two hosts: humans and several species of mosquitoes which ingest microfilaria when they bite a person. These microfilariae undergo a process of transformation in mosquitoes to become infective larvae. The microfilariae mature into adult worms which can live for several years in man lymphatic system and produce millions of microfilariae. The latter circulate in the peripheral blood stream, usually at night .The worms lodge in the lymphtic system – net work of nodes and vessels that 2 regulate the delicate fluid balance between the tissue and blood and are essential for fighting infection - causing stagnation of the lymph and swelling (Evans, 2003). In endemic areas a proportion of infected persons develops no clinical symptoms although microfilariae can be found in their blood (microfilaraemia). Such persons can remain asymptomatic for several years or progress to acute and chronic filariasis (Monica , 1999). When the diagnosis of the disease becomes difficult by the use of classic ways (because the parasite is nocturnal in periodicity) the immunochromatogra - phic diagnostic test (ICT) is the suitable way at any time (WHO, 2000). Two primary biological characteristics of bancroftian parasites render transmission of infection insufficient: the lack of any animal reservoir host and no amplification of the parasite within the mosquito vector (Elsetouhy and Ramzy, 2003). It is impossible for a bite by a mosquito carrying a single infective larva to cause microfilariae (Hairston and DeMeillon, 1968), perhaps paradoxically, the efficiency of Lymphatic Filariasis transmission is actually quite low. Generally, a person needs to be exposed to many mosquito bites for a period of months or years before becoming infected. In contrast malaria can be caused by just one bite from a malaria-carrying mosquito. The microfilaria are not injected when the mosquito bites, they must migrate through the puncture site (Evans, 2003). WHO decided that Lymphatic Filariasis should be eliminated as a public health problem. Elimination of lymphatic filariasis means a reduction of the disease incidence close to zero as a result of deliberate efforts requiring continued and coordinated activities (WHO, 2002). 1.2 Objectives: Apparently Lymphatic Filariasis is transmitted by several genera or species of mosquitoes. And all these genera do exist in the Sudan. But 3 work or surveys about transmission vector have never been practiced in this country. All the efforts of combating this disease were directed towards treatment of ailing individuals but no control strategies were directed towards the vectors. Therefore, the objectives of this study are to: 1. Confirm existence of the disease and determine the genera and species of the transmission vector. 2. Identify the species of filarial worms responsible for this diseas. 1.3 Mosquitoes: Mosquitoes are insects belonging to the Order Diptera; they have a worldwide distribution being found in the tropics, in the temperate zones and in the Arctic Circle. They have been found breeding not only in underground tunnels but also in deep mines (Gordon and Lavoipierre, 1962). The term “Mosquitoes” or “Musketa” is a Spanish or Portuguese word meaning “little fly” while British people call mosquitoes “Gants”, for any two winged insect which bites and sucks the blood of man (Floore, 1999). Modern writers used the name Culex to refer to mosquitoes but this tern is now retained as a mosquito genus. Among the other important genera are Aedes and Anopheles. These three genera belong to the Phylum: Arthropoda, Class: Insecta, Subclass: Pterygota, Order: Diptera, Suborder: Nematocera, Family: Culicidae, Subfamily: Culicinae. The latter is divided into three tribes: the Anophelini (the Anophelines), Culicini (the Culicines) and the Toxorhychitini or elephant mosquitoes (Gordon and Lavoipierre, 1962). 1.3.1 What are mosquitoes: Culicine mosquitoes are small long legged organisms. They may be distinguished from all other Nematocerous flies by: 4 1. Proboscis with palps which are held straight and rigid, and which are not pendulous. 2. Scales are present on the body , the legs and the wings. The colouration of the mosquito is dependent on the colour of the scales. 3. Wing venation in which the third vein is straight and lies between two forked veins (Gordon and Lavoipierre, 1962). Mosquitoes are the most important single group of insects with regard to public health. They are remarkable and fully cosmopolitan group with 3.000 species distributed throughout the world (WHO, 1972). Since mosquitoes live in close association with man, travelling with and feeding on him, but existing for the most part as free-living insects, they are in particular well adapted to harbour and transmit agents of disease.
Recommended publications
  • The Evolution of Parasitism in Nematoda
    SUPPLEMENT ARTICLE S26 The evolution of parasitism in Nematoda MARK BLAXTER* and GEORGIOS KOUTSOVOULOS Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, UK (Received 19 February 2014; revised 16 April 2014; accepted 16 April 2014; first published online 25 June 2014) SUMMARY Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated. Key words: Nematoda, nematodes, parasitism, evolution, genome, symbiont, Wolbachia, phylogeny, horizontal gene transfer. THE DIVERSITY OF THE NEMATODA medical and veterinary science.
    [Show full text]
  • Phylogenetic and Population Genetic Studies on Some Insect and Plant Associated Nematodes
    PHYLOGENETIC AND POPULATION GENETIC STUDIES ON SOME INSECT AND PLANT ASSOCIATED NEMATODES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Amr T. M. Saeb, M.S. * * * * * The Ohio State University 2006 Dissertation Committee: Professor Parwinder S. Grewal, Adviser Professor Sally A. Miller Professor Sophien Kamoun Professor Michael A. Ellis Approved by Adviser Plant Pathology Graduate Program Abstract: Throughout the evolutionary time, nine families of nematodes have been found to have close associations with insects. These nematodes either have a passive relationship with their insect hosts and use it as a vector to reach their primary hosts or they attack and invade their insect partners then kill, sterilize or alter their development. In this work I used the internal transcribed spacer 1 of ribosomal DNA (ITS1-rDNA) and the mitochondrial genes cytochrome oxidase subunit I (cox1) and NADH dehydrogenase subunit 4 (nd4) genes to investigate genetic diversity and phylogeny of six species of the entomopathogenic nematode Heterorhabditis. Generally, cox1 sequences showed higher levels of genetic variation, larger number of phylogenetically informative characters, more variable sites and more reliable parsimony trees compared to ITS1-rDNA and nd4. The ITS1-rDNA phylogenetic trees suggested the division of the unknown isolates into two major phylogenetic groups: the HP88 group and the Oswego group. All cox1 based phylogenetic trees agreed for the division of unknown isolates into three phylogenetic groups: KMD10 and GPS5 and the HP88 group containing the remaining 11 isolates. KMD10, GPS5 represent potentially new taxa. The cox1 analysis also suggested that HP88 is divided into two subgroups: the GPS11 group and the Oswego subgroup.
    [Show full text]
  • PHYLUM NEMATODA Chapter 6
    Chapter 6 PHYLUM NEMATODA Phylum Nematoda • Round or Thread worms • size 1-2 mm mostly but some may reach 60 cm or more • Pseudocoelomates • non-sigmented • Free living and parasitic species • Pointed at both ends • Covered by a thick multilayered cuticle (non-cellular covering) • Epidermis is syncytial (secretes cuticle) 2 Nematode life cycle • Cuticle is shed 4 times during develop ment 3 Musculature • Lack circular muscles • muscular layer (longitudinal muscles) that arrange in 4 groups separated by the dorsal, ventral and lateral hypodermal chords, each muscle cell connected to either the dorsal or ventral nerve chord by muscle cell process; Movement and hydrostatic skeleton • Movement is by thrashing the body into sinusoidal waves generated by alternating contraction of longitudinal muscles on each side of the body. • The round shape of nematodes is due to the hydrostatic pressure generated by celoemic fluid and its opposing rigid cuticle. Nervous system • Nervous system made of brain (nerve ring and associated ganglia and at least 4 longitudinal nerves that run in the dorsal, ventral and lateral nerve chords in the hypodermis • Sense organs include a pair of head chemoreceptive amphids (characteristic feature of all nematodes), other sense organs found in certain groups include: posteriorly located chemoreceptive phasmids, ocelli, cephalic and caudal papillae as well as mechanoceptors Nematode Features II • Eutely: Cell number in adult tissue remain constant throughout life so that the limited increase in size is a function of increase in cell size NOT number). • Tubes within tubes worms, all organ systems tubular; 7 Nematode Features • Digestive system complete with mouth, muscular pharynx (esophagous), intestine and rectum; • Excretory system made of renette glandular cells in most spp; • No specialized gas exchange or circulatory system.
    [Show full text]
  • A Transcriptomic Analysis of the Phylum Nematoda
    There are amendments to this paper ARTICLES A transcriptomic analysis of the phylum Nematoda John Parkinson1,2, Makedonka Mitreva3, Claire Whitton2, Marian Thomson2, Jennifer Daub2, John Martin3, Ralf Schmid2, Neil Hall4,6, Bart Barrell4, Robert H Waterston3,6, James P McCarter3,5 & Mark L Blaxter2 The phylum Nematoda occupies a huge range of ecological niches, from free-living microbivores to human parasites. We analyzed the genomic biology of the phylum using 265,494 expressed-sequence tag sequences, corresponding to 93,645 putative genes, from 30 species, including 28 parasites. From 35% to 70% of each species’ genes had significant similarity to proteins from the model nematode Caenorhabditis elegans. More than half of the putative genes were unique to the phylum, and 23% were unique to the species from which they were derived. We have not yet come close to exhausting the genomic diversity of the phylum. We identified more than 2,600 different known protein domains, some of which had differential abundances between major taxonomic groups of nematodes. We also defined 4,228 nematode-specific protein families from nematode-restricted genes: http://www.nature.com/naturegenetics this class of genes probably underpins species- and higher-level taxonomic disparity. Nematode-specific families are particularly interesting as drug and vaccine targets. Nematodes, or roundworms, are a highly diverse group of organisms1. Much of what we know about the molecular and developmental What nematodes lack in obvious morphological disparity, they make biology of nematodes stems from the study of the free-living soil up for in abundance, accounting for 80% of all individual animals on rhabditine nematode Caenorhabditis elegans (Fig.
    [Show full text]
  • Molecular Phylogenetic Studies on Filarial Parasites
    Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/1994012141 M o l e c u l a r phylogenetic s t u d i e s o n f i l a r i a l p a r a s i t e s BASED ON 5S RIBOSOMAL SPACER SEQUENCES X IE H .*, BA IN O .** and W ILLIAM S S.A.*,*** S u m m a ry : R é s u m é : É t u d e s phylogénétiques moléculaires d e s fila ires à pa r­ This paper is the first large-scale molecular phylogenetic study on t ir DE SÉQUENCES DU « SPACER- DU 5S RIBOSOMAL filarial parasites (family Onchocercidae) which includes 16 spe­ Cette première étude sur la phylogénie moléculaire des filaires cies of 6 genera : Brugia beaveri Ash et Little, 1964 ; B. buckleyi (famille des Onchocercidae) - Nématodes chez lesquels les phéno­ Dissanaike et Paramananthan, 1961 ; B. malayi (Brug, 1927) mènes de convergence sont particulièrement importants en raison de Buckley, 1 9 6 0 ; B. pahangi (Buckley et Edeson, 1956) Buckley, leur vie tissulaire - inclut 16 espèces appartenant à 6 genres diffé­ 1 9 6 0 ; B. pa tei (Buckley, Nelson et Heisch, 1958) Buckley, rents : Brugia beaveri Ash et Little, 19 64 ; B. buckleyi Dissanaike et 1 9 6 0 ; B. timori Partono e t al, 1 9 7 7 ; Wuchereria bancrofti Paramananthan, 19 6 1 ; B. malayi (Brug, 1927) Buckley, I9 6 0 ; B. (Cobbold, 1877) Seurat, 1921; W. kalimantani Palmieri , pahangi (Buckley et Edeson, 1956) Buckley, 1960; B.
    [Show full text]
  • Identification and Characterization of a Cystatin-Like Effector Protein from Beet Cyst Nematode Heterodera Schachtii and Its Role in Plant-Nematode Interaction
    Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES) Lehrstuhl für Molekulare Phytomedizin Identification and characterization of a cystatin-like effector protein from beet cyst nematode Heterodera schachtii and its role in plant-nematode interaction Inaugural Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Marion Hütten aus Wesel, Deutschland Bonn, 2018 Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. 1. Gutachter: Prof. Dr. Florian M.W. Grundler 2. Gutachter: Prof. Dr. Frank Hochholdinger Tag der mündlichen Prüfung: 04.12.2017 ii Table of Content I. Abbreviations vii II. Figures ix III. Tables x 1. Chapter 1 General introduction 1.1 Nematoda 1 1.1.1 Plant-parasitic nematodes 2 1.1.2 Cyst nematodes 5 1.1.2.1 Heteroderaschachtii 7 1.1.2.2 Life cycle 7 1.1.2.3 Management 10 1.2 Plant-nematode interaction 13 1.2.1 Morphological changes and molecular background of host cells during syncytium development 14 1.2.2 The role of effector proteins in plant-nematode interaction 16 1.3 Cysteine Proteases 18 1.3.1 Papain-like Cysteine Proteases (PLCPs) 19 1.3.2 Cystatins 20 1.4 Objectives 21 1.5 References 23 2. Chapter 2 Activity profiling reveals changes in the diversity and activity of proteins in Arabidopsis roots in response to nematode infection 2.1 Abstract 2.2 Introduction 2.3 Material and Methods 2.3.1 Plant and nematode culture 2.3.2 Activity-based protein profiling 2.3.3 Quantitative real-time PCR 2.3.4 Nematode infection assay 2.4 Results iii 2.4.1 Vacuolar processing enzymes (VPEs) 2.4.2 Serine hydrolases (SHs) 2.5 Discussion 2.5.1 Activities of vacuolar processing enzymes are reduced in the syncytium 2.5.2 Selective activation of serine hydrolases in the syncytium 2.6 References 3.
    [Show full text]
  • Phylogenetic Analysis of Mitochondrial Genomes of Filarial Nematodes in the Subfamily Waltonellinae
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2015 Phylogenetic Analysis Of Mitochondrial Genomes Of Filarial Nematodes In The ubfS amily Waltonellinae Sarina Marie Bauer Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Bauer, Sarina Marie, "Phylogenetic Analysis Of Mitochondrial Genomes Of Filarial Nematodes In The ubfaS mily Waltonellinae" (2015). Theses and Dissertations. 1741. https://commons.und.edu/theses/1741 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. PHYLOGENETIC ANALYSIS OF MITOCHONDRIAL GENOMES OF FILARIAL NEMATODES IN THE SUBFAMILY WALTONELLINAE by Sarina Marie Bauer Bachelor of Science, University of North Dakota, 2011 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota August 2015 Copyright 2015 Sarina Bauer ii iii PERMISSION Title Phylogenetic Analysis of Mitochondrial Genomes of Filarial Nematodes in the Subfamily Waltonellinae Department Biology Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the chairperson of the department or the dean of the Graduate School.
    [Show full text]
  • Determinación De La Prevalencia De Microfilaria Spp En Primates No Humanos Y Humanos De Los Zoológicos Colombianos, Localizados En Diferentes Altitudes
    Universidad de La Salle Ciencia Unisalle Medicina Veterinaria Facultad de Ciencias Agropecuarias 2005 Determinación de la prevalencia de Microfilaria spp en primates no humanos y humanos de los zoológicos colombianos, localizados en diferentes altitudes Rosmery Ladino de la Hortúa Universidad de La Salle, Bogotá Follow this and additional works at: https://ciencia.lasalle.edu.co/medicina_veterinaria Part of the Veterinary Preventive Medicine, Epidemiology, and Public Health Commons Citación recomendada Ladino de la Hortúa, R. (2005). Determinación de la prevalencia de Microfilaria spp en primates no humanos y humanos de los zoológicos colombianos, localizados en diferentes altitudes. Retrieved from https://ciencia.lasalle.edu.co/medicina_veterinaria/336 This Trabajo de grado - Pregrado is brought to you for free and open access by the Facultad de Ciencias Agropecuarias at Ciencia Unisalle. It has been accepted for inclusion in Medicina Veterinaria by an authorized administrator of Ciencia Unisalle. For more information, please contact [email protected]. “DETERMINACIÓN DE LA PREVALENCIA DE MICROFILARIA SPP EN PRIMATES NO HUMANOS Y HUMANOS DE LOS ZOOLÓGICOS COLOMBIANOS, LOCALIZADOS EN DIFERENTES ALTITUDES.” ROSMERY LADINO DE LA HORTÚA UNIVERSIDAD DE LA SALLE FACULTAD DE MEDICINA VETERINARIA BOGOTÁ.D.C 2005 “DETERMINACIÓN DE LA PREVALENCIA DE MICROFILARIA SPP EN PRIMATES NO HUMANOS Y HUMANOS DE LOS ZOOLÓGICOS COLOMBIANOS, LOCALIZADOS EN DIFERENTES ALTITUDES.” ROSMERY LADINO DE LA HORTÚA Código 14991062 Trabajo de grado para optar por el tíítulo de Medicina Veterinaria. Director: Otoniel Vizcaino Gerdts MVZ. MSC Microbiología Codirectora: María Isabel Moreno Orozco MV. MSC Ciencias Biológicas Primer Asesor Delio Orjuela Acosta MVZ. Fundación Zoológica de Cali UNIVERSIDAD DE LA SALLE FACULTAD DE MEDICINA VETERINARIA BOGOTÁ.
    [Show full text]
  • Dissertation Dung Beetles and Their Nematode
    DISSERTATION DUNG BEETLES AND THEIR NEMATODE PARASITES AS ECOSYSTEM ENGINEERS AND AGENTS OF DISEASE Submitted by Broox G.V. Boze Department of Biology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2012 Doctoral Committee: Advisor: Janice Moore Dhruba Naug Michael Lacy John Ubelaker ABSTRACT DUNG BEETLES AND THEIR NEMATODE PARASITES AS ECOSYSTEM ENGINEERS AND AGENTS OF DISEASE Dung beetles (Order Coleoptera, Subfamily Scarabaeoidea), are a magnificent group of insects noted for both their physical beauty and ecologically significant role in parasite suppression and agricultural management. These insects feed on feces in both their larval and adult forms and are classified into one of three groups based on the way they procure fecal resources to their young. Paracoprid dung beetles collect chunks of feces and bury them in tunnels/nests dug directly below the site of deposition, telocoprid beetles create carefully crafted balls of dung and roll them away from the pat before burying them in underground nests, and endocoprid beetles create nests in the feces without moving it from the original deposition site. Because dung beetles interact with feces on a regular basis, and because many parasites use feces as a medium for distributing their eggs, it is not uncommon for dung beetles to come in contact with parasite propagules at a rate higher than that seen in other animals. While the majority of parasite propagules cannot survive consumption by a dung beetle, several nematode species have found a way to use these insects as their intermediate hosts.
    [Show full text]
  • Lec.1: Medical Helminthology
    Lec.1: Medical helminthology Lec.Dr.Ruwaidah F. Khaleel introduction • Medical helminthology is branch of zoology that studies worms, especially parasitic worms. • The public health impact of medical helminthes is appreciable. • Two billion people are infected by soil -transmitted helminthes such as Ascaris, hookworms, Trichuris trichura and by Schistosomes. • Early childhood infections by soil-transmitted helminthes delays physical and cognitive development. • Other widespread helminthic infections include: onchocerciasis, lymphatic filariasis, dracunculiasis ( Guinea worm disease ), and food-borne trematode and tapeworm infections. • All of these infections cause chronic morbidity and debilitation. • Medical helminthes need to develop in a parasitized host, and sometimes this involves several disparate hosts. • Helminthes parasites are more complex than free-living helminthes, because 1. they have evolved mechanisms to deal with the different environments of their various hosts and living conditions. • 2. They have developed host- finding behaviors, exquisite migration • Patterns within each host, and the ability to evade the host immune and protective responses. • Helminthes: are multicellular eukaryotic animals that generally possess digestive, circulatory, nervous, excretory, and reproductive systems. Some are free-living in soil and water. • Helminthes are studied in microbiology because they cause infectious diseases and most are diagnosed by microscopic examination of eggs or larvae. • Eggs may have striations(lines), a spine, or an operculum ( hatch by which the larva leaves). • Helminthes infect more than one-third of the world population. • Helminthes infections differ from bacterial or protozoan infections because the worms do not usually increase in number in the host. • Symptoms are usually due to 1. Mechanical damage, 2. Eating host tissues, or completing for vitamins.
    [Show full text]
  • The Evolution of Parasitism in Nematoda
    SUPPLEMENT ARTICLE S26 The evolution of parasitism in Nematoda MARK BLAXTER* and GEORGIOS KOUTSOVOULOS Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, UK (Received 19 February 2014; revised 16 April 2014; accepted 16 April 2014; first published online 25 June 2014) SUMMARY Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated. Key words: Nematoda, nematodes, parasitism, evolution, genome, symbiont, Wolbachia, phylogeny, horizontal gene transfer. THE DIVERSITY OF THE NEMATODA medical and veterinary science.
    [Show full text]
  • The Genome of the Heartworm, Dirofilaria Immitis, Reveals Drug and Vaccine Targets
    The FASEB Journal • Research Communication The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets Christelle Godel,*,†,‡,1 Sujai Kumar,§,1 Georgios Koutsovoulos,§,2 Philipp Ludin,*,†,2 ʈ ʈ Daniel Nilsson,¶ Francesco Comandatore,# Nicola Wrobel, Marian Thompson, Christoph D. Schmid,*,† Susumu Goto,** Frédéric Bringaud,†† Adrian Wolstenholme,‡‡ ʈ Claudio Bandi,# Christian Epe,‡ Ronald Kaminsky,‡ Mark Blaxter,§, and Pascal Mäser*,†,3 *Swiss Tropical and Public Health Institute, Basel, Switzerland; †University of Basel, Basel, Switzerland; ‡Novartis Animal Health, Centre de Recherche Santé Animale, St. Aubin, Switzerland; ʈ §Institute of Evolutionary Biology and The GenePool Genomics Facility, School of Biological Sciences, University of Edinburgh, Edinburgh, UK; ¶Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden; #Dipartimento di Scienze Veterinarie e Sanita` Pubblica, Universita` degli studi di Milano, Milan, Italy; **Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan; ††Centre de Résonance Magnétique des Systèmes Biologiques, Unité Mixte de Recherche 5536, University Bordeaux Segalen, Centre National de la Recherche Scientifique, Bordeaux, France; and ‡‡Department of Infectious Diseases and Center for Tropical and Emerging Global Disease, University of Georgia, Athens, Georgia, USA ABSTRACT The heartworm Dirofilaria immitis is an C., Epe, C., Kaminsky, R., Blaxter, M., Mäser, P. The important parasite of dogs. Transmitted by mosquitoes genome of the heartworm, Dirofilaria immitis, reveals drug in warmer climatic zones, it is spreading across south- and vaccine targets. FASEB J. 26, 4650–4661 (2012). ern Europe and the Americas at an alarming pace. www.fasebj.org There is no vaccine, and chemotherapy is prone to complications. To learn more about this parasite, we Key Words: comparative genomics ⅐ filaria ⅐ transposon have sequenced the genomes of D.
    [Show full text]