Exhibit 3067.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mountain Temperature Changes from Embedded Sensors Spanning 2000 M in Great Basin National Park, 2006–2018
feart-08-00292 July 12, 2020 Time: 17:33 # 1 ORIGINAL RESEARCH published: 14 July 2020 doi: 10.3389/feart.2020.00292 Mountain Temperature Changes From Embedded Sensors Spanning 2000 m in Great Basin National Park, 2006–2018 Emily N. Sambuco1, Bryan G. Mark1*, Nathan Patrick2, James Q. DeGrand1, David F. Porinchu3, Scott A. Reinemann4, Gretchen M. Baker5 and Jason E. Box6 1 Department of Geography, The Ohio State University, Columbus, OH, United States, 2 California Nevada River Forecast Center, National Oceanic and Atmospheric Administration, National Weather Service, Sacramento, CA, United States, 3 Department of Geography, University of Georgia, Athens, GA, United States, 4 Geography, Sinclair Community College, Dayton, OH, United States, 5 Great Basin National Park, National Park Service, Baker, NV, United States, 6 Geological Survey of Denmark and Greenland, Copenhagen, NY, United States Mountains of the arid Great Basin region of Nevada are home to critical water resources and numerous species of plants and animals. Understanding the nature of climatic variability in these environments, especially in the face of unfolding climate change, is a challenge for resource planning and adaptation. Here, we utilize an Embedded Sensor Edited by: Network (ESN) to investigate landscape-scale temperature variability in Great Basin David Glenn Chandler, National Park (GBNP). The ESN was installed in 2006 and has been maintained during Syracuse University, United States uninterrupted annual student research training expeditions. The ESN is comprised of 29 Reviewed by: Ulf Mallast, Lascar sensors that record hourly near-surface air temperature and relative humidity at Helmholtz Centre for Environmental locations spanning 2000 m and multiple ecoregions within the park. -
South Steptoe Valley Watershed Restoration Plan Environmental Assessment
U.S. DepartmentoftheInterior Bureau of Land Management South Steptoe Valley Watershed Restoration Plan Environmental Assessment DOI-BLM-NV-L020–2011–0013–EA September 26, 2011 PREPARING OFFICE U.S. Department of the Interior Bureau of Land Management Schell Field Office 702 N. Industrial Way HC33 Box 33500 Ely, NV 89301 (775) 289–1800 South Steptoe Valley Watershed Restoration Plan Environmental Assessment: DOI-BLM- NV-L020–2011–0013–EA September 26, 2011 This page intentionally left blank South Steptoe Valley Watershed iii Restoration Plan Environmental Assessment Table of Contents 1. Introduction ................................................................................................................................ 1 1.1. Identifying Information ..................................................................................................... 1 1.1.1. Title, EA number, and type of project .................................................................... 1 1.1.2. Location of Proposed Action ................................................................................. 1 1.1.3. Name and Location of Preparing Office ................................................................ 1 1.2. Introduction ....................................................................................................................... 1 1.3. Purpose and Need for Action ............................................................................................ 3 1.4. Relationship to Planning .................................................................................................. -
Isotope Hydrology of Lehman and Baker Creeks Drainages, Great Basin National Park, Nevada
UNLV Retrospective Theses & Dissertations 1-1-1992 Isotope hydrology of Lehman and Baker creeks drainages, Great Basin National Park, Nevada Stephen Yaw Acheampong University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Acheampong, Stephen Yaw, "Isotope hydrology of Lehman and Baker creeks drainages, Great Basin National Park, Nevada" (1992). UNLV Retrospective Theses & Dissertations. 195. http://dx.doi.org/10.25669/3kmp-t8wo This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. -
Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11 -
Quaternary Fault and Fold Database of the United States
Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Butte Valley fault zone (Class A) No. 1276 Last Review Date: 2000-11-30 citation for this record: Redsteer, M.H., compiler, 2000, Fault number 1276, Butte Valley fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:16 PM. Synopsis The Butte Valley fault zone is defined by a series of down-to-the- east scarps and lineaments, southwest of the Cherry Creek Range. Fault movement is described as of possible Holocene age (<10 ka). Reconnaissance photogeologic mapping and limited analysis of range-front morphology are the sources of data. Trench investigations and detailed studies of scarp morphology have not been completed. Name Refers to the southern fault of two defining the Butte Valley fault comments zone of dePolo (1998 #2845). Also mapped by Dohrenwend and others (1992 #2480). It extends about 15 km from Thirtymile Wash on the western side of the Butte Mountains, across Butte Valley to Hunter Point, the southern end of the Cherry Creek Range. Fault ID: Refers to fault number EY8B of dePolo (1998 #2845). County(s) and WHITE PINE COUNTY, NEVADA State(s) Physiographic BASIN AND RANGE province(s) Reliability of Good location Compiled at 1:100,000 scale. -
University of Nevada, Reno Igneous and Hydrothermal Geology of The
University of Nevada, Reno Igneous and Hydrothermal Geology of the Central Cherry Creek Range, White Pine County, Nevada A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by David J. Freedman Dr. Michael W. Ressel, Thesis Advisor May, 2018 THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by DAVID JOSEPH FREEDMAN entitled Igneous and Hydrothermal Geology of the Central Cherry Creek Range, White Pine County, Nevada be accepted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Michael W. Ressel, PhD, Advisor John L. Muntean, PhD, Committee Member Douglas P. Boyle, PhD, Graduate School Representative David W. Zeh, PhD, Dean, Graduate School May, 2018 i Abstract The central Cherry Creek Range exposes a nearly intact, 8-km thick crustal section of Precambrian through Eocene rocks in a west-dipping homocline. Similar tilts between Eocene volcanic rocks and underlying Paleozoic carbonates demonstrate that tilting and exhumation largely occurred during post-Eocene extensional faulting, thus allowing for relatively simple paleo-depth determinations of Eocene intrusions and mineral deposits. The study area is cored by the Cherry Creek quartz monzonite pluton (35 km2 exposure; ~132 km2 coincident magnetic anomaly), which was emplaced into Precambrian and Cambrian meta-sedimentary strata between 37.9-36.2 Ma and is exposed along the east side of the range. The pluton and overlying Paleozoic strata are cut by abundant 35.9-35.1 Ma porphyritic silicic dikes. A range of polymetallic mineralization styles are hosted by the intrusive rocks along two deeply-penetrating, high-angle faults and their intersections with favorable Paleozoic units. -
"Ground Water in White River Valley, White Pine, Nye, and Lincoln
STATE OF NEVADA OFFICE OF THE STATE ENGINEER WATER RESOURCES BULLETIN No. 8 GROUND WATER IN WHITE RIVER VALLEY, WHITE PINE, NYE, AND LINCOLN COUNTIES, NEVADA By G. B. MAXEY and T. E. EAKIN Prepared in cooperation with the UNITED STATES DEPARTMENT OF THE INTERIOR Geological Survey 1 949 CARSON CITY. NEVADA STATE PRINTING OFFICE JACK MCCARTHY. SUPERINTENDENT 1930 CONTENTS PAGE Foreword ............................................... 5 Abstract ............................................... 7 Introduction .............................................. 9 Location and general features .............................. 12 Drainage ................................................ 14 Climate ................................................ 18 Precipitation ................................................ 18 Temperature ................................................ 19 Vegetation ............................................... 25 Geology and water-bearing characteristics of the rocks . 26 General relations . .............. 26 Older sedimentary and igneous rocks . ............................................. 26 MCCARTHY. SUPERINTENDENT Tertiary and Quaternary alluvial and lacustrine deposits ..... 29 Ground water ................................................ 33 Occurrence ............................................... 33 Springs ............................................... 35 Source and amount of recharge . ............. 40 Movement ............................................... 41 Discharge ............................................... -
Management Plan for the Great Basin National Heritage Area Approved April 30, 2013
Management Plan for the Great Basin National Heritage Area Approved April 30, 2013 Prepared by the Great Basin Heritage Area Partnership Baker, Nevada i ii Great Basin National Heritage Area Management Plan September 23, 2011 Plans prepared previously by several National Heritage Areas provided inspiration for the framework and format for the Great Basin National Heritage Area Management Plan. National Park Service staff and documents provided guidance. We gratefully acknowledge these contributions. This Management Plan was made possible through funding provided by the National Park Service, the State of Nevada, the State of Utah and the generosity of local citizens. 2011 Great Basin National Heritage Area Disclaimer Restriction of Liability The Great Basin Heritage Area Partnership (GBHAP) and the authors of this document have made every reasonable effort to insur e accuracy and objectivity in preparing this plan. However, based on limitations of time, funding and references available, the parties involved make no claims, promises or guarantees about the absolute accuracy, completeness, or adequacy of the contents of this document and expressly disclaim liability for errors and omissions in the contents of this plan. No warranty of any kind, implied, expressed or statutory, including but not limited to the warranties of non-infringement of third party rights, title, merchantability, fitness for a particular purpose, is given with respect to the contents of this document or its references. Reference in this document to any specific commercial products, processes, or services, or the use of any trade, firm or corporation name is for the inf ormation and convenience of the public, and does not constitute endorsement, recommendation, or favoring by the GBHAP or the authors. -
Ely, Nevada Highway Commercial Office/Warehouse/Industrial Property
Ely, Nevada Highway Commercial Office/Warehouse/Industrial Property 6,000 + SF Office/Warehouse has 2 half baths, office, and roll up doors on the east and west walls 5.81 acre parcel fronts Highway 93 for excellent access and exposure to highway traffic Private Water Well and Septic Office/Warehouse is currently operating as Valley Irrigation List Price: $500,000.00 This information has been secured from sources we believe to be reliable, but we make no representations or warranties, expressed or implied, as to the accuracy of the information. Buyer must verify the information and bears all risk for any inaccuracies. Jan Cole, land-waterr.com, 702-270-9194 Location This 5.81 acre parcel has easy access off of Highway 93. Take Highway 93 north from Ely, turn west to Valley Irrigation office/warehouse building. Located between Ely and McGill it is centrally located and easy driving distance to all parts of the valley. Warehouse 5.81 Acre Parcel This information has been secured from sources we believe to be reliable, but we make no representations or warranties, expressed or implied, as to the accuracy of the information. Buyer must verify the information and bears all risk for any inaccuracies. Jan Cole, land-waterr.com, 702-270-9194 Steptoe Valley Steptoe Valley is a long valley located in White Pine County, in northeastern Nevada. From the historic community of Currie, the valley runs south for approximately 100 miles. To the west are the high Egan Range and the Cherry Creek Range, while to the east is the even higher Schell Creek Range. -
Mountain Views
Mountain Views Th e Newsletter of the Consortium for Integrated Climate Research in Western Mountains CIRMOUNT Informing the Mountain Research Community Vol. 8, No. 2 November 2014 White Mountain Peak as seen from Sherwin Grade north of Bishop, CA. Photo: Kelly Redmond Editor: Connie Millar, USDA Forest Service, Pacifi c Southwest Research Station, Albany, California Layout and Graphic Design: Diane Delany, USDA Forest Service, Pacifi c Southwest Research Station, Albany, California Front Cover: Rock formations, Snow Valley State Park, near St George, Utah. Photo: Kelly Redmond Back Cover: Clouds on Piegan Pass, Glacier National Park, Montana. Photo: Martha Apple Read about the contributing artists on page 71. Mountain Views The Newslett er of the Consortium for Integrated Climate Research in Western Mountains CIRMOUNT Volume 8, No 2, November 2014 www.fs.fed.us/psw/cirmount/ Table of Contents Th e Mountain Views Newsletter Connie Millar 1 Articles Parque Nacional Nevado de Tres Cruces, Chile: A Signifi cant Philip Rundel and Catherine Kleier 2 Coldspot of Biodiversity in a High Andean Ecosystem Th e Mountain Invasion Research Network (MIREN), reproduced Christoph Kueff er, Curtis Daehler, Hansjörg Dietz, Keith 7 from GAIA Zeitschrift McDougall, Catherine Parks, Anibal Pauchard, Lisa Rew, and the MIREN Consortium MtnClim 2014: A Report on the Tenth Anniversary Conference; Connie Millar 10 September 14-18, 2014, Midway, Utah Post-MtnClim Workshop for Resource Managers, Midway, Utah; Holly Hadley 19 September 18, 2014 Summary of Summaries: -
The Island Forest Trail
National Park Service Great Basin U.S. Department of the Interior Great Basin National Park The Island Forest Trail About This Trail Like a forest island surrounded be a sea, loop trail is wheelchair accessible and the trees of Great Basin National Park sit rated Challenge Level I. The trail has a high and stranded. Take this gentle o.4- firm, well-compacted surface, with a mile loop trail and learn and observe what maximum grade of 1:12, a minimum width sets this coniferous woods apart. Discover of 32 inches, and comfortably spaced rest how this isolated forest in the Snake Range benches. Pets and bicycles are not allowed has evolved, cut off from other forests by on park trails. distance, elevation, and time. The 0.4-mile A Mountain of Influence The forest stands here on the rubble of on the landscape. With the colder tem- glacial outwash. During the last ice age, peratures of that period, Engelmann 20,000 to 11,000 years ago, glaciers ema- spruce and limber pine forests were found nated from Wheeler Peak and lay heavily much further downslope, living near 6,000 feet. As temperatures rose and glaciers retreated, so rose the conifer forest. Because Wheeler Peak is so tall (13,063 feet), it creates its own weather. Moist air blows from the west and cools as it is forced to rise over the peak. As it rises, Engelmann spruce Limberpine clouds form. The clouds drop rain or (Picea engelmannii) (Pinus flexilis) snow mostly on the mountain’s western side. But enough moisture falls on the The Snake Range supports eight species of conifers- the most found in the Great Basin eastern, leeward side to sustain these high mountains. -
Spruce Mountain Restoration
B L U.S. Department of the Interior M Bureau of Land Management Spruce Mountain Restoration PREPARING OFFICE U.S. Department of the Interior Bureau of Land Management Wells Field Office 3900 E. Idaho St. Elko, Nevada 89801 United States of America (775) 753–0200 Spruce Mountain Restoration : Environmental Assessment: This page intentionally left blank Spruce Mountain Restoration iii Table of Contents 1. Introduction ................................................................................................................................ 1 1.1. Identifying Information: ................................................................................................... 1 1.1.1. Location of Proposed Action: ................................................................................ 1 1.1.2. Name and Location of Preparing Office: ............................................................... 1 1.2. Purpose and Need for Action: .......................................................................................... 1 2. Proposed Action and Alternatives ............................................................................................ 3 2.1. Alternative A — Proposed Action .................................................................................... 5 2.1.1. Proposed Project Procedures ................................................................................ 14 2.2. Alternative B ................................................................................................................... 20 2.3. Alternative