Homotopy Mapping Spaces Jeremy Brazas University of New Hampshire, Durham

Total Page:16

File Type:pdf, Size:1020Kb

Homotopy Mapping Spaces Jeremy Brazas University of New Hampshire, Durham University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2011 Homotopy mapping spaces Jeremy Brazas University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Brazas, Jeremy, "Homotopy mapping spaces" (2011). Doctoral Dissertations. 568. https://scholars.unh.edu/dissertation/568 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. HOMOTOPY MAPPING SPACES BY JEREMY BRAZAS B.S., Harding University, 2005 M.S.E., Harding University, 2006 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics May, 2011 UMI Number: 3467362 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 3467362 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. uest ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 This dissertation has been examined and approved. ^•f\TAi_ Thesis Director, Maria Basterra Associate Professor of Mathematics (rOannJ^ ($ZJJ-XV> L*/»V_^ David Feldman Associate Professor of Mathematics Eric Grinberg Professor of Mathematics Dmitri Nikshyeh Professor of Mathematics Sam Shore Professor of Mathematics l/mzoW Date DEDICATION To Clarice iii ACKNOWLEDGMENTS I would like to give special thanks to my advisor Dr. Maria Basterra for her wisdom, encouragement, and technical help throughout the research and writing process. I am indebted to the members of my thesis committee: Dr. D. Feld- man, Dr. E. Grinberg, Dr. D. Nikshych, and Dr. S. Shore who provided helpful suggestions and valuable comments. I would also like to express my gratitude to Dr. R. Hibschweiler for her advice and encouragement throughout my time at the University of New Hampshire and to Jan Jankowsky, April Flore, and Ellen O'Keefe for their patience and various forms of support. Many thanks are also due to my fellow graduate students: Todd Abel, Justin Greenough and Maryna Yeroshkina, for their friendship and helpful conversations and to Dr. Paul Fabel for many helpful conversations. I am so grateful for my best friend and wife Clarice who has supported me emotionally and financially throughout my graduate studies. This work would not have been possible without her. Thanks to all of my family and friends, especially my parents, for encouraging me to pursue what I love. Thanks are due to the UNH Department of Mathematics and Statistics for financial support in the form of teaching assistantships and travel funds. Thanks are also due to the UNH Graduate School for funding in the form of a Summer TA Fellowship, Dissertation Year Fellowship, and travel funds which all aided in the completion of this research. iv TABLE OF CONTENTS DEDICATION iii ACKNOWLEDGMENTS iv ABSTRACT vii INTRODUCTION 1 0.1 Notation 4 0.2 Outline 6 PRELIMINARIES: TOPOLOGY 9 1.1 Function spaces 9 1.1.1 Restricted paths and neighborhoods 14 1.1.2 A convenient basis for free path spaces 16 1.2 Quotient spaces 21 HOMOTOPY MAPPING SPACES 26 2.1 Homotopy mapping sets as quotient spaces 26 2.2 Multiplication in homotopy mapping spaces 30 2.2.1 H-spaces 30 2.2.2 co-H-spaces 40 2.3 Homotopy sequences 46 2.4 Discreteness of homotopy mapping spaces 51 2.5 Alternative topologies for homotopy mapping sets 57 2.5.1 The functor T and [X, Y]J 58 2.5.2 k-spaces, the functor k, and [X, Y]k, 60 v 2.5.3 The topological shape groups and n^h(X) 63 PATH COMPONENT SPACES 70 THE TOPOLOGICAL FUNDAMENTAL GROUP 85 4.1 The topological properties of n°p 85 4.1.1 Attaching cells 87 4.1.2 Discreteness and separation 92 4.1.3 Covering spaces and n°p 104 4.2 A computation of n^(L(X+)) 108 4.2.1 The spaces E(X+) 108 4.2.2 The fundamental group 7i1(Z(X+)) 112 p n x p 4.2.3 n° (L(X+)) = F R (n° (X)) 123 4.2.4 The weak suspension spaces wL(X+) and n^p(w£(X+)) .... 133 4.3 The topological properties of n°p(L(X+)) 135 T 4.4 The topological properties of n x 142 CONCLUSIONS AND FUTURE DIRECTIONS 161 APPENDIX 163 A.l Monoids with topology 164 A.2 Groups with topology 171 A.3 Topologies on free groups . .• 185 A.3.1 Free topological groups FM(X) 185 A.3.2 Reduction topologies PR(Y) 190 REFERNCES 211 VI ABSTRACT HOMOTOPY MAPPING SPACES by Jeremy Brazas University of New Hampshire, May 2011 Advisor: Dr. Maria Basterra In algebraic topology, one studies the group structure of sets of homotopy classes of maps (such as the homotopy groups nn(X)) to obtain information about the spaces in question. It is also possible to place natural topologies on these groups that remember local properties ignored by the algebraic structure. Upon choosing a topology, one is left to wonder how well the added topological structure interacts with the group structure and which results in homotopy theory admit topological analogues. A natural place to begin is to view the n-th homotopy group n„ (X) as the quotient space of the iterated loop space Q"(X) with the compact-open topology. This dissertation contains a systematic study of these quotient topologies, giving special attention to the fundamental group. The quotient topology is shown to be a complicated and somewhat naive ap­ proach to topologizing sets of homotopy classes of maps. The resulting groups with topology capture a great deal of information about the space in question but unfortunately fail to be a topological group quite often. Examples of this failure oc- vii curs in the context of a computation, namely, the topological fundamental group of a generalized wedge of circles. This computation introduces a surprising connec­ tion to the well-studied free Markov topological groups and indicates that similar failures are likely to appear in higher dimensions. The complications arising with the quotient topology motivate the introduction of well-behaved, alternative topologies on the homotopy groups. Some alterna­ tives are presented, in particular, free topological groups are used to construct the finest group topology on nn(X) such that the map Q"(X) —» nn(X) identifying ho­ motopy classes is continuous. This new topology agrees with the quotient topology precisely when the quotient topology does result in a topological group and admits a much nicer theory. vui INTRODUCTION The fact that classical homotopy theory is insufficient for studying spaces with homotopy type other than that of a CW-complex has motivated the introduction of a number of invariants useful for studying spaces with complicated local structure. For instance, in Cech theory, one typically approximates complicated spaces with "nice" spaces and takes the limit or colimit of an algebraic invariant evaluated on the approximating spaces. The approach taken in this dissertation is to directly transfer topological data to algebraic invariants by endowing them with natural topologies that behave nicely with respect to the algebraic structure. While this second approach does not yield purely algebraic objects, it does have the advantage of allowing direct application of the rich theory of topological algebra. The notion of "topologized" homotopy invariant seems to have been introduced by Hurewicz in [Hur35] and studied subsequently by Dugundji in [Dug50]. Whereas these early methods focused on "finite step homotopies" through open covers of spaces, we are primarily interested in the properties of spaces of homotopy classes of maps pen. The topological fundamental group 7i*op(X) of a based space (X, x), as first spec­ ified by Biss [Bis02], is the fundamental group n^Xx) endowed with the natural topology that arises from viewing it as a quotient space of the space of loops based at x. This choice of topological structure makes n^ particularly useful for studying 1 the homotopy of spaces that lack 1-connected covers. The brevity of this construc­ tion is rather deceiving since the topology of TC^P(X, X) is typically very complicated. In fact, for over 10 years [May90,Bis02], it was thought that this construction always results in a topological group. The initial intention of this research was to determine the validity of this assertion. We actually produce a plethora of counterexamples and shed light on a number of "defects" of the functor n°p. Recently, Fabel [Fab09] has shown that the Hawaiian earring group n^HE) fails to be a topological group independently of this work. In a first algebraic topology course, one learns early on that the fundamental group of a wedge of circles is the free group on the set indexing the wedge. One might similarly expect a generalized or "non-discrete" wedge of circles (constructed here as a suspension space £(X+)) to have topological fundamental group with some similar notion of "freeness." This computation is one of the main contributions of this dissertation to the theory of topological fundamental groups. A surprising consequence is that n^(L{X+)) either fails to be a topological group or is one of the well-studied but notoriously complicated free (Markov) topological groups.
Recommended publications
  • K-THEORY of FUNCTION RINGS Theorem 7.3. If X Is A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 69 (1990) 33-50 33 North-Holland K-THEORY OF FUNCTION RINGS Thomas FISCHER Johannes Gutenberg-Universitit Mainz, Saarstrage 21, D-6500 Mainz, FRG Communicated by C.A. Weibel Received 15 December 1987 Revised 9 November 1989 The ring R of continuous functions on a compact topological space X with values in IR or 0Z is considered. It is shown that the algebraic K-theory of such rings with coefficients in iZ/kH, k any positive integer, agrees with the topological K-theory of the underlying space X with the same coefficient rings. The proof is based on the result that the map from R6 (R with discrete topology) to R (R with compact-open topology) induces a natural isomorphism between the homologies with coefficients in Z/kh of the classifying spaces of the respective infinite general linear groups. Some remarks on the situation with X not compact are added. 0. Introduction For a topological space X, let C(X, C) be the ring of continuous complex valued functions on X, C(X, IR) the ring of continuous real valued functions on X. KU*(X) is the topological complex K-theory of X, KO*(X) the topological real K-theory of X. The main goal of this paper is the following result: Theorem 7.3. If X is a compact space, k any positive integer, then there are natural isomorphisms: K,(C(X, C), Z/kZ) = KU-‘(X, Z’/kZ), K;(C(X, lR), Z/kZ) = KO -‘(X, UkZ) for all i 2 0.
    [Show full text]
  • 1.1.5 Hausdorff Spaces
    1. Preliminaries Proof. Let xn n N be a sequence of points in X convergent to a point x X { } 2 2 and let U (f(x)) in Y . It is clear from Definition 1.1.32 and Definition 1.1.5 1 2F that f − (U) (x). Since xn n N converges to x,thereexistsN N s.t. 1 2F { } 2 2 xn f − (U) for all n N.Thenf(xn) U for all n N. Hence, f(xn) n N 2 ≥ 2 ≥ { } 2 converges to f(x). 1.1.5 Hausdor↵spaces Definition 1.1.40. A topological space X is said to be Hausdor↵ (or sepa- rated) if any two distinct points of X have neighbourhoods without common points; or equivalently if: (T2) two distinct points always lie in disjoint open sets. In literature, the Hausdor↵space are often called T2-spaces and the axiom (T2) is said to be the separation axiom. Proposition 1.1.41. In a Hausdor↵space the intersection of all closed neigh- bourhoods of a point contains the point alone. Hence, the singletons are closed. Proof. Let us fix a point x X,whereX is a Hausdor↵space. Denote 2 by C the intersection of all closed neighbourhoods of x. Suppose that there exists y C with y = x. By definition of Hausdor↵space, there exist a 2 6 neighbourhood U(x) of x and a neighbourhood V (y) of y s.t. U(x) V (y)= . \ ; Therefore, y/U(x) because otherwise any neighbourhood of y (in particular 2 V (y)) should have non-empty intersection with U(x).
    [Show full text]
  • The Non-Hausdorff Number of a Topological Space
    THE NON-HAUSDORFF NUMBER OF A TOPOLOGICAL SPACE IVAN S. GOTCHEV Abstract. We call a non-empty subset A of a topological space X finitely non-Hausdorff if for every non-empty finite subset F of A and every family fUx : x 2 F g of open neighborhoods Ux of x 2 F , \fUx : x 2 F g 6= ; and we define the non-Hausdorff number nh(X) of X as follows: nh(X) := 1 + supfjAj : A is a finitely non-Hausdorff subset of Xg. Using this new cardinal function we show that the following three inequalities are true for every topological space X d(X) (i) jXj ≤ 22 · nh(X); 2d(X) (ii) w(X) ≤ 2(2 ·nh(X)); (iii) jXj ≤ d(X)χ(X) · nh(X) and (iv) jXj ≤ nh(X)χ(X)L(X) is true for every T1-topological space X, where d(X) is the density, w(X) is the weight, χ(X) is the character and L(X) is the Lindel¨ofdegree of the space X. The first three inequalities extend to the class of all topological spaces d(X) Pospiˇsil'sinequalities that for every Hausdorff space X, jXj ≤ 22 , 2d(X) w(X) ≤ 22 and jXj ≤ d(X)χ(X). The fourth inequality generalizes 0 to the class of all T1-spaces Arhangel ski˘ı’s inequality that for every Hausdorff space X, jXj ≤ 2χ(X)L(X). It is still an open question if 0 Arhangel ski˘ı’sinequality is true for all T1-spaces. It follows from (iv) that the answer of this question is in the afirmative for all T1-spaces with nh(X) not greater than the cardianilty of the continuum.
    [Show full text]
  • 07. Homeomorphisms and Embeddings
    07. Homeomorphisms and embeddings Homeomorphisms are the isomorphisms in the category of topological spaces and continuous functions. Definition. 1) A function f :(X; τ) ! (Y; σ) is called a homeomorphism between (X; τ) and (Y; σ) if f is bijective, continuous and the inverse function f −1 :(Y; σ) ! (X; τ) is continuous. 2) (X; τ) is called homeomorphic to (Y; σ) if there is a homeomorphism f : X ! Y . Remarks. 1) Being homeomorphic is apparently an equivalence relation on the class of all topological spaces. 2) It is a fundamental task in General Topology to decide whether two spaces are homeomorphic or not. 3) Homeomorphic spaces (X; τ) and (Y; σ) cannot be distinguished with respect to their topological structure because a homeomorphism f : X ! Y not only is a bijection between the elements of X and Y but also yields a bijection between the topologies via O 7! f(O). Hence a property whose definition relies only on set theoretic notions and the concept of an open set holds if and only if it holds in each homeomorphic space. Such properties are called topological properties. For example, ”first countable" is a topological property, whereas the notion of a bounded subset in R is not a topological property. R ! − t Example. The function f : ( 1; 1) with f(t) = 1+jtj is a −1 x homeomorphism, the inverse function is f (x) = 1−|xj . 1 − ! b−a a+b The function g :( 1; 1) (a; b) with g(x) = 2 x + 2 is a homeo- morphism. Therefore all open intervals in R are homeomorphic to each other and homeomorphic to R .
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • Compact Non-Hausdorff Manifolds
    A.G.M. Hommelberg Compact non-Hausdorff Manifolds Bachelor Thesis Supervisor: dr. D. Holmes Date Bachelor Exam: June 5th, 2014 Mathematisch Instituut, Universiteit Leiden 1 Contents 1 Introduction 3 2 The First Question: \Can every compact manifold be obtained by glueing together a finite number of compact Hausdorff manifolds?" 4 2.1 Construction of (Z; TZ ).................................5 2.2 The space (Z; TZ ) is a Compact Manifold . .6 2.3 A Negative Answer to our Question . .8 3 The Second Question: \If (R; TR) is a compact manifold, is there always a surjective ´etale map from a compact Hausdorff manifold to R?" 10 3.1 Construction of (R; TR)................................. 10 3.2 Etale´ maps and Covering Spaces . 12 3.3 A Negative Answer to our Question . 14 4 The Fundamental Groups of (R; TR) and (Z; TZ ) 16 4.1 Seifert - Van Kampen's Theorem for Fundamental Groupoids . 16 4.2 The Fundamental Group of (R; TR)........................... 19 4.3 The Fundamental Group of (Z; TZ )........................... 23 2 Chapter 1 Introduction One of the simplest examples of a compact manifold (definitions 2.0.1 and 2.0.2) that is not Hausdorff (definition 2.0.3), is the space X obtained by glueing two circles together in all but one point. Since the circle is a compact Hausdorff manifold, it is easy to prove that X is indeed a compact manifold. It is also easy to show X is not Hausdorff. Many other examples of compact manifolds that are not Hausdorff can also be created by glueing together compact Hausdorff manifolds.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Topological Properties
    CHAPTER 4 Topological properties 1. Connectedness • Definitions and examples • Basic properties • Connected components • Connected versus path connected, again 2. Compactness • Definition and first examples • Topological properties of compact spaces • Compactness of products, and compactness in Rn • Compactness and continuous functions • Embeddings of compact manifolds • Sequential compactness • More about the metric case 3. Local compactness and the one-point compactification • Local compactness • The one-point compactification 4. More exercises 63 64 4. TOPOLOGICAL PROPERTIES 1. Connectedness 1.1. Definitions and examples. Definition 4.1. We say that a topological space (X, T ) is connected if X cannot be written as the union of two disjoint non-empty opens U, V ⊂ X. We say that a topological space (X, T ) is path connected if for any x, y ∈ X, there exists a path γ connecting x and y, i.e. a continuous map γ : [0, 1] → X such that γ(0) = x, γ(1) = y. Given (X, T ), we say that a subset A ⊂ X is connected (or path connected) if A, together with the induced topology, is connected (path connected). As we shall soon see, path connectedness implies connectedness. This is good news since, unlike connectedness, path connectedness can be checked more directly (see the examples below). Example 4.2. (1) X = {0, 1} with the discrete topology is not connected. Indeed, U = {0}, V = {1} are disjoint non-empty opens (in X) whose union is X. (2) Similarly, X = [0, 1) ∪ [2, 3] is not connected (take U = [0, 1), V = [2, 3]). More generally, if X ⊂ R is connected, then X must be an interval.
    [Show full text]
  • DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
    DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V .
    [Show full text]
  • INTRODUCTION to ALGEBRAIC TOPOLOGY 1 Category And
    INTRODUCTION TO ALGEBRAIC TOPOLOGY (UPDATED June 2, 2020) SI LI AND YU QIU CONTENTS 1 Category and Functor 2 Fundamental Groupoid 3 Covering and fibration 4 Classification of covering 5 Limit and colimit 6 Seifert-van Kampen Theorem 7 A Convenient category of spaces 8 Group object and Loop space 9 Fiber homotopy and homotopy fiber 10 Exact Puppe sequence 11 Cofibration 12 CW complex 13 Whitehead Theorem and CW Approximation 14 Eilenberg-MacLane Space 15 Singular Homology 16 Exact homology sequence 17 Barycentric Subdivision and Excision 18 Cellular homology 19 Cohomology and Universal Coefficient Theorem 20 Hurewicz Theorem 21 Spectral sequence 22 Eilenberg-Zilber Theorem and Kunneth¨ formula 23 Cup and Cap product 24 Poincare´ duality 25 Lefschetz Fixed Point Theorem 1 1 CATEGORY AND FUNCTOR 1 CATEGORY AND FUNCTOR Category In category theory, we will encounter many presentations in terms of diagrams. Roughly speaking, a diagram is a collection of ‘objects’ denoted by A, B, C, X, Y, ··· , and ‘arrows‘ between them denoted by f , g, ··· , as in the examples f f1 A / B X / Y g g1 f2 h g2 C Z / W We will always have an operation ◦ to compose arrows. The diagram is called commutative if all the composite paths between two objects ultimately compose to give the same arrow. For the above examples, they are commutative if h = g ◦ f f2 ◦ f1 = g2 ◦ g1. Definition 1.1. A category C consists of 1◦. A class of objects: Obj(C) (a category is called small if its objects form a set). We will write both A 2 Obj(C) and A 2 C for an object A in C.
    [Show full text]
  • Classification of Compact 2-Manifolds
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2016 Classification of Compact 2-manifolds George H. Winslow Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Geometry and Topology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4291 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Abstract Classification of Compact 2-manifolds George Winslow It is said that a topologist is a mathematician who can not tell the difference between a doughnut and a coffee cup. The surfaces of the two objects, viewed as topological spaces, are homeomorphic to each other, which is to say that they are topologically equivalent. In this thesis, we acknowledge some of the most well-known examples of surfaces: the sphere, the torus, and the projective plane. We then ob- serve that all surfaces are, in fact, homeomorphic to either the sphere, the torus, a connected sum of tori, a projective plane, or a connected sum of projective planes. Finally, we delve into algebraic topology to determine that the aforementioned sur- faces are not homeomorphic to one another, and thus we can place each surface into exactly one of these equivalence classes. Thesis Director: Dr. Marco Aldi Classification of Compact 2-manifolds by George Winslow Bachelor of Science University of Mary Washington Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mathematics Virginia Commonwealth University 2016 Dedication For Lily ii Abstract It is said that a topologist is a mathematician who can not tell the difference between a doughnut and a coffee cup.
    [Show full text]
  • Compact and Totally Bounded Metric Spaces
    Appendix A Compact and Totally Bounded Metric Spaces Definition A.0.1 (Diameter of a set) The diameter of a subset E in a metric space (X, d) is the quantity diam(E) = sup d(x, y). x,y∈E ♦ Definition A.0.2 (Bounded and totally bounded sets)A subset E in a metric space (X, d) is said to be 1. bounded, if there exists a number M such that E ⊆ B(x, M) for every x ∈ E, where B(x, M) is the ball centred at x of radius M. Equivalently, d(x1, x2) ≤ M for every x1, x2 ∈ E and some M ∈ R; > { ,..., } 2. totally bounded, if for any 0 there exists a finite subset x1 xn of X ( , ) = ,..., = such that the (open or closed) balls B xi , i 1 n cover E, i.e. E n ( , ) i=1 B xi . ♦ Clearly a set is bounded if its diameter is finite. We will see later that a bounded set may not be totally bounded. Now we prove the converse is always true. Proposition A.0.1 (Total boundedness implies boundedness) In a metric space (X, d) any totally bounded set E is bounded. Proof Total boundedness means we may choose = 1 and find A ={x1,...,xn} in X such that for every x ∈ E © The Editor(s) (if applicable) and The Author(s), under exclusive 429 license to Springer Nature Switzerland AG 2020 S. Gentili, Measure, Integration and a Primer on Probability Theory, UNITEXT 125, https://doi.org/10.1007/978-3-030-54940-4 430 Appendix A: Compact and Totally Bounded Metric Spaces inf d(xi , x) ≤ 1.
    [Show full text]