Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial
Total Page:16
File Type:pdf, Size:1020Kb
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 2008, p. 3523–3532 Vol. 74, No. 11 0099-2240/08/$08.00ϩ0 doi:10.1128/AEM.02450-07 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springsᰔ Ann Pearson,1* Yundan Pi,1,2,3 Weidong Zhao,3 WenJun Li,4 Yiliang Li,3† William Inskeep,5 Anna Perevalova,6 Christopher Romanek,3 Shuguang Li,2 and Chuanlun L. Zhang3* Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts1; School of Earth and Space Sciences, the University of Sciences and Technology of China, Hefei, China2; Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina3; Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, China4; Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana5; and Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia6 Received 30 October 2007/Accepted 10 March 2008 Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87°C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenar- chaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX86 paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued devel- opment of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleo- climate studies. Isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) unpublished) to be a response to increased acidity (lower pH), are widely used as taxonomic (12, 13, 27, 28) and physicochem- it is likely that multiple variables play significant roles when ical (3, 32, 45, 50, 54, 61; E. S. Boyd, A. Pearson, Y. Pi, W. Li, adjusting archaeal membranes to cope with environmental and C. L. Zhang, and G. G. Geesey, unpublished data) biomarkers energetic stresses (52, 53). to study present (1, 3, 24, 35) or ancient (30, 37, 43) commu- The cyclohexane ring-containing GDGT, crenarchaeol, is nities of Archaea. GDGTs have biphytanyl core lipids with zero widespread in the environment (e.g., see references 18, 24, 31, to as many as four cyclopentyl rings and zero or one cyclohexyl 36, 39, 41, 46, 56, and 61) and appears to be a biomarker ring on each side chain (41). Some studies of both pure cul- exclusively for Crenarchaeota (42, 46). It originally was pro- tures of Crenarchaeota (11, 16, 50, 51; Boyd et al., unpublished) posed to be specific for nonthermophilic species found in ma- and of environmental samples (39, 42, 43, 58) show that the rine systems (46). More recently, the environmental niches in number of rings increases with growth temperature, while which crenarchaeol is found have been expanded to include other studies focusing on different species or environmental lacustrine waters (39), soils (31, 56), and terrestrial geothermal settings show that this relationship is weaker or apparently environments (36, 61). The formation of a unique cyclohexane absent (6, 36, 45, 61). Because the increased number of cyclo- ring distinguishes crenarchaeol from the other GDGTs, and it pentyl rings also has been shown experimentally (14, 32; Boyd was proposed that this ring reflects physiological and evolu- et al., unpublished) and through surveys (17, 32, 57; Boyd et al., tionary adaptation to low-temperature marine environments (30, 46). Thus, the reports of crenarchaeol in geothermal springs at temperatures above 40°C were surprising (36, 61) * Corresponding author. Mailing address for A. Pearson: 20 Oxford and have been questioned (45). The recent cultivation, how- St., Cambridge, MA 02138. Phone: (617) 384-8392. Fax: (617) 496- 4387. E-mail: [email protected]. Mailing address for C. L. ever, of the hyperthermophile “Candidatus Nitrosocaldus yel- Zhang: Savannah River Ecology Laboratory, University of Georgia, lowstonii” (10) shows that synthesis of crenarchaeol can be Aiken, SC 29802. Phone: (803) 725-5299. Fax: (803) 725-3309. E-mail: abundant in organisms thriving at high temperatures. [email protected]. Multivariable control of community and lipid compositions † Present address: Department of Earth Sciences, The University of Hong Kong, Hong Kong, China. results in distributions of environmental GDGTs that can be ᰔ Published ahead of print on 4 April 2008. difficult to interpret. Examination of hot spring data using 3523 3524 PEARSON ET AL. TABLE 1. HPLC-MS data for GDGT relative abundance, hot spring temperature, and pH Locationa GDGT abundanceb c Temp GDGT- GDGT- GDGT- GDGT- GDGT- GDGT- GDGT-5‡ GDGT- GDGT- GDGT- Sample source pH GDGT-5† North West or east (°C) 0(m/z 1(m/z 2(m/z 3(m/z 4(m/z 4Ј (m/z (crenarchaeol 5Ј (m/z 6(m/z 6Ј (m/z (crenarchaeol) 1,302) 1,300) 1,298) 1,296) 1,294) 1,294) isomer) 1,292) 1,290) 1,290) Yellowstone Beowulf-ED1 44°43Ј53.4Љ 110°42Ј40.9Љ (west) 67 3.1 0.11 0.12 0.22 0.16 0.37 0.00 0.00 0.00 0.02 0.00 0.00 Beowulf-ED2 44°43Ј53.4Љ 110°42Ј 40.9Љ (west) 62 3.1 0.12 0.12 0.21 0.17 0.31 0.00 0.00 0.00 0.05 0.02 0.00 Beowulf-WD 44°43Ј53.4Љ 110°42Ј41.1Љ (west) 60 3.0 0.07 0.10 0.19 0.23 0.39 0.00 0.00 0.00 0.02 0.00 0.00 Calcite Spring-B 44°54Ј29.1Љ 110°24Ј2.42Љ (west) 74 8.2 0.35 0.19 0.13 0.09 0.10 0.00 0.00 0.00 0.06 0.08 0.00 Calcite Spring-C 44°54Ј29.1Љ 110°24Ј2.42Љ (west) 75 7.8 0.43 0.20 0.14 0.10 0.09 0.00 0.00 0.00 0.02 0.02 0.00 Cistern Spring 44°43Ј23.1Љ 110°42Ј14.5Љ (west) 82 5.3 0.24 0.18 0.14 0.18 0.22 0.00 0.00 0.00 0.02 0.02 0.0 Echinus Geyser 44°43Ј19.4Љ 110°42Ј07.6Љ (west) 75 3.4 0.02 0.04 0.10 0.23 0.52 0.00 0.00 0.00 0.07 0.02 0.00 Joseph’s Coat 44°44Ј21.4Љ 110°19Ј28.2Љ (west) 82 6.2 0.14 0.20 0.21 0.23 0.15 0.00 0.00 0.00 0.03 0.04 0.00 Monarch Geyser 44°43Ј27.5Љ 110°42Ј20.2Љ (west) 85 4.4 0.00 0.00 0.03 0.20 0.77 0.00 0.00 0.00 0.00 0.00 0.00 Porcelain Basin 44°43Ј43.9Љ 110°42Ј12.0Љ (west) 75 3.5 0.00 0.00 0.04 0.12 0.39 0.00 0.00 0.00 0.27 0.18 0.00 Perpetual Spouter-B 44°43Ј36.0Љ 110°42Ј29.8Љ (west) 82 7.0 0.07 0.10 0.13 0.22 0.43 0.02 0.00 0.00 0.03 0.00 0.00 Whirligig Geyser 44°43Ј43.3Љ 110°42Ј11.3Љ (west) 66 3.4 0.02 0.03 0.06 0.29 0.53 0.00 0.02 0.00 0.05 0.00 0.00 Kamchatka, Russia Yellow Blue 51°29Ј53.1Љ 160°00Ј52.6Љ (east) 55 6.3 0.20 0.10 0.20 0.20 0.30 0.00 0.00 0.00 0.00 0.00 0.00 Zavarzin NA NA 57 6.3 0.21 0.09 0.16 0.21 0.33 0.00 0.00 0.00 0.00 0.00 0.00 Vent 1, North (K11) 51°30Ј40.5Љ 160°00Ј19.2Љ (east) 64 5.8 0.27 0.11 0.17 0.18 0.23 0.00 0.00 0.00 0.04 0.00 0.00 Rubber Mat (CR03022) 51°29Ј56.3Љ 160°00Ј55.9Љ (east) 66 5.6 0.20 0.10 0.20 0.20 0.30 0.00 0.00 0.00 0.00 0.00 0.00 Rubber Mat (JK04078) 51°29Ј56.3Ј 160°00Ј55.9Љ (east) 66 6.1 0.16 0.10 0.18 0.22 0.34 0.00 0.00 0.00 0.00 0.00 0.00 Arkashin (K1) 51°30Ј00.0Љ 160°00Ј20.0Љ (east) 69 4.9 0.05 0.05 0.13 0.27 0.45 0.00 0.00 0.00 0.05 0.00 0.00 Bubbler (K4) 51°30Ј02.4Љ 160°00Ј27.2Љ (east) 69 5.8 0.32 0.12 0.16 0.11 0.27 0.00 0.00 0.00 0.02 0.00 0.00 Blue pool (K7) 51°30Ј39.7Љ 160°00Ј18.7Љ (east) 74 5.0 0.27 0.10 0.16 0.17 0.25 0.00 0.00 0.00 0.05 0.00 0.00 Vent 2, North 51°30Ј39.7Љ 160°00Ј18.7Љ (east) 75 5.9 0.30 0.10 0.10 0.20 0.30 0.00 0.00 0.00 0.00 0.00 0.00 Vent 2, Jen’s site (K3) 51°30Ј02.5Љ 160°00Ј27.3Љ (east) 75 5.8 0.22 0.11 0.15 0.17 0.32 0.00 0.00 0.00 0.03 0.00 0.00 Green mat (K2) 51°30Ј02.4Љ 160°00Ј27.2Љ (east) 75 5.8 0.13 0.10 0.15 0.24 0.24 0.00 0.00 0.00 0.14 0.00 0.00 Tengchong, China Tengchong-A NA NA 80 6.6 0.13 0.24 0.25 0.25 0.13 0.00 0.00 0.00 0.00 0.00 0.00 Tengchong-C NA NA 80 6.6 0.13 0.11 0.16 0.25 0.30 0.00 0.00 0.00 0.05 0.00 0.00 Pure cultures Acidilobus aceticus 1904 82 3.5 0.20 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.46 0.00 0.00 Acidilobus saccharovorans 82 3.5 0.00 0.00 0.00 0.01 0.14 0.02 0.00 0.00 0.27 0.54 0.02 345-15 Metallosphaera sedulad 75 4.5 0.07 0.15 0.23 0.25 0.26 0.00 0.00 0.00 0.04 0.00 0.00 Sulfolobus solfataricuse 85 4.5 0.00 0.01 0.04 0.14 0.31 0.08 0.00 0.00 0.27 0.15 0.00 Vulcanisaeta moutnovskia 85 4.5 0.04 0.03 0.06 0.14 0.54 0.00 0.00 0.00 0.15 0.02 0.02 768-28 Thermoproteus uzoniensis 85 5.5 0.05 0.02 0.06 0.08 0.62 0.00 0.00 0.00 0.15 0.02 0.00 Z-605 Desulfurococcus fermentans 85 6.0 0.09 0.10 0.19 0.30 0.32 0.00 0.00 0.00 0.00 0.00 0.00 1312 Desulfurococcus 85 6.5 0.08 0.06 0.11 0.20 0.55 0.00 0.00 0.00 0.00 0.00 0.00 A amylolyticus Z-533 PPL .E Nevada soils NVIRON Surprise Valley NA NA 0.38 0.07 0.10 0.03 0.02 0.00 0.37 0.03 0.00 0.00 0.00 Eagleville NA NA 0.20 0.20 0.10 0.05 0.00 0.00 0.39 0.06 0.00 0.00 0.00 Rick’s Hot Creek NA NA 0.36 0.07 0.09 0.00 0.00 0.00 0.37 0.12 0.00 0.00 0.00 .M a NA, not available.