Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-Deficient Breast Cancer Jodi E

Total Page:16

File Type:pdf, Size:1020Kb

Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-Deficient Breast Cancer Jodi E Theranostics 2017, Vol. 7, Issue 17 4340 Ivyspring International Publisher Theranostics 2017; 7(17): 4340-4349. doi: 10.7150/thno.18563 Research Paper Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer Jodi E. Belz1, 2, Rajiv Kumar2, 3, Paige Baldwin1, 2, Noelle Castilla Ojo2, Ana S. Leal4, 5, Darlene B. Royce4, Di Zhang4, Anne L. van de Ven2, 3, Karen T. Liby4, 5, Srinivas Sridhar2, 3 1. Northeastern University, Department of Bioengineering, Boston, MA; 2. Nanomedicine Science and Technology Center, Northeastern University, Boston, MA; 3. Northeastern University, Department of Physics, Boston, MA; 4. Geisel School of Medicine at Dartmouth, Department of Pharmacology, Hanover, NH; 5. Michigan State University, Department of Pharmacology and Toxicology, East Lansing, MI. Corresponding author: Srinivas Sridhar [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2016.11.30; Accepted: 2017.06.17; Published: 2017.09.26 Abstract Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1-deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1-deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1Co/Co;MMTV-Cre;p53+/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro. Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors. Key words: Talazoparib, PARP inhibitor, BRCA-1, breast cancer, local therapy, sustained delivery. Introduction The breast cancer-associated gene 1 (BRCA1) is functions including DNA damage and repair, the most frequently mutated tumor suppressor gene homologous recombination, cell-cycle regulation, found in familial breast cancers. Women with this transcription, epigenetic modification and apoptosis. mutation have a 50-80% risk of developing breast Typically, BRCA1 is required for homologous cancer in their lifetime. As many as 75% of these cases recombination, a commonly utilized double-stranded are diagnosed as triple-negative breast cancer break DNA repair mechanism. In tumor cells which (TNBC), a subtype known for its poor prognosis [1–3]. have a loss of both BRCA1 genes, homologous Mutations of the BRCA1 gene modulate many cellular recombination is lost and cells must rely on http://www.thno.org Theranostics 2017, Vol. 7, Issue 17 4341 non-homologous end joining, a more error prone altered by adjusting the ratio of the two polymers pathway, for survival [4–7]. PLA and PGA, so that a wide variety of payloads can Poly-ADP-Ribose Polymerase (PARP) plays a be incorporated into nanoparticles, microspheres, or key role in the repair of single-stranded DNA breaks implants [30, 31]. PLGA as an implant has been used and is recruited to sites of DNA damage to initiate intratumorally to deliver molecules, magnetic repair [6, 8, 9]. PARP inhibition (PARPi) produces cell particles, nanoparticles, drugs, and imaging agents to death via synthetic lethality in cancers with genetic improve the bioavailability at the tumor site and predispositions for impaired DNA repair or impaired minimize any leaking of particles from the tumor transcription, such as BRCA1 mutants [1, 10, 11]. [32–36]. Substantial research has been conducted that Drugs that inhibit PARP1 activity prevent the repair supports the use of biodegradable PLGA implants in of single-stranded DNA breaks, which propagate into the use of cancer treatment for prolonged drug double-stranded breaks after DNA replication. PARPi delivery with minimal systemic side effects. in cells deficient in homologous recombination results Here, we report a novel, biodegradable implant in genomic instability and ultimately cell death by for localized and sustained delivery of Talazoparib to forcing cells to repair double-stranded breaks using treat Brca1-deficient breast cancer with minimal lower fidelity methods such as non-homologous end treatment associated toxicities. The in vitro efficacy of joining [12–16]. PARP inhibitors have shown Talazoparib was compared to that of other PARP promising results in clinical trials for breast cancers, inhibitors Olaparib and Niraparib using two breast particularly those due to either inherited mutation or cancer cell lines derived from Brca1-deficient mice. somatic inactivation of BRCA1/2 genes which are For in vivo delivery, Talazoparib implants were present in ~15% of the patient population [17–19]. fabricated using poly(lactic-co-glycolic) acid (PLGA) These drugs are also expected to have wide with tuned release of drug over several weeks. applicability beyond BRCA mutations in breast Implants containing 25 or 50 µg Talazoparib were cancers that exhibit “BRCAness” such as sporadic administered intratumorally into tumors with homologous recombination defects Brca1Co/Co;MMTV-Cre;p53+/- mice and their treatment [20–22]. efficacy was compared to drug-free control implants Talazoparib (BMN-673) is known for high and Talazoparib treatment by oral gavage. Mice were PARP1 and PARP2 inhibition with potency at much monitored for signs of gross toxicity and lower concentrations than earlier generations of immunohistochemistry was performed to assess DNA PARP1/2 inhibitors like Olaparib or Veliparib [10, 23]. damage and cell proliferation in the tumors. The The cytotoxicity of Talazoparib at nanomolar results showed that localized delivery of Talazoparib concentrations is believed to be related to the trapping significantly delays tumor growth and prolongs of PARP-DNA complexes based on studies in survival time at sub-clinical doses. This new approach PARP1-/- mouse models [24–26]. However, the of localized treatment using Talazoparib implants is hydrophobic nature of Talazoparib, combined with its an attractive strategy to treat the 75% of TNBC oral delivery route, limits drug bioavailability (~50% patients and 33% of overall breast cancer patients after first-pass metabolism), necessitating the use of which would benefit from PARPi therapy [12, 37, 38]. high doses in patients and leading to off-site toxicity [10]. Thus, Talazoparib is an attractive drug candidate Materials and Methods for breast cancer patients with Brca1 mutations, but its All solvents used were HPLC grade and potency may limit long-term use [14, 27]. purchased from Sigma-Aldrich unless otherwise Local, sustained delivery of drugs has been stated. Talazoparib, Olaparib and Niraparib were achievable in the past few decades with the use of purchased from SelleckChem (Houston, TX). biodegradable polymers. Poly (lactic-co-glycolic) acid Poly(lactic-co-glycolic) acid (PLGA) (Mw 7-17 kDa) or PLGA is an FDA approved biodegradable and was purchased from Sigma-Aldrich. Syringes and biocompatible copolymer that has been widely silicon tubing (i.d. 0.8 mm) were purchased from studied for the use of drug delivery systems. PLGA Fisher Scientific. Unless otherwise stated, all cell has tunable mechanical and degradation properties culture products (nutrient media, trypsin, Penstrep, and is widely characterized for its extensive use in fetal bovine serum) were obtained from Life developing devices for controlled delivery and release Technologies and were used without further of many types of molecules, proteins, and drugs [28, purification. Antibodies were procured from Abcam 29]. Many groups have shown that PLGA can be and Calbiochem. For cell viability assay CellTiter 96® injected subcutaneously or intratumorally for AQueous One Solution Cell Proliferation Assay long-term controlled drug delivery without the need (MTS) reagent was procured from Promega. for surgery. The hydrophobicity of the polymer can be http://www.thno.org Theranostics 2017, Vol. 7, Issue 17 4342 Talazoparib Implant Fabrication kV. Talazoparib implants were fabricated using a Release Kinetics studies polymer extrusion method as reported previously by The release profile of Talazoparib from the our group with several modifications [36].
Recommended publications
  • FAQ505 -- BRCA1 and BRCA2 Mutations
    AQ FREQUENTLY ASKED QUESTIONS FAQ505 fWOMEN’S HEALTH BRCA1 and BRCA2 Mutations • What is cancer? • What causes cancer? • What is hereditary breast and ovarian cancer syndrome? • What are BRCA1 and BRCA2? • How much do BRCA mutations increase the risk of breast cancer? • How much do BRCA mutations increase the risk of ovarian cancer? • Do BRCA mutations increase the risk of other types of cancer? • How common are BRCA mutations? • Should I be tested for BRCA mutations? • What is genetic counseling? • Why don’t doctors test everyone for BRCA mutations? • How is testing for BRCA mutations done? • What does a negative test result mean? • What does an unclear test result mean? • What does a positive test result mean? • How can you prevent cancer if you test positive for a BRCA mutation? • What breast cancer screening tests are available? • What ovarian screening tests are available? • What medication can help prevent breast cancer? • What medications can help prevent ovarian cancer? • Can surgery help prevent breast cancer? • What are the side effects of a mastectomy? • Can surgery help prevent ovarian cancer? • What are the side effects of removing the ovaries? • What else should I think about before choosing risk-reducing surgery? • I am concerned about discrimination based on genetic testing results. What should I know? • What should I know about direct-to-consumer genetic tests? • Glossary What is cancer? Normal cells in the body grow, divide, and are replaced on a routine basis. Sometimes, cells divide abnormally and begin to grow out of control. These cells may form growths or tumors.Tumors can be benign (not cancer) or malignant (cancer).
    [Show full text]
  • BRCA1 and BRCA2 Play an Activities Have No Relevant Financial Relationships to Important Role in the Repair of Damaged DNA and the Disclose
    Alaska Pharmacists Association Continuing Education Home Study Series Program 0139-0000-19-201-H04-P/T Genetic Mutations in Quarterly AKPhA Newsletter Cancer: BRCA1 and Release Date 10/07/2019 Expiration Date 10/07/2022 BRCA2 CPE Hours: 2.0 (0.2 CEU) Authors: This lesson is a knowledge-based CPE activity Danielle Hess, PharmD Candidate 2020 and is targeted to pharmacists and technicians Anne Marie Bott, PharmD, BCOP, BCPS, in all practice settings. NCPS, Alaska Native Medical Center Learning Objectives Cancer is a genetic disease that results from an At the completion of this activity, the participant accumulation of mutations in genes that normally will be able to: control cellular growth. This accumulation of mutations 1. State two positive changes you can make to can arise from either somatic or germinal tissue. While your practice following participation in this the majority of mutations are somatic and result from series. environmental exposures, lifestyle, the aging process, or simply chance, germline mutations are inherited. These 2. Summarize three practice updates or changes inherited mutations in specific tumor suppressor genes you acquired while participating in this series. and DNA mismatch genes predispose individuals to 1 Disclosure various hereditary cancer syndromes. The author(s) and other individuals responsible for Of the tumor suppressor genes associated with inherited planning AKPhA continuing pharmacy education cancer syndromes, BRCA1 and BRCA2 play an activities have no relevant financial relationships to important role in the repair of damaged DNA and the disclose. stability of genetic material within cells. However, when these genes are mutated or altered, the DNA repair Fees process may not function properly, which causes cells to CE processing is free for AKPhA members.
    [Show full text]
  • BRCA1 and BRCA2 Full Gene Sequence Analysis and Common Deletion/Duplication Variants
    BRCA1 and BRCA2 Full Gene Sequence Analysis and Common Deletion/Duplication Variants Testing includes full gene sequencing of exons and 25 base pairs of introns of BRCA 1 and 2 and the common deletions of BRCA1 (exon 13 del 3.835kb, exon 13 dup 6kb, exon 14-20 del 26kb, exon 22 del 510bp, exon 8-9 del 7.1kb). Sequencing does not include the promoter, enhancers or splicing modulators in intronic regions. Deletion duplication analysis is limited to the commonly reported variants; refer to full deletion/duplication testing. Indication: This testing is indicated for individuals that meet the criteria for Hereditary Breast and Ovarian Cancer listed in the National Comprehensive Cancer Network (NCCN) guidelines. For assistance with interpreting guidelines, please contact Henry Ford Precision Genomic Diagnostics, or refer to genetic counseling for evaluation. Testing on minors is not indicated. BRCA1 and BRCA2 are genes that code for proteins that help repair DNA damage. Inherited mutations in BRCA 1 or 2, in combination with additional acquired mutations, can result in increased risk for developing cancer. Specific mutations in BRCA1 and BRCA2 increase the risk of breast and ovarian cancers, and have been associated with increased risk of several additional types of cancer. BRCA1 and BRCA2 mutations account for about 20 to 25 percent of hereditary breast cancers and about 5 to 10 percent of all breast cancers. In addition, BRCA1 and BRCA2 account for about 15 percent of ovarian cancers overall. Breast and ovarian cancers associated with BRCA1 and BRCA2 mutations tend to develop at younger ages than their nonhereditary counterparts.
    [Show full text]
  • The Ethical Implications of Emerging Genetic Predictors of Poor Organ Transplant Outcomes
    THE ETHICAL IMPLICATIONS OF EMERGING GENETIC PREDICTORS OF POOR ORGAN TRANSPLANT OUTCOMES by Michael Aloysius Freeman Bachelor of Arts, Siena College, 2004 Doctor of Medicine, Albany Medical College, 2008 Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Master of Arts University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This thesis was presented by Michael A Freeman It was defended on July 20th, 2016 and approved by Lisa S. Parker, Professor, Department of Human Genetics, University of Pittsburgh Mark R. Wicclair, Professor, Department of Philosophy, West Virginia University Benjamin E. Hippen, Associate Clinical Professor, Department of Medicine University of North Carolina at Chapel Hill Thesis Director: Lisa S. Parker, Professor, Department of Human Genetics ii Copyright © by Michael A Freeman 2016 iii THE ETHICAL IMPLICATIONS OF EMERGING GENETIC PREDICTORS OF POOR ORGAN TRANSPLANT OUTCOMES Michael A Freeman, MA, MD University of Pittsburgh, 2016 Abstract: Emerging research is beginning to identify genetic risk factors which may predict an increased likelihood of rejection following transplantation. The identification of these predictors prompt us to consider how we should incorporate this information into the process of transplant candidate evaluation and organ allocation, as well as the ethical implications of such incorporation. In order to ground this analysis, this thesis begins with an examination of how we consider other predictors of poor transplant outcomes currently, as interpreted in concordance with the US transplant system’s dual goals of efficacious and just organ allocation. It then proceeds with a brief summary of the current research on genetic predictors of poor transplant outcome, followed by a specific examination of the mechanisms by which these genes are investigated.
    [Show full text]
  • Lessons Learned from BRCA1 and BRCA2
    Oncogene (2000) 19, 6159 ± 6175 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Lessons learned from BRCA1 and BRCA2 Lei Zheng1, Shang Li1, Thomas G Boyer1 and Wen-Hwa Lee*,1 1Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas, TX 78245, USA BRCA1 and BRCA2 are breast cancer susceptibility susceptibility genes has provided two human genetic genes. Mutations within BRCA1 and BRCA1 are models for studies of breast cancer. responsible for most familial breast cancer cases. To understand how the loss of BRCA1 or BRCA2 Targeted deletion of Brca1 or Brca2 in mice has function leads to breast cancer formation, mouse revealed an essential function for their encoded products, genetic models for BRCA1 or BRCA2 mutations have BRCA1 and BRCA2, in cell proliferation during been established. This work has revealed that Brca1 embryogenesis. Mouse models established from condi- homozygous deletions are lethal at early embryonic tional expression of mutant Brca1 alleles develop days (E)5.5 ± 13.5 (Gowen et al., 1996; Hakem et al., mammary gland tumors, providing compelling evidence 1996; Liu et al., 1996; Ludwig et al., 1997). Three that BRCA1 functions as a breast cancer suppressor. independent groups generated distinct mutations within Human cancer cells and mouse cells de®cient in BRCA1 Brca1, yet nonetheless observed similar embryonic or BRCA2 exhibit radiation hypersensitivity and phenotypes, including defects in both gastrulation and chromosomal abnormalities, thus revealing a potential cellular proliferation, and death at E6.5 (Hakem et al., role for both BRCA1 and BRCA2 in the maintenance of 1996; Liu et al., 1996; Ludwig et al., 1997).
    [Show full text]
  • Molecular Profiles of BRCA1-Mutated and Matched Sporadic Breast Tumours: Relation with Clinico-Pathological Features
    British Journal of Cancer (2001) 85(4), 538–545 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2001.1937, available online at http://www.idealibrary.com on IIH ii http://www.bjcancer.com Molecular profiles of BRCA1-mutated and matched sporadic breast tumours: relation with clinico-pathological features EMJJ Berns1, IL van Staveren1, L Verhoog1,2, AMW van de Ouweland3, M Meijer-van Gelder1, H Meijers-Heijboer3, H Portengen1, JA Foekens1, LCJ Dorssers2 and JGM Klijn1 1Division of Endocrine Oncology, Department of Medical Oncology, Rotterdam Cancer Center (Daniel den Hoed Kliniek) and University Hospital Rotterdam; 2Department of Pathology and 3Department of Clinical Genetics, Erasmus University Rotterdam, The Netherlands Summary About 5–10% of breast cancers are hereditary; a genetically and clinically heterogeneous disease in which several susceptibility genes, including BRCA1, have been identified. While distinct tumour features can be used to estimate the likelihood that a breast tumour is caused by a BRCA1 germline mutation it is not yet possible to categorize a BRCA1 mutated tumour. The aim of the present study is to molecularly classify BRCA1 mutated breast cancers by resolving gene expression patterns of BRCA1 and matched sporadic surgical breast tumour specimens. The expression profiles of 6 frozen breast tumour tissues with a proven BRCA1 gene mutation were weighed against those from 12 patients without a known family history but who had similar clinico-pathological characteristics. In addition two fibroblast cultures, the breast cancer cell-line HCC1937 and its corresponding B-lymphoblastoid cell line (heterozygous for mutation BRCA1 5382insC) and an epithelial ovarian cancer cell line (A2780) were studied.
    [Show full text]
  • BRCA1 and BRCA2 in Men
    BRCA1 and BRCA2 in Men Everyone has BRCA1 and BRCA2 genes. These genes help repair damage to the DNA within cells. However, some individuals inherit a mutation in one of their BRCA genes, which increases their risk for certain cancers, including breast (female and male), ovarian, pancreatic and prostate cancers, as well as melanoma. Those who test positive for a gene mutation have options available to lower and manage their cancer risks. Man can carry BRCA1 or BRCA2 gene mutations and can be at increased risk for certain cancers. While cancer risks in male BRCA mutation carriers are not as dramatically elevated as those of female BRCA mutation carriers, cancer risk management and early detection are crucial. It is important for both men and women to remember that a family history of breast, ovarian, prostate or pancreatic cancers on their father’s side of the family may indicate a hereditary gene mutation. Many people mistakenly believe a family history of breast or ovarian cancer only matters on their mother’s side of the family. Men can inherit a BRCA gene mutation from their mother or father and can pass on their BRCA gene mutation to their male and female children. Medical management for men with BRCA1/2 mutations changes at age 35–40. Starting at age 35, male BRCA mutation carriers should begin yearly clinical breast exams with a physician. At age 40, prostate cancer screenings are recommended for BRCA2 carriers and considered for BRCA1 carriers. Men with a BRCA mutation and a family history of pancreatic cancer or melanoma should speak to a physician to develop a personalized screening plan for those cancers.
    [Show full text]
  • BRCA1 and BRCA2 Genes and Their Relationship to Breast And
    BRCA1 and BRCA2 Genes THEIR RELATIONSHIP TO BREAST AND OVARIAN CANCER THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION - NONCOMMERCIAL - SHAREALIKE 4 . 0 INTERNATIONAL LICENSE . BRCA1 and BRCA2 Genes In humans, the BRCA1 and BRCA2 genes code for proteins that work to suppress tumors. The gene names come from BReast CAncer genes 1 & 2. The official names of these genes is breast cancer1, early onset and breast cancer2, early onset. Everyone, male and female, has these genes which normally work to repair DNA and are involved in cell growth and cell division. BRCA1 Gene Location at 17q21 www.ghr.nlm.nih.gov BRCA2 Gene Location at 13q12.3 www.ncbi.nlm.nih.gov/ BRCA1 and BRCA2 Genes http://www.cancer.gov/cancertopics/understandingcancer/cancergenomics/AllPages BRCA1 Protein Domain Map http://en.wikipedia.org/wiki/File:BRCA1 http://creativecommons.org/licenses/by-sa/3.0/deed.en No changes were made. BRCA1-BARD1 Heterodimeric RING-RING Complex http://www.rcsb.org/pdb/explore/explore.do?structureId=1JM7 BRCA2 and RAD51 Protein Complex http://www.rcsb.org/pdb/explore/explore.do?structureId=1N0W BRCA1 and BRCA2 Work Together to Repair DNA http://www.dandrealab.org/research.html http://www.cancer.gov/cancertopics/understandingcancer/cancergenomics/AllPages Results of BRCA1 Mutations http://openi.nlm.nih.gov/detailedresult.php?img=1390683_gkl010f4&query=null&req=4&npos=-1 http://www.cancer.gov/cancertopics/understandingcancer/cancergenomics/AllPages http://www.cancer.gov/cancertopics/understandingcancer/cancergenomics/AllPages http://www.cancer.gov/cancertopics/understandingcancer/cancergenomics/AllPages
    [Show full text]
  • BRCA1 Transcriptionally Regulates Genes Involved in Breast Tumorigenesis
    BRCA1 transcriptionally regulates genes involved in breast tumorigenesis Piri L. Welcsh*, Ming K. Lee*, Rachel M. Gonzalez-Hernandez*†, Daniel J. Black*, Mamatha Mahadevappa‡, Elizabeth M. Swisher*, Janet A. Warrington‡, and Mary-Claire King*§ Departments of *Medicine and Genome Sciences and †Pathology, University of Washington, Health Sciences Room K-160, Seattle, WA 98195-7720; and ‡Affymetrix, Inc., Santa Clara, CA 95051 Communicated by Arno G. Motulsky, University of Washington, Seattle, WA, March 28, 2002 (received for review December 3, 2001) Loss of function of BRCA1 caused by inherited mutation and tissue- 17). Overexpression of BRCA1 induces genes in the apoptotic specific somatic mutation leads to breast and ovarian cancer. Nearly pathway (18, 19). Increased expression of BRCA1 leads to repres- all BRCA1 germ-line mutations involve truncation or loss of the sion of estrogen receptor (ER)-mediated transcription (20–22). C-terminal BRCT transcriptional activation domain, suggesting that Our purpose in this project was to determine whether there is a transcriptional regulation is a critical function of the wild-type gene. link between the role of BRCA1 in transcriptional regulation and The purpose of this project was to determine whether there is a link its role in tumor suppression by identifying transcriptional targets between the role of BRCA1 in transcriptional regulation and its role of BRCA1 that are involved in breast tumorigenesis. We developed in tumor suppression. We developed a cell line (in which BRCA1 can an epithelial cell line in which BRCA1 could be induced at modest be induced) and used microarray analysis to compare transcription levels and then used microarray technology to investigate changes profiles of epithelial cells with low endogenous levels of BRCA1 vs.
    [Show full text]
  • ACOG: Practice Bulletin for Hereditary Breast and Ovarian Cancer
    ACOG PRACTICE BULLETIN Clinical Management Guidelines for Obstetrician–Gynecologists NUMBER 182, SEPTEMBER 2017 (Replaces Practice Bulletin Number 103, April 2009) Committee on Practice Bulletins–Gynecology, Committee on Genetics, Society of Gynecologic Oncology. This Practice Bulletin was developed by the American College of Obstetrician and Gynecologists’ Committee on Practice Bulletins–Gynecology and Committee on Genetics in collaboration with Susan C. Modesitt, MD, and Karen Lu, MD, and by the Society of Gynecologic Oncology in collaboration with Lee-may Chen, MD, and C. Bethan Powell, MD. Hereditary Breast and Ovarian Cancer Syndrome Hereditary breast and ovarian cancer syndrome is an inherited cancer-susceptibility syndrome characterized by mul- tiple family members with breast cancer, ovarian cancer, or both. Based on the contemporary understanding of the origins and management of ovarian cancer and for simplicity in this document, ovarian cancer also refers to fallopian tube cancer and primary peritoneal cancer. Clinical genetic testing for gene mutations allows more precise identifica- tion of those women who are at an increased risk of inherited breast cancer and ovarian cancer. For these individuals, screening and prevention strategies can be instituted to reduce their risks. Obstetrician–gynecologists play an impor- tant role in the identification and management of women with hereditary breast and ovarian cancer syndrome. If an obstetrician–gynecologist or other gynecologic care provider does not have the necessary knowledge or expertise in cancer genetics to counsel a patient appropriately, referral to a genetic counselor, gynecologic or medical oncologist, or other genetics specialist should be considered (1). More genes are being discovered that impart varying risks of breast cancer, ovarian cancer, and other types of cancer, and new technologies are being developed for genetic test- ing.
    [Show full text]
  • Inflammation Targets Specific Organs for Cancer in Carriers of BRCA1/2 Pathway Mutations
    Inflammation targets specific organs for cancer in carriers of BRCA1/2 pathway mutations Bernard Friedenson Department of Biochemistry and Molecular Genetics College of Medicine University Illinois Chicago 900 South Ashland Ave Chicago, IL 60607 Email: [email protected] Nature Precedings : hdl:10101/npre.2010.4225.1 Posted 18 Feb 2010 1 Abstract Women who inherit a defective BRCA1 or BRCA2 gene have risks for breast/ovarian cancer that are so high and apparently so selective that many mutation carriers choose to have the most likely targets for cancer surgically removed. Recent research has focused on better methods of treating such seemingly unavoidable hereditary cancers. Prevention has received much less attention so a positive test result for a cancer gene leaves carriers with very limited options. In order to prevent BRCA1/2 related cancers, it may be important to understand why they seem to occur only in certain characteristic organs. Results here show that mutations in a pathway depending on BRCA1/2 gene products magnify cancer risks from chronic infection and inflammation, making them especially important in selecting the site where hereditary cancer develops. Control- ling chronic infections and inflammation may be a helpful option to prevent or delay cancers in muta- tion carriers. Introduction Women who inherit a defective BRCA1 or BRCA2 gene have risks for breast/ovarian cancer that are so high and apparently so selective that many mutation carriers choose to have the most likely targets for cancer surgically removed [1-7]. Recent research has focused on better methods of treating the cancers that seem unavoidable. Prevention has received much less attention so a posi- tive test result for a cancer related mutation leaves carriers with very limited options.
    [Show full text]
  • BRCA1 and BRCA2 Genes and Their Relationship to Breast and Ovarian Cancer
    Cancer Lab BRCA Teacher Background on DNA Bioinformatics Lab BRCA1 and BRCA2 Genes and Their Relationship to Breast and Ovarian Cancer Note: The Teacher Background Section is meant to provide information for the teacher about the topic and is tied very closely to the PowerPoint slide show. For greater understanding, the teacher may want to play the slide show as he/she reads the background section. For the students, the slide show can be used in its entirety or can be edited as necessary for a given class. What Are BRCA1 and BRCA2 and Where Are the Genes Located? BRCA1 and BRCA2 genes in humans code for proteins that work to suppress tumors. The gene names come from BReast CAncer genes 1 and 2. The official names of these genes are breast cancer 1, early onset and breast cancer 2, early onset. Everyone, male and female, has these genes which normally work to repair DNA and are involved in cell growth and cell division. The BRCA1 gene codes for the BRCA1 protein which regulates the activity of other genes and is involved in embryonic development during cell division. The BRCA2 gene codes for the BRCA2 protein which is thought to help regulate cytokinesis during cell division and to regulate telomere homeostasis. By helping repair DNA, BRCA1 and BRCA2 proteins are thought to work in tandem to ensure the stability of the DNA in the cell. The BRCA1 protein combines with BRCA2 and other proteins to mend breaks in the DNA caused by natural and medical exposures to radiation and other environmental exposures and by recombination when the chromosomes exchange genetic material when replicating prior to cell division.
    [Show full text]