Species Factsheet Macaroni Penguin Eudyptes Chrysolophus 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards the Trophic Structure of the Bouvet Island Marine Ecosystem
Polar Biol (2006) 29: 106–113 DOI 10.1007/s00300-005-0071-8 ORIGINAL PAPER U. Jacob Æ T. Brey Æ I. Fetzer Æ S. Kaehler K. Mintenbeck Æ K. Dunton Æ K. Beyer Æ U. Struck E.A. Pakhomov Æ W.E. Arntz Towards the trophic structure of the Bouvet Island marine ecosystem Received: 6 June 2005 / Revised: 7 September 2005 / Accepted: 14 September 2005 / Published online: 19 October 2005 Ó Springer-Verlag 2005 Abstract Although Bouvet Island is of considerable importance for Southern Ocean species conservation, Introduction information on the marine community species inventory and trophic functioning is scarce. Our combined study Bouvet Island (Bouvetøya, 54°72¢60S, 3°24¢E) is located of stable isotopes and feeding relationships shows that just south of the Antarctic Polar Front (APF) and (1) the marine system conforms to the trophic pattern within the Antarctic circumpolar current (ACC, Fig. 1, described for other Antarctic systems within the Ant- Foldvik et al. 1981; Perissinotto et al. 1992). Owing to arctic circumpolar current (ACC); (2) both the benthic its geographical isolation (i.e. 2,590 km downstream of and the pelagic subsystem are almost exclusively linked the South Sandwich Islands, 2,570 km upstream of the via suspended particulate organic matter (SPOM); and Prince Edward Islands and 1,600 km north of Queen (3) there is no evidence of a subsystem driven by mac- Maud Land, Antarctica) the island represents a pristine roalgae. Bouvet Island can therefore be characterized as environment and has been identified as an important a benthic ‘‘oasis’’ within a self-sustaining open ocean case study for the conservation of intact ecosystems pelagic system. -
Penguins Goals of the Seaworld and Busch Gardens Education
Goals of the SeaWorld and Busch Gardens Education Departments Based on a long-term commitment to education and conservation, SeaWorld and Busch Gardens strive to provide an enthusiastic, imaginative, and intellectually stimulating atmosphere to help students and guests develop a lifelong appreciation, understanding, and stewardship for our environment. Specifically, our goals are ... • To instill in students and guests of all ages an appreciation for science and a respect for all living creatures and habitats. • To conserve our valuable natural resources by increasing awareness of the interrelationships of humans and the environment. • To increase students’ and guests’ basic competencies in science, math, and other disciplines. • To be an educational resource to the world. “For in the end we will conserve only what we love. We will love only what we understand. We will understand only what we are taught.” — B. Dioum Penguins K–3 Teacher’s Guide PART OF THE SEAWORLD EDUCATION SERIES Research/Writing Illustrations Donna Potter Parham Doug Fulton Noelle Phillips Technical Advisors SeaWorld San Diego Brad Andrews Creative Services Wendy Turner Photos Education Directors Mike Aguilera Lorna Crane Ken Bohn Hollis Gillespie Bob Couey Bob Mindick Frank Todd Joy Wolf SeaWorld San Diego Photo Department Editorial Staff Jody Byrum Judith Coats Deborah Nuzzolo Donna Parham Covers Front: Adélie penguins (Pygoscelis adeliae) leap from the antarctic sea. Back (clockwise from upper left): Humboldt penguin (Spheniscus humboldti) chicks, a rockhopper penguin (Eudyptes chrysocome), a SeaWorld aviculturist feeds Humboldt penguins, a SeaWorld Adventure camper meets a Magellanic penguin (Spheniscus magellanicus). ©2001 Sea World, Inc. All Rights Reserved. Published by the SeaWorld Education Department 500 SeaWorld Drive, San Diego, California, 92109-7904 Permission is granted by SeaWorld for classroom teachers to make reprographic copies of worksheets for noncommercial use. -
The Rockhopper Penguin Eudyptes
Afr. J. mar. Sci. 25: 487–498 487 DECREASE IN NUMBERS OF THE EASTERN ROCKHOPPER PENGUIN EUDYPTES CHRYSOCOME FILHOLI AT MARION ISLAND, 1994/95–2002/03 R. J. M. CRAWFORD1, J. COOPER2, B. M. DYER1, M. D. GREYLING3, N. T. W. KLAGES4, D. C. NEL5, J. L. NEL6, S. L. PETERSEN2 and A. C. WOLFAARDT7 The number of eastern rockhopper penguins Eudyptes chrysocome filholi breeding at subantarctic Marion Island decreased from about 173 000 pairs in 1994/95 to about 67 000 pairs in 2001/02. During 1994/95–2002/03 pairs fledged on average 0.40 chicks per year, an amount thought insufficient to balance mortality of breeding adults, and there was a decrease in the mass at arrival at breeding colonies of both males and females. Except in 1997/98, the mass of chicks at fledging was less than that recorded at two other localities. These factors suggest an inade- quate supply of food for rockhopper penguins at Marion Island. Decreases of rockhopper penguins at several other localities also have been attributed to inadequate food. Rockhopper penguins at Marion Island continued to feed mainly on crustaceans during chick rearing. There was a marked increase in the contribution of fish to the diet in 1999/00 that coincided with an increase in mass at arrival at colonies of both males and females. Trends in numbers of pairs breeding in different sections of Marion Island were not always consistent, indicating the need for island-wide monitoring to establish the overall trend. Key words: breeding success, diet, Eudyptes chrysocome, Marion Island, mass, population decrease, rockhopper penguin, Subantarctic The rockhopper penguin Eudyptes chrysocome has a population at Antipodes Islands is thought to have circumpolar distribution in the southern hemisphere, decreased between 1972/73 and 1989/90 and that at where it breeds at subantarctic and south temperate Auckland Island from 5 000–10 000 pairs in 1972/73 islands (Marchant and Higgins 1990). -
Biological Survey of the Prince Edward Islands, December 2008
Research Letters South African Journal of Science 105, July/August 2009 317 drafted in 2006 to replace the current plan adopted in 1996; the Biological survey of the declaration of a large Marine Protected Area, including all terri- torial waters out to 12 nautical miles (nm) and extending in Prince Edward Islands, several directions to the limit of the islands’ 200-nm Exclusive December 2008 Economic Zone; and the nomination of the islands as a Natural Site to the World Heritage Convention4–8 (see also http://whc. unesco.org/en/tentativelists/1923). J. Coopera,b*, M.N. Besterc, S.L.Chownb, In the main, biological research conducted on the Prince a,d e e Edward Islands has been restricted to the larger Marion Island, R.J.M. Crawford , R. Daly , E. Heyns , d f b which supports a combined weather and research station, T. Lamont , P.G. Ryan and J.D. Shaw relieved annually.9 Visits to uninhabited Prince Edward Island occur more rarely and normally only during the annual relief voyages to Marion Island in April/May. Such visits are subject to strict controls on party size, duration and interval.4,5 In addition, A biological survey of the Prince Edward Islands took place in most physical, chemical and biological oceanographic research December 2008. The survey repeated an earlier survey of the conducted in the vicinity of the islands has been carried out populations of surface-nesting seabirds on both islands and of fur during annual relief voyages. seals (Arctocephalus spp.) and alien plants on Prince Edward The Prince Edward Islands are internationally-important Island in December 2001. -
Terrestrial Invasions on Sub-Antarctic Marion and Prince Edward Islands
Bothalia - African Biodiversity & Conservation ISSN: (Online) 2311-9284, (Print) 0006-8241 Page 1 of 21 Original Research Terrestrial invasions on sub-Antarctic Marion and Prince Edward Islands Authors: Background: The sub-Antarctic Prince Edward Islands (PEIs), South Africa’s southernmost 1 Michelle Greve territories have high conservation value. Despite their isolation, several alien species have Rabia Mathakutha1 Christien Steyn1 established and become invasive on the PEIs. Steven L. Chown2 Objectives: Here we review the invasion ecology of the PEIs. Affiliations: Methods: We summarise what is known about the introduction of alien species, what 1Department of Plant and Soil Sciences, University of influences their ability to establish and spread, and review their impacts. Pretoria, South Africa Results: Approximately 48 alien species are currently established on the PEIs, of which 26 are 2School of Biological Sciences, known to be invasive. Introduction pathways for the PEIs are fairly well understood – species Monash University, Australia have mainly been introduced with ship cargo and building material. Less is known about establishment, spread and impact of aliens. It has been estimated that less than 5% of the PEIs Corresponding author: is covered by invasive plants, but invasive plants have attained circuminsular distributions on Michelle Greve, [email protected] both PEIs. Studies on impact have primarily focussed on the effects of vertebrate invaders, of which the house mouse, which is restricted to Marion Island, probably has the greatest impact Dates: on the biodiversity of the islands. Because of the risk of alien introductions, strict biosecurity Received: 01 Aug. 2016 regulations govern activities at the PEIs. These are particularly aimed at stemming the Accepted: 05 Dec. -
Macaroni Penguin
Macaroni Penguin Website : https://www.cuteness.com/article/macaroni-penguin-kids Live Camera: https://tnaqua.org/animal/macaroni-penguin/ Macaroni penguins are the most abundant of the different penguin species in the world. They are easily identified by the yellow hairs on the top of their heads. But be careful! This penguin looks a lot like the Royal penguin. The big difference is that the Macaroni penguin has a black face, and the Royal penguin has a white face. Now visit the website. Look at the first paragraph that begins with “Macaroni penguins inhabit a number of islands…”: 1) Where do Macaroni penguins live? a. In my house b. Near Antarctica c. North Pole d. Along the equator 2) What are two threats to Macaroni penguins that come from human beings? (More than one) . a. Leopard seals b. Commercial fishing c. Oil pollution d. Sea lions Go to this section : 3) What other penguin can be confused with the Macaroni penguin? a. Royal penguin b. Emperor penguin c. Antarctic penguin d. Rockhopper penguin 4) About how does this penguin weigh? a. Five pounds b. Seven pounds c. Nine pounds d. Eleven pounds Go to this section : 5) How did this penguin get its name? a. No one knows b. It was named after a hat c. It was named after the food d. It was named after the explorer who found them 6) True or false. The song “Yankee Doodle” was partly about the Macaroni penguin. a. True b. False c. What’s a Doodle? 1 Go to this section : 7) Where do Macaroni penguins lay their eggs? a. -
Climate Change Threatens Penguins
SEPTEMBER 2009 Climate Change Threatens Penguins By: Shaye Wolf Penguins are not just found in •11 of 18 penguin species are Antarctica declining and considered an Penguins—waddling wonders of extinction risk the Southern Hemisphere Although penguins are commonly associated with Antarctica, penguins •Two species are considered Penguins (order Sphenisciformes, are found in a variety of habitats stable. family Spheniscidae) are flightless in the Southern Hemisphere. seabirds found almost entirely in Eighteen different penguin species •The population status of the the Southern Hemisphere. Although inhabit areas from Antarctica to the remaining five is unknown. their wings have become useless for Equator. They can be divided into Studies have linked climate change flight, they have become superbly three groups: to past, ongoing, and projected adapted to swimming and diving. population declines of many For example, Gentoo penguins •Four penguin species breed in Antarctica and/or the Antarctic penguin species. Because penguins can swim up to 35 km per hour— live in different ocean habitats of compared with 9 km per hour for islands: the Emperor, Adélie, Chinstrap, and Gentoo penguin. the Southern Hemisphere, climate the fastest Olympic swimmer. change affects penguins in these Emperor penguins can dive to •Most penguin species breed on regions in different ways. depths of more than 520 m to find islands in the sub-Antarctic waters food—deeper than any other bird. of the Southern Ocean (a.k.a. How is climate change affecting Penguins must return to land or sea Antarctic Ocean), the South Atlantic Antarctic penguins? ice to rear their young, however, Ocean, the South Pacific Ocean, and they are renowned for their The Antarctic continent is warming and the Southern Indian Ocean: as a whole,1 but the Antarctic feats of endurance as parents. -
Foraging Ecology and Diving Behaviour of Macaroni Penguins 27
1998 Green et al.: Foraging ecology and diving behaviour of Macaroni Penguins 27 FORAGING ECOLOGY AND DIVING BEHAVIOUR OF MACARONI PENGUINS EUDYPTES CHRYSOLOPHUS AT HEARD ISLAND K. GREEN 1,2, R. WILLIAMS 1 & M.G. GREEN 2 1Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia 2Current address: National Parks and Wildlife Service, Snowy Mountains Region, PO Box 2228, Jindabyne, New South Wales 2627, Australia ([email protected]) Received 7 May 1997, accepted 6 June 1998 SUMMARY GREEN, K., WILLIAMS, R. & GREEN, M.G. 1998. Foraging ecology and diving behaviour of Macaroni Penguins Eudyptes chrysolophus at Heard Island. Marine Ornithology 26: 27–34. Over the chick-rearing period, Macaroni Penguins Eudyptes chrysolophus foraged to the north-east of Heard Island within an approximate 300-km radius, feeding mainly on euphausiids and fish. As the season progressed, the amount of euphausiids in the diet declined by 93% with the diet becoming almost totally composed of the myctophid fish Krefftichthys anderssoni. Penguins foraged mainly on the Heard Island shelf area (seas shallower than 1000 m). Penguin dive profiles were complex, unlike the simple ‘V’ shaped dives recorded elsewhere. Diving was mainly between dawn and dusk to depths of 10–60 m, and the deepest dives were undertaken during daylight hours. The connection between the observed diving patterns and the diet was difficult to elucidate because K. anderssoni only migrates vertically into surface waters at night and is believed to be out of the penguins’ diving range during the day. INTRODUCTION METHODS Macaroni Penguins Eudyptes chrysolophus on Heard and Diet McDonald Islands are thought to number about two million breeding pairs (Woehler 1991). -
Estimated Food Consumption by Penguins at the Prince Edward Islands
Antarctic Science 5 (3):245-252 (1993) Estimated food consumption by penguins at the Prince Edward Islands N. J. ADAMS1p4,C. MOLONEY216and R. NAVARR03 Percy Fiteatrick Institute of African Ornithology, University of Cape Town,Rondebosch, 7700 South Africa Marine Biology Institute, University of Cape Town, Rondebosch, 7700 South Africa Department of Statistical Sciences, University of Cape Town, Rondebosch, 7700 South Africa 'Present address: Mitrani Center for Desert Ecology, Jacob Blaustein Institute for Desert Research, Ben Gurion University, Sede Boker Campus, 84990 Israel Present address: Department of Wildlife and Fisheries Biology, University of California, Davis, CA 956616, Ua Abstract: The consumption of food by the four species of breeding penguins at the Prince Edward Islands is assessed on an annual and seasonal basis. Total annual food consumption was estimated at 880 000 t, of which king penguins accounted for 74%, macaroni penguins 21%, rockhopper penguins 5% and gentoo penguins 4%.Pelagic fish, almost entirely myctophids, were the most important prey (70% of total prey biomass), followed by pelagic crustaceans (18%) and cephalopods (11%). Demersal fish and benthic crustaceans accounted for <1% oftotal consumption,being consumed only by gentoopenguins. Peak demands of between 2 and 3.3 x 106kg d-' occurred from October-December when three of the four species were breeding, including the two demi-populations of king penguins. Food demand decreased to 1.2 x lo6kg d' during winter when only king and gentoo penguins were present. Much of the prey are presumably captured within 300 km of the islands. Assuming an even distribution of foraging effort within their respective foraging ranges,ratesof foodtransferredtopenguinsinNovember ranged from4.1 x 103gm-2d'formacaronipenguins to 1.24 x g m2d-' for king penguins. -
Playful Penguins by Melissa Michael
Playful Penguins By Melissa Michael www.teachertreasurehunter.blogspot.com •Emperor Penguin •King Penguin •Gentoo Penguin •Macaroni Penguin •Adélie Penguin •Little Penguin Emperor Penguin HABITAT: The emperor penguin lives in the Antarctic. It will spend its entire life in the Antarctic waters and on the ice. They are never on land. FOOD: They mostly eat Antarctic silverfish. They may also eat krill or squid. PREDATORS: Their main enemies are orcas and leopard seals. The chicks are also prey for sea birds. COOL FACTS: *The females lay one large egg and then the males take care of it. The males keep the egg on their feet and cover it with their brooding pouch. The brooding pouch is Credit: Photo by Lin Padgham; Creative Commons license loose skin covered with feathers that can APPEARANCE: The emperor penguin has cover the egg. The males will not eat black feathers on its back. The feathers in anything for the 2 months when they care front are white. They have a black head for the egg. and black beak with an orange stripe. *They are the largest penguin in the world. There are yellow patches on each side of its They are about 44 inches tall. head. The chicks have gray feathers with a *They can dive deeper than any other black and white face patch. bird. © 2013 © 2013 Michael Melissa King Penguin HABITAT: They live on islands of the sub- Antarctic and ice-free ocean waters. They never live on pack ice like their close relative the Emperor penguin. FOOD: They eat small fish and some squid. -
Marine Predators at South Georgia: an Overview of Recent Bio-Logging Studies
Mem. Natl Inst. Polar Res., Spec. Issue, 58, 118–132, 2004 ©National Institute of Polar Research Review Marine predators at South Georgia: an overview of recent bio-logging studies Philip N. Trathan* and John P. Croxall British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK (*[email protected]) (Received March 21, 2003; Accepted July 15, 2003) Abstract: There is a unique diversity and density of land-based marine predators breeding at Bird Island, South Georgia, operating at a wide variety of spatial and temporal scales. These provide exceptional opportunities for bio-logging studies, the objectives of which have been to investigate trophic interactions in ecosystem contexts (including applications in fish- eries and environmental management and conservation). Associated data from studies on feeding ecology, reproductive performance and population dynamics provide valuable con- textual information for bio-logging analyses. An associated ship-based offshore marine sci- ence programme also provides vital information about the local and regional biological and physical environment, which is both complex and highly variable. Further developments of our bio-logging studies at South Georgia face a number of important challenges. These include: • acquiring samples large enough for statistical analysis; • replicating study sites and/or populations in order to characterize population and species behaviour; • collecting simultaneous data from multiple sensors or devices in order to interpret foraging behaviour; • acquiring key collateral data on prey and environment at appropriate spatial and temporal scales to understand foraging dynamics in context. We illustrate approaches to address some of these challenges from recent studies of the South Georgia marine ecosystem. -
Foraging Strategy Plasticity in Fiordland Penguins (Eudyptes Pachyrhynchus): a Stable Isotope Approach
Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2020 FORAGING STRATEGY PLASTICITY IN FIORDLAND PENGUINS (EUDYPTES PACHYRHYNCHUS): A STABLE ISOTOPE APPROACH Jeffrey Wayne White [email protected] Follow this and additional works at: https://mds.marshall.edu/etd Part of the Animal Sciences Commons, Behavior and Ethology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation White, Jeffrey Wayne, "FORAGING STRATEGY PLASTICITY IN FIORDLAND PENGUINS (EUDYPTES PACHYRHYNCHUS): A STABLE ISOTOPE APPROACH" (2020). Theses, Dissertations and Capstones. 1284. https://mds.marshall.edu/etd/1284 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. FORAGING STRATEGY PLASTICITY IN FIORDLAND PENGUINS (EUDYPTES PACHYRHYNCHUS): A STABLE ISOTOPE APPROACH A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science In Biology by Jeffrey Wayne White Approved by Dr. Herman Mays, Committee Chairperson Dr. Anne Axel Dr. Jennifer Mosher Dr. John Hopkins III Marshall University May 2020 APPROVAL OF THESIS We, the faculty supervising the work of Jeffrey Wayne White, affirm that the thesis, Foraging strategy plasticity in Fiordland Penguins (Eudyptes pachyrhynchus): A stable isotope approach, meets the high academic standards for original scholarship and creative work established by the Biology Department and the College of Arts and Sciences. This work also conforms to the editorial standards of our discipline and the Graduate College of Marshall University.