Inhibition of Mtor Pathway Sensitizes Acute Myeloid Leukemia Cells to Aurora Inhibitors by Suppression of Glycolytic Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Inhibition of Mtor Pathway Sensitizes Acute Myeloid Leukemia Cells to Aurora Inhibitors by Suppression of Glycolytic Metabolism Published OnlineFirst September 5, 2013; DOI: 10.1158/1541-7786.MCR-13-0172 Molecular Cancer Cell Death and Survival Research Inhibition of mTOR Pathway Sensitizes Acute Myeloid Leukemia Cells to Aurora Inhibitors by Suppression of Glycolytic Metabolism Ling-Ling Liu1,2, Zi-Jie Long1,3, Le-Xun Wang1,3, Fei-Meng Zheng2, Zhi-Gang Fang1, Min Yan2, Dong-Fan Xu1,3, Jia-Jie Chen1,3, Shao-Wu Wang4,5, Dong-Jun Lin1,3, and Quentin Liu1,2,3,4 Abstract Aurora kinases are overexpressed in large numbers of tumors and considered as potential therapeutic targets. In this study, we found that the Aurora kinases inhibitors MK-0457 (MK) and ZM447439 (ZM) induced polyploidization in acute myeloid leukemia (AML) cell lines. The level of glycolytic metabolism was significantly increased in the polyploidy cells, which were sensitive to glycolysis inhibitor 2-deoxy-D-glucose (2DG), suggesting that polyploidy cells might be eliminated by metabolism deprivation. Indeed, inhibition of mTOR pathway by mTOR inhibitors (rapamycin and PP242) or 2DG promoted not only apoptosis but also autophagy in the polyploidy cells induced by Aurora inhibitors. Mechanically, PP242 or2DGdecreased the level of glucose uptake and lactate production in polyploidy cells as well as the expression of p62/SQSTM1. Moreover, knockdown of p62/ SQSTM1 sensitized cells to the Aurora inhibitor whereas overexpression of p62/SQSTM1 reduced drug efficacy. Thus, our results revealed that inhibition of mTOR pathway decreased the glycolytic metabolism of the polyploidy cells, and increased the efficacy of Aurora kinases inhibitors, providing a novel approach of combination treatment in AML. Mol Cancer Res; 11(11); 1326–36. Ó2013 AACR. Introduction apoptosis of acute myeloid leukemia (AML) cells (6). Our previous study showed that VX-680 (MK-0457), a rela- Anticancer drug that targets cell-cycle regulators has fi been widely applied in the treatment of the hematologic tively speci c Aurora A inhibitor, induced apoptotic cell malignancies (1–3). Aurora kinases A–C, which play death in AML cells, especially in the primary leukemic blasts with high Aurora A expression (4, 7). Although important roles in the process of mitosis, have been fi implicated in the tumorigenesis (1–3). Aurora A and B Aurora kinases inhibitors have signi cant therapeutic potential in AML, single-agent activity seems to be uni- proteins were overexpressed in a number of tumors, fi including leukemia cells, which were correlated with aneu- formly modest and the ef cacy needs improving (6). ploidy in tumor tissues and poor prognosis (4, 5). Previous Recently, we also showed that Aurora A inhibition trig- report showed that Aurora kinases inhibitors could sup- gered drug resistance could be reversed by autophagy press the growth of leukemia cells (1). ZM447439 (ZM), inhibitors in breast cancer cells (8). In addition, combi- the dual Aurora A and B inhibitor, inhibited the cell nation of Aurora kinases inhibitors with vincristine or proliferation, induced polyploidization, and promoted dasatinib presented synergistic effect to inhibit cell viability in human pre-B acute lymphoblastic leukemia (9). Thus, new strategy for drug combination is urgently required to Authors' Affiliations: 1Department of Hematology, the Third Affiliated overcome drug resistance induced by Aurora A inhibition. Hospital, Sun Yat-sen University, Guangzhou, China; 2State Key Labora- tory of Oncology in South China, Cancer Center, Sun Yat-sen University, Polyploidy is a prominent characteristic of human cancers Guangzhou, China; 3Sun Yat-sen Institute of Hematology, Guangzhou, and proposed as a driver of tumorigenesis (10). Study China; 4Institute of Cancer Stem Cell, Dalian Medical University, Dalian, showed that somatic polyploidy was associated with China; and 5Department of Radiology, the First Affiliated Hospital, Dalian Medical University, Dalian, China readjustment of main metabolic pathways. For example, mitochondrial process was depressed, and carbohydrate Note: Supplementary data for this article are available at Molecular Cancer Research Online (http://mcr.aacrjournals.org/). degradation and lipid biosynthesis were increased in the polyploidy cells (11). Warburg reported that tumors pre- L.-L. Liu and Z.-J. Long have contributed equally to this article. ferred aerobic glycolysis to mitochondrial oxidative phos- Corresponding Authors: Quentin Liu, Department of Hematology, the phorylation (12). Based on the reports, suppression of the Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China. Phone: 86-20-8525-3601; Fax: 86-20- aerobic glycolytic metabolism might help for restraining the 87343171; E-mail: [email protected]; and Dong-Jun Lin, proliferation of polyploidy cancer cells. Aurora kinases are [email protected] crucial for cytokinesis in a number of reports. Aurora kinases doi: 10.1158/1541-7786.MCR-13-0172 defection induced mitosis arrest and promoted polyploidy Ó2013 American Association for Cancer Research. formation (13). Therefore, readjustment of the metabolic 1326 Mol Cancer Res; 11(11) November 2013 Downloaded from mcr.aacrjournals.org on September 27, 2021. © 2013 American Association for Cancer Research. Published OnlineFirst September 5, 2013; DOI: 10.1158/1541-7786.MCR-13-0172 mTOR Inhibition Enhances the Efficacy of Aurora Inhibitors status in polyploidy cells induced by Aurora kinases inhibi- Peripheral blood mononuclear cells (PBMC) were enriched tion could also be a promise approach to cancer therapy. by Ficoll–Hypaque density gradient centrifugation. The mTOR, a well-conserved serine/threonine kinase with 2 complexes, mTOR complex 1 (mTORC1) and Cell-proliferation assay mTOR complex 2 (mTORC2), is essential for cell growth, Cell viability was assessed by Cell counting kit-8 protein translation, autophagy, and metabolism (14). To (CCK8; Dojindo Biotechnology) according to the man- adapt the condition of hypermetabolic demand and thrive ufacturer's instructions. The optical density at 450 nm was rapidly, oncogenes in growth and nutrient-sensing signaling measured using a multiwell plate reader (Micro-plate pathways was activated (15). In numerous cancer types, Reader; Bio-Rad). mTOR signaling pathway was activated by deregulation of its upstream factors, such as Akt activation or deficiency of Cell-cycle analysis tuberous sclerosis complex 2 (TSC2; refs. 16 and 17). Cell cycle was analyzed by flow cytometer. Cells were Activation of mTORC1, a metabolic hallmark of cancer, treated with drugs for 24 hours. Then, cells were harvested increased glycolysis, and lipid biosynthesis (15). Although and stained with mixture of 50 mg/mL propidium iodide mTORC2 was not thoroughly studied in the metabolism of (PI), 0.2% Triton X-100, and 100 mg/mL RNAase inhib- tumor, RNAi against one of mTORC2 components also itor. Cell-cycle analysis was conducted using a FACS flow impaired the glucose and lipid metabolism in muscle and cytometer equipped with Modfit LT for Mac V2.0 software fat cells (18, 19). Furthermore, mTOR was associated with (BD Biosciences). the development of polyploidization. Ma and colleagues showed that S6K1, a downstream of mTOR, was involved Microscopic analysis of cells and nuclear morphology in polyploidization through its phosphorylation at Thr421/ Cells were treated with Aurora kinases inhibitors for 24 Ser424 (20). In addition, activation of mTOR pathway was hours, followed by PP242 or 2DG for another 24 hours. þ required for TSC2 /EK [EKer rat model carrying a germline After 48 hours, the cells were photographed under an insertional deletion in one copy of the Tsc2 (tuberous inverted microscopy (Olympus). Nuclear fragmentation was sclerosis 2) gene] smooth muscle cells of pulmonary lym- stained by Hoechst 33342 (Sigma) with 10 mg/mL for 15 phangioleiomyomatosis to undergo tetraploidization (21). minutes at 37C. Slides were viewed using a fluorescence Here, we found that mTOR signaling pathway was critical microscope. for maintaining the glycolytic metabolism state of polyploidy cancer cells induced by inhibition of Aurora kinases. More- Monodansylcadaverine staining over, we provided evidences that combination of mTOR Cells were incubated with the monodansylcadaverine inhibitors and Aurora kinases inhibitors effectively elimi- (MDC; Sigma) with a final concentration of 0.05 mmol/L nated leukemia cells by inducing apoptosis and autophagy. for 10 minutes at 37C. Then, cells were viewed on slides These results suggested a new approach of targeted thera- under a laser scanning confocal microscope (ZEISS, peutic drugs combination for AML treatment. Germany), and tested by flow cytermetry. MDC dye was applied to stain the late autophagic vacuoles. Materials and Methods Western blotting analysis Reagents and cell culture Total cellular proteins were isolated with RIPA buffer. Reagents included MK-0457 (Selleck Chemicals, South Lysates were subjected to SDS-PAGE gel electrophoresis, Loop West, Houston), ZM447439 (AstraZeneca, Canada), and were transferred to nitrocellulose membranes. The PP242, 2-deoxy-D-glucose (2DG), and rapamycin (Sigma). membranes were blocked with 5% bovine serum albumin U937 cell line was obtained from the American Type and then incubated overnight with LC3 (Novus), p62 (Santa Culture Collection (ATCC). 293FT cell line was obtained Cruz), Aurora A (Upstate), p-mTOR (Ser2448, Ser2481), from Invitrogen. NB4 and HL-60 cell lines were provided by mTOR, p-Aurora A (Thr288), cleaved caspase 3 (Asp175), Shanghai Institute of Hematology, Ruijin Hospital. U937, cleaved
Recommended publications
  • Aurora Kinase a in Gastrointestinal Cancers: Time to Target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4*
    Katsha et al. Molecular Cancer (2015) 14:106 DOI 10.1186/s12943-015-0375-4 REVIEW Open Access Aurora kinase A in gastrointestinal cancers: time to target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4* Abstract Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. During the last two decades, several studies have shown amplification and overexpression of Aurora kinase A (AURKA) in several GI malignancies. These studies demonstrated that AURKA not only plays a role in regulating cell cycle and mitosis, but also regulates a number of key oncogenic signaling pathways. Although AURKA inhibitors have moved to phase III clinical trials in lymphomas, there has been slower progress in GI cancers and solid tumors. Ongoing clinical trials testing AURKA inhibitors as a single agent or in combination with conventional chemotherapies are expected to provide important clinical information for targeting AURKA in GI cancers. It is, therefore, imperative to consider investigations of molecular determinants of response and resistance to this class of inhibitors. This will improve evaluation of the efficacy of these drugs and establish biomarker based strategies for enrollment into clinical trials, which hold the future direction for personalized cancer therapy. In this review, we will discuss the available data on AURKA in GI cancers. We will also summarize the major AURKA inhibitors that have been developed and tested in pre-clinical and clinical settings. Keywords: Aurora kinases, Therapy, AURKA inhibitors, MNL8237, Alisertib, Gastrointestinal, Cancer, Signaling pathways Introduction stage [9-11]. Furthermore, AURKA is critical for Mitotic kinases are the main proteins that coordinate ac- bipolar-spindle assembly where it interacts with Ran- curate mitotic processing [1].
    [Show full text]
  • RASSF1A Interacts with and Activates the Mitotic Kinase Aurora-A
    Oncogene (2008) 27, 6175–6186 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc ORIGINAL ARTICLE RASSF1A interacts with and activates the mitotic kinase Aurora-A L Liu1, C Guo1, R Dammann2, S Tommasi1 and GP Pfeifer1 1Division of Biology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, USA and 2Institute of Genetics, University of Giessen, Giessen, Germany The RAS association domain family 1A (RASSF1A) gene tumorigenesis and carcinogen-induced tumorigenesis is located at chromosome 3p21.3 within a specific area of (Tommasi et al., 2005; van der Weyden et al., 2005), common heterozygous and homozygous deletions. RASS- supporting the notion that RASSF1A is a bona fide F1A frequently undergoes promoter methylation-asso- tumor suppressor. However, it is not fully understood ciated inactivation in human cancers. Rassf1aÀ/À mice how RASSF1A is involved in tumor suppression. are prone to both spontaneous and carcinogen-induced The biochemical function of the RASSF1A protein is tumorigenesis, supporting the notion that RASSF1A is a largely unknown. The homology of RASSF1A with the tumor suppressor. However, it is not fully understood how mammalian Ras effector novel Ras effector (NORE)1 RASSF1A is involved in tumor suppression pathways. suggests that the RASSF1A gene product may function Here we show that overexpression of RASSF1A inhibits in signal transduction pathways involving Ras-like centrosome separation. RASSF1A interacts with Aurora-A, proteins. However, recent data indicate that RASSF1A a mitotic kinase. Surprisingly, knockdown of RASS- itself binds to RAS only weakly and that binding to F1A by siRNA led to reduced activation of Aurora-A, RAS may require heterodimerization of RASSF1A and whereas overexpression of RASSF1A resulted in in- NORE1 (Ortiz-Vega et al., 2002).
    [Show full text]
  • Structure-Based Discovery and Bioactivity Evaluation of Novel
    molecules Article Structure-Based Discovery and Bioactivity Evaluation of Novel Aurora-A Kinase Inhibitors as Anticancer Agents via Docking-Based Comparative Intermolecular Contacts Analysis (dbCICA) Majd S. Hijjawi 1 , Reem Fawaz Abutayeh 2 and Mutasem O. Taha 3,* 1 Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; [email protected] 2 Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan; [email protected] 3 Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan * Correspondence: [email protected]; Tel.: +962-6-535-5000 Academic Editors: Helen Osborn, Mohammad Najlah, Jean Jacques Vanden Eynde, Annie Mayence and Tien L. Huang Received: 15 October 2020; Accepted: 11 December 2020; Published: 18 December 2020 Abstract: Aurora-A kinase plays a central role in mitosis, where aberrant activation contributes to cancer by promoting cell cycle progression, genomic instability, epithelial-mesenchymal transition, and cancer stemness. Aurora-A kinase inhibitors have shown encouraging results in clinical trials but have not gained Food and Drug Administration (FDA) approval. An innovative computational workflow named Docking-based Comparative Intermolecular Contacts Analysis (dbCICA) was applied—aiming to identify novel Aurora-A kinase inhibitors—using seventy-nine reported Aurora-A kinase inhibitors to specify the best possible docking settings needed to fit into the active-site binding pocket of Aurora-A kinase crystal structure, in a process that only potent ligands contact critical binding-site spots, distinct from those occupied by less-active ligands. Optimal dbCICA models were transformed into two corresponding pharmacophores.
    [Show full text]
  • Therapeutic Implications for Ovarian Cancer Emerging from the Tumor Cancer Genome Atlas
    Review Article Therapeutic implications for ovarian cancer emerging from the Tumor Cancer Genome Atlas Claire Verschraegen, Karen Lounsbury, Alan Howe, Marc Greenblatt University of Vermont Cancer Center, Burlington, VT 05405, USA Correspondence to: Claire Verschraegen, MD. University of Vermont Cancer Center, 89 Beaumont Avenue, Given E 214, Burlington, VT 05405, USA. Email: [email protected] Abstract: With increasing insights into the molecular landscape of ovarian cancer, subtypes are emerging that might require differential targeted therapies. While the combination of a platinum and a taxane remains the standard of care, newer therapies, specifically targeted to molecular anomalies, are rapidly being tested in various cancers. A major effort to better understand ovarian cancer occurred through the Cancer Atlas Project. The Catalogue of Somatic Mutations in Cancer (COSMIC) is a database that collates mutation data and associated information extracted from the primary literature. The information from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), which systematically analyzed hundreds of ovarian cancer, are included in COSMIC, sometimes with discordant results. In this manuscript, the published data (mainly from TCGA) on somatic high grade papillary serous ovarian cancer (HGSOC) mutations has been used as the basis to propose a more granular approach to ovarian cancer treatment, already a reality for tumors such as lung and breast cancers. TP53 mutations are the most common molecular anomaly in HGSOC, and lead to genomic instability, perhaps through the FOXM1 node. Normalizing P53 has been a therapeutic challenge, and is being extensively studied. BRCAness is found an about 50% of HGSOC and can be targeted with poly (ADP-ribose) polymerase (PARP) inhibitors, such as olaparib, recently approved for ovarian cancer treatment.
    [Show full text]
  • HIPK2 and Extrachromosomal Histone H2B Are Separately Recruited by Aurora-B for Cytokinesis
    Oncogene https://doi.org/10.1038/s41388-018-0191-6 ARTICLE HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis 1 1 2 3 2 Laura Monteonofrio ● Davide Valente ● Manuela Ferrara ● Serena Camerini ● Roberta Miscione ● 3 1,2 1 Marco Crescenzi ● Cinzia Rinaldo ● Silvia Soddu Received: 14 November 2017 / Revised: 24 January 2018 / Accepted: 5 February 2018 © The Author(s) 2018. This article is published with open access Abstract Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B 1234567890();,: and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody.
    [Show full text]
  • Spatiotemporal Dynamics of Aurora B-PLK1-MCAK Signaling Axis
    www.nature.com/scientificreports OPEN Spatiotemporal dynamics of Aurora B-PLK1-MCAK signaling axis orchestrates kinetochore Received: 21 October 2014 Accepted: 13 May 2015 bi-orientation and faithful Published: 24 July 2015 chromosome segregation Hengyi Shao1, Yuejia Huang2,3, Liangyu Zhang1,3, Kai Yuan1, Youjun Chu1,3, Zhen Dou1,2, Changjiang Jin1, Minerva Garcia-Barrio3, Xing Liu1,2,3 & Xuebiao Yao1 Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator for an accurate kinetochore-microtubule attachment. However, the regulatory mechanism underlying precise MCAK depolymerase activity control during mitosis remains elusive. Here, we describe a novel pathway involving an Aurora B-PLK1 axis for regulation of MCAK activity in mitosis. Aurora B phosphorylates PLK1 on Thr210 to activate its kinase activity at the kinetochores during mitosis. Aurora B-orchestrated PLK1 kinase activity was examined in real- time mitosis using a fluorescence resonance energy transfer-based reporter and quantitative analysis of native PLK1 substrate phosphorylation. Active PLK1, in turn, phosphorylates MCAK at Ser715 which promotes its microtubule depolymerase activity essential for faithful chromosome segregation. Importantly, inhibition of PLK1 kinase activity or expression of a non-phosphorylatable MCAK mutant prevents correct kinetochore-microtubule attachment, resulting in abnormal anaphase with chromosome bridges. We reason that the Aurora B-PLK1 signaling at the kinetochore orchestrates MCAK activity, which is essential for timely correction of aberrant kinetochore attachment to ensure accurate chromosome segregation during mitosis. During cell division, accurate chromosome segregation requires dynamic interactions between kineto- chores and spindle microtubules (MTs), which results in accurate chromosome bi-orientation1–4.
    [Show full text]
  • The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer
    cancers Article The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor Andreia Brandão 1 , Paula Paulo 1, Sofia Maia 1, Manuela Pinheiro 1, Ana Peixoto 2, Marta Cardoso 1, Maria P. Silva 1, Catarina Santos 2, Rosalind A. Eeles 3,4 , Zsofia Kote-Jarai 3, 5,6 7, 8,9 10 Kenneth Muir , UKGPCS Collaborators y, Johanna Schleutker , Ying Wang , Nora Pashayan 11,12 , Jyotsna Batra 13,14, APCB BioResource 13,14, Henrik Grönberg 15, David E. Neal 16,17,18, Børge G. Nordestgaard 19,20 , Catherine M. Tangen 21, Melissa C. Southey 22,23,24, Alicja Wolk 25,26, Demetrius Albanes 27, Christopher A. Haiman 28, Ruth C. Travis 29, Janet L. Stanford 30,31, Lorelei A. Mucci 32, Catharine M. L. West 33, Sune F. Nielsen 19,20, Adam S. Kibel 34, Olivier Cussenot 35,36, Sonja I. Berndt 27, Stella Koutros 27, Karina Dalsgaard Sørensen 37,38 , Cezary Cybulski 39 , Eli Marie Grindedal 40, Jong Y. Park 41 , Sue A. Ingles 42, Christiane Maier 43, Robert J. Hamilton 44,45, Barry S. Rosenstein 46,47, 48,49,50 7, Ana Vega , The IMPACT Study Steering Committee and Collaborators z, Manolis Kogevinas 51,52,53,54, Fredrik Wiklund 15 , Kathryn L. Penney 55, Hermann Brenner 56,57,58 , Esther M. John 59, Radka Kaneva 60, Christopher J. Logothetis 61, Susan L. Neuhausen 62, Kim De Ruyck 63, Azad Razack 64, Lisa F. Newcomb 30,65, Canary PASS Investigators 30,65, Davor Lessel 66 , Nawaid Usmani 67,68, Frank Claessens 69, Manuela Gago-Dominguez 70,71 , Paul A.
    [Show full text]
  • The Aurora B Kinase Activity Is Required for the Maintenance of the Differentiated State of Murine Myoblasts
    Cell Death and Differentiation (2009) 16, 321–330 & 2009 Macmillan Publishers Limited All rights reserved 1350-9047/09 $32.00 www.nature.com/cdd The Aurora B kinase activity is required for the maintenance of the differentiated state of murine myoblasts G Amabile1,2, AM D’Alise1, M Iovino1, P Jones3, S Santaguida4, A Musacchio4, S Taylor5 and R Cortese*,1 Reversine is a synthetic molecule capable of inducing dedifferentiation of C2C12, a murine myoblast cell line, into multipotent progenitor cells, which can be redirected to differentiate in nonmuscle cell types under appropriate conditions. Reversine is also a potent inhibitor of Aurora B, a protein kinase required for mitotic chromosome segregation, spindle checkpoint function, cytokinesis and histone H3 phosphorylation, raising the possibility that the dedifferentiation capability of reversine is mediated through the inhibition of Aurora B. Indeed, here we show that several other well-characterized Aurora B inhibitors are capable of dedifferentiating C2C12 myoblasts. Significantly, expressing drug-resistant Aurora B mutants, which are insensitive to reversine block the dedifferentiation process, indicating that Aurora B kinase activity is required to maintain the differentiated state. We show that the inhibition of the spindle checkpoint or cytokinesis per se is not sufficient for dedifferentiation. Rather, our data support a model whereby changes in histone H3 phosphorylation result in chromatin remodeling, which in turn restores the multipotent state. Cell Death and Differentiation (2009) 16, 321–330; doi:10.1038/cdd.2008.156; published online 31 October 2008 Lineage-restricted cells can be reprogramed to a state Evidence is emerging that the role of Aurora B is not of pluripotency by several different manipulations, including restricted to mitosis and cell division.
    [Show full text]
  • Discovery of BPR1K871, a Quinazoline Based
    www.impactjournals.com/oncotarget/ Oncotarget, 2016, Vol. 7, (No. 52), pp: 86239-86256 Research Paper Discovery of BPR1K871, a quinazoline based, multi-kinase inhibitor for the treatment of AML and solid tumors: Rational design, synthesis, in vitro and in vivo evaluation Yung Chang Hsu1,*, Mohane Selvaraj Coumar2,*, Wen-Chieh Wang1,*, Hui-Yi Shiao1,*, Yi-Yu Ke1, Wen-Hsing Lin1, Ching-Chuan Kuo1, Chun-Wei Chang1, Fu-Ming Kuo1, Pei-Yi Chen1, Sing-Yi Wang1, An-Siou Li1, Chun-Hwa Chen1, Po-Chu Kuo1, Ching- Ping Chen1, Ming-Hsine Wu1, Chen-Lung Huang1, Kuei-Jung Yen1, Yun-I Chang1, John T.-A. Hsu1, Chiung-Tong Chen1, Teng-Kuang Yeh1, Jen-Shin Song1, Chuan Shih1, Hsing-Pang Hsieh1,3 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan, ROC 2Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India 3Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC *These authors contributed equally to this work Correspondence to: Hsing-Pang Hsieh, email: [email protected] Keywords: acute myeloid leukemia, aurora kinase, FLT3, quinazoline, multi-kinase inhibitor Received: July 25, 2016 Accepted: November 07, 2016 Published: November 15, 2016 ABSTRACT The design and synthesis of a quinazoline-based, multi-kinase inhibitor for the treatment of acute myeloid leukemia (AML) and other malignancies is reported. Based on the previously reported furanopyrimidine 3, quinazoline core containing lead 4 was synthesized and found to impart dual FLT3/AURKA inhibition (IC50 = 127/5 nM), as well as improved physicochemical properties. A detailed structure-activity relationship study of the lead 4 allowed FLT3 and AURKA inhibition to be finely tuned, resulting in AURKA selective (5 and 7; 100-fold selective over FLT3), FLT3 selective (13; 30-fold selective over AURKA) and dual FLT3/AURKA selective (BPR1K871; IC50 = 19/22 nM) agents.
    [Show full text]
  • Ncomms4885.Pdf
    ARTICLE Received 4 Feb 2014 | Accepted 14 Apr 2014 | Published 30 May 2014 DOI: 10.1038/ncomms4885 Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size Jian-Fu Chen1,2, Ying Zhang1, Jonathan Wilde1, Kirk C. Hansen3, Fan Lai4 & Lee Niswander1 Human genetic studies have established a link between a class of centrosome proteins and microcephaly. Current studies of microcephaly focus on defective centrosome/spindle orientation. Mutations in WDR62 are associated with microcephaly and other cortical abnormalities in humans. Here we create a mouse model of Wdr62 deficiency and find that the mice exhibit reduced brain size due to decreased neural progenitor cells (NPCs). Wdr62 depleted cells show spindle instability, spindle assembly checkpoint (SAC) activation, mitotic arrest and cell death. Mechanistically, Wdr62 associates and genetically interacts with Aurora A to regulate spindle formation, mitotic progression and brain size. Our results suggest that Wdr62 interacts with Aurora A to control mitotic progression, and loss of these interactions leads to mitotic delay and cell death of NPCs, which could be a potential cause of human microcephaly. 1 Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045, USA. 2 Department of Genetics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, USA. 3 Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA. 4 The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA. Correspondence and requests for materials should be addressed to J-F.C. (email: [email protected]) or to L.N.
    [Show full text]
  • Covalent Aurora a Regulation by the Metabolic Integrator Coenzyme A
    bioRxiv preprint doi: https://doi.org/10.1101/469585; this version posted November 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Covalent Aurora A regulation by the metabolic integrator coenzyme A Yugo Tsuchiya1#, Dominic P Byrne2#, Selena G Burgess3#, Jenny Bormann4, Jovana Bakovic1, Yueyan Huang1, Alexander Zhyvoloup1, Sew Peak-Chew5, Trang Tran6, Fiona Bellany6, Alethea Tabor6, AW Edith Chan7, Lalitha Guruprasad8, Oleg Garifulin9, Valeriy Filonenko9, Samantha Ferries10, Claire E Eyers10, John Carroll4^, Mark Skehel5, Richard Bayliss3*, Patrick A Eyers2* and Ivan Gout1,9* 1Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK 2Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK 3School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK 4Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK 5MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK 6Department of Chemistry, University College London, London WC1E 6BT, UK 7Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK 8School of Chemistry, University of Hyderabad, Hyderabad 500 046, India 9Department of Cell
    [Show full text]
  • Quantitative Conformational Profiling of Kinase Inhibitors Reveals Origins of Selectivity for Aurora Kinase Activation States
    Quantitative conformational profiling of kinase inhibitors reveals origins of selectivity for Aurora kinase activation states Eric W. Lakea, Joseph M. Murettab, Andrew R. Thompsonb, Damien M. Rasmussenb, Abir Majumdara, Erik B. Faberc, Emily F. Ruffa, David D. Thomasb, and Nicholas M. Levinsona,d,1 aDepartment of Pharmacology, University of Minnesota, Minneapolis, MN 55455; bDepartment of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455; cDepartment of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455; and dMasonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 Edited by Kevan M. Shokat, University of California, San Francisco, CA, and approved November 7, 2018 (received for review June 28, 2018) Protein kinases undergo large-scale structural changes that tightly lytically important Asp–Phe–Gly (DFG) motif, located on the regulate function and control recognition by small-molecule in- flexible activation loop of the kinase, is flipped relative to its hibitors. Methods for quantifying the conformational effects of orientation in the active state (referred to as “DFG-out,” in inhibitors and linking them to an understanding of selectivity contrast to the active “DFG-in” state). The observation that the patterns have long been elusive. We have developed an ultrafast inactive DFG-out states of kinases are more divergent than the time-resolved fluorescence methodology that tracks structural catalytically competent DFG-in state has led to a focus on type II movements of the kinase activation loop in solution with inhibitors as a potential answer to the selectivity problem (8, 9). angstrom-level precision, and can resolve multiple structural states However, kinome-wide profiling of kinase inhibitors has revealed and quantify conformational shifts between states.
    [Show full text]