Seismic Stratigraphic Record of the Amundsen Sea Embayment Shelf from Pre-Glacial to Recent Times: Evidence for a Dynamic West Antarctic Ice Sheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Speculative Stratigraphic Model for the Central Ross Embayment REED P
A speculative stratigraphic model for the central Ross embayment REED P. SCHERER , Department of Geology and Geography, University of Massachusetts, Amherst, Massachusetts 01003 Present address: Institute of Earth Sciences, Uppsala University, Uppsala, Sweden. he general character and geometry of sediments of the Available sub-ice sediments from the Ross embayment TRoss Sea are known from extensive seismic surveys (e.g., include 53 short gravity cores recovered from beneath the Anderson and Bartek 1992, PP. 231-264) and stratigraphic southern Ross Ice Shelf during the Ross Ice Shelf Project drilling during Deep Sea Drilling Project (DSDP), leg 28 (sites (RISP) (Webb et al. 1979), sediments recovered from Crary Ice 270-273) (Hayes and Frakes 1975, pp. 919-942; Savage and Rise (CIR) during the 1987-1988 field season (Bindschadler, Ciesielski 1983, pp. 555-559), Cenozoic Investigations of the Koci, and Iken 1988), and sediments recovered from beneath Ross Sea-1 (CIROS-1) (Barrett 1989), and McMurdo Sound ice stream B in the vicinity of the Upstream B camp (UpB) Sediment and Tectonic Studies-1 (MSSTS-1) (Barrett and (Engelhardt et al. 1990) during five field seasons on the ice McKelvey 1986), as well as numerous piston and gravity cores sheet (figure 1). All of the recovered west antarctic interior across the Ross Sea. In contrast, the stratigraphic record sediments are glacial diamictons containing a mixture of par- beneath the west antarctic ice sheet and Ross Ice Shelf is very ticles, including diatom fossils derived from deposits of vari- poorly known. Data available from beneath the Ross Ice Shelf ous Cenozoic ages (Scherer 1992). -
S41467-018-05625-3.Pdf
ARTICLE DOI: 10.1038/s41467-018-05625-3 OPEN Holocene reconfiguration and readvance of the East Antarctic Ice Sheet Sarah L. Greenwood 1, Lauren M. Simkins2,3, Anna Ruth W. Halberstadt 2,4, Lindsay O. Prothro2 & John B. Anderson2 How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding 1234567890():,; line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet’s stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet. Here we present geomorphological and acoustic stratigraphic evidence of ice sheet reorganisation in the South Victoria Land (SVL) sector of the western Ross Sea. The opening of a grounding line embayment unzipped ice sheet sub-sectors, enabled an ice flow direction change and triggered enhanced flow from SVL outlet glaciers. These relatively small catchments behaved independently of regional grounding line retreat, instead driving an ice sheet readvance that delivered a significant volume of ice to the ocean and was sustained for centuries. 1 Department of Geological Sciences, Stockholm University, Stockholm 10691, Sweden. 2 Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005, USA. 3 Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA. 4 Department -
Article Size, 12 Nm Pore Size; YMC Collision Energy 15, 22.5, and 30; Isolation Window 1.0 M/Z)
Biogeosciences, 18, 3485–3504, 2021 https://doi.org/10.5194/bg-18-3485-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas Charlotte L. Spencer-Jones1, Erin L. McClymont1, Nicole J. Bale2, Ellen C. Hopmans2, Stefan Schouten2,3, Juliane Müller4, E. Povl Abrahamsen5, Claire Allen5, Torsten Bickert6, Claus-Dieter Hillenbrand5, Elaine Mawbey5, Victoria Peck5, Aleksandra Svalova7, and James A. Smith5 1Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK 2NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands 3Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands 4Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany 5British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 6MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany 7School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK Correspondence: Charlotte L. Spencer-Jones ([email protected]) Received: 7 September 2020 – Discussion started: 5 November 2020 Revised: 3 March 2021 – Accepted: 23 March 2021 – Published: 11 June 2021 Abstract. The West Antarctic Ice Sheet (WAIS) is one of compassing the sub-Antarctic front through to the southern the largest potential sources of future sea-level rise, with boundary of the Antarctic Circumpolar Current. IPL-GDGTs glaciers draining the WAIS thinning at an accelerating rate with low cyclic diversity were detected throughout the water over the past 40 years. -
The Eastern Margin of the Ross Sea Rift in Western Marie Byrd Land
Characterization Geochemistry 3 Volume 4, Number 10 Geophysics 29 October 2003 1090, doi:10.1029/2002GC000462 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: Crustal structure and tectonic development Bruce P. Luyendyk Department of Geological Sciences and Institute for Crustal Studies, University of California, Santa Barbara, California 93106, USA ([email protected]) Douglas S. Wilson Department of Geological Sciences, Marine Science Institute, Institute for Crustal Studies, University of California, Santa Barbara, California 93106, USA Also at Marine Science Institute, University of California, Santa Barbara, California 93106, USA Christine S. Siddoway Department of Geology, Colorado College, Colorado Springs, Colorado 80903, USA [1] The basement rock and structures of the Ross Sea rift are exposed in coastal western Marie Byrd Land (wMBL), West Antarctica. Thinned, extended continental crust forms wMBL and the eastern Ross Sea continental shelf, where faults control the regional basin-and range-type topography at 20 km spacing. Onshore in the Ford Ranges and Rockefeller Mountains of wMBL, basement rocks consist of Early Paleozoic metagreywacke and migmatized equivalents, intruded by Devonian-Carboniferous and Cretaceous granitoids. Marine geophysical profiles suggest that these geological formations continue offshore to the west beneath the eastern Ross Sea, and are covered by glacial and glacial marine sediments. Airborne gravity and radar soundings over wMBL indicate a thicker crust and smoother basement inland to the north and east of the northern Ford Ranges. A migmatite complex near this transition, exhumed from mid crustal depths between 100–94 Ma, suggests a profound crustal discontinuity near the inboard limit of extended crust, 300 km northeast of the eastern Ross Sea margin. -
West Antarctic Ice Sheet Retreat in the Amundsen Sea Driven by Decadal Oceanic Variability
1 West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability 2 Adrian Jenkins1*, Deb Shoosmith1, Pierre Dutrieux2, Stan Jacobs2, Tae Wan Kim3, Sang Hoon Lee3, Ho 3 Kyung Ha4 & Sharon Stammerjohn5 4 1British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, U.K. 5 2Lamont‐Doherty Earth Observatory of Columbia University, Palisades, NY 10964, U.S.A. 6 3Korea Polar Research Institute, Incheon 406‐840, Korea. 7 4Department of Ocean Sciences, Inha University, Incheon 22212, Korea. 8 5Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, U.S.A. 9 10 Mass loss from the Amundsen Sea sector of the West Antarctic Ice Sheet has increased in recent 11 decades, suggestive of sustained ocean forcing or ongoing, possibly unstable response to a past 12 climate anomaly. Lengthening satellite records appear incompatible with either process, 13 however, revealing both periodic hiatuses in acceleration and intermittent episodes of thinning. 14 Here we use ocean temperature, salinity, dissolved‐oxygen and current measurements taken from 15 2000‐2016 near Dotson Ice Shelf to determine temporal changes in net basal melting. A decadal 16 cycle dominates the ocean record, with melt changing by a factor of ~4 between cool and warm 17 extremes via a non‐linear relationship with ocean temperature. A warm phase that peaked 18 around 2009 coincided with ice shelf thinning and retreat of the grounding line, which re‐ 19 advanced during a post‐2011 cool phase. Those observations demonstrate how discontinuous ice 20 retreat is linked with ocean variability, and that the strength and timing of decadal extremes is 21 more influential than changes in the longer‐term mean state. -
Retreat Scenarios and Changing Controls in the Ross Sea, Antarctica
The Cryosphere, 10, 1003–1020, 2016 www.the-cryosphere.net/10/1003/2016/ doi:10.5194/tc-10-1003-2016 © Author(s) 2016. CC Attribution 3.0 License. Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica Anna Ruth W. Halberstadt1, Lauren M. Simkins1, Sarah L. Greenwood2, and John B. Anderson1 1Department of Earth Science, Rice University, Houston, Texas 77005, USA 2Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden Correspondence to: Anna Ruth W. Halberstadt ([email protected]) Received: 3 February 2016 – Published in The Cryosphere Discuss.: 10 February 2016 Revised: 26 April 2016 – Accepted: 29 April 2016 – Published: 13 May 2016 Abstract. Studying the history of ice-sheet behaviour in Antarctic ice sheet and West Antarctic ice sheet contributions the Ross Sea, Antarctica’s largest drainage basin can im- to the ice flow in the Ross Sea. prove our understanding of patterns and controls on marine- based ice-sheet dynamics and provide constraints for numer- ical ice-sheet models. Newly collected high-resolution multi- beam bathymetry data, combined with two decades of legacy 1 Introduction multibeam and seismic data, are used to map glacial land- forms and reconstruct palaeo ice-sheet drainage. The Ross Embayment drains ∼ 25 % of the Antarctic ice During the Last Glacial Maximum, grounded ice reached sheet into the Ross Sea and is thus the largest ice drainage the continental shelf edge in the eastern but not western Ross basin in Antarctica, fed by multiple ice streams sourced from Sea. Recessional geomorphic features in the western Ross the East Antarctic (EAIS) and West Antarctic (WAIS) ice Sea indicate virtually continuous back-stepping of the ice- sheets (Fig. -
Hydrography and Phytoplankton Distribution in the Amundsen and Ross Seas
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2009 Hydrography and Phytoplankton Distribution in the Amundsen and Ross Seas Glaucia M. Fragoso College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Fragoso, Glaucia M., "Hydrography and Phytoplankton Distribution in the Amundsen and Ross Seas" (2009). Dissertations, Theses, and Masters Projects. Paper 1539617887. https://dx.doi.org/doi:10.25773/v5-kwnk-k208 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Hydrography and phytoplankton distribution in the Amundsen and Ross Seas A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Science by Glaucia M. Fragoso 2009 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science UAA£ a Ck laucia M. Frago Approved by the Committee, November 2009 Walker O. Smith, Ph D. Commitfbe Chairman/Advisor eborah A. BronkfPh.D Deborah K. Steinberg, Ph Kam W. Tang ■ Ph.D. DEDICATION I dedicate this work to my parents, Claudio and Vera Lucia Fragoso, and family for their encouragement, guidance and unconditional love. -
IMPLICATIONS for the LATE WISCONSIN-HOLOCENE EXTENT of the WEST ANTARCTIC ICE SHEET from REGIONAL FREE-AIR GRAVITY ANOMALIES in the ROSS EMBAYMENT (Abstract Only)
IMPLICATIONS FOR THE LATE WISCONSIN-HOLOCENE EXTENT OF THE WEST ANTARCTIC ICE SHEET FROM REGIONAL FREE-AIR GRAVITY ANOMALIES IN THE ROSS EMBAYMENT (Abstract only) by Larry L. Greischar and Charles R. Bentley (Geophysical and Polar Research Center, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.) ABSTRACT Gravity data from cruises 32, 51, and 52 of the grid-south-east to north-west transect through the USNS Eltanin (Hayes and Davey 1975), approximately Ross embayment. adjusted to the new gravity datura (IGSN 71) and An estimated 50 to 170 m of crustal uplift reference system (GRS 67), have been used to extend remains unadjusted in the grid-western part of the the Ross Ice Shelf gravity map to the edge of the present Ross Ice Shelf, assuming a particular initial Ross Sea continental shelf. Various regional gravity ice load at 18 ka BP (CLIMAP) and a simple exponen anomaly fields obtained by applying low-pass filters tial model of crustal uplift. The approximate agree to these data are strongly negative over the entire ment between the two methods has encouraged us to use Ross embayment; values increase gradually from the crustal up-lift estimated from the gravity field approximately -300 gu (-30 mgal) near the Siple Coast and a simple exponential model of crustal rebound to to -150 gu (-15 mgal) near the edge of the Ross Sea test models of past ice loading and retreat models. continental shelf. Preliminary results show agreement with the CLIMAP Comparison of the regional gravity-anomaly fields reconstruction of the 18 ka BP West Antarctic ice measured at the surface with the low-order terms of sheet and a retreat model similar to that of Thomas the Goddard Earth Model (GEM) series of satellite- and Bentley (1978). -
1 Ainley.Pdf
55 MARINE ORNITHOLOGY Vol. 30 No. 2 2002 FORUM THE ROSS SEA, ANTARCTICA, WHERE ALL ECOSYSTEM PROCESSES STILL REMAIN FOR STUDY, BUT MAYBE NOT FOR LONG D.G. AINLEY H.T. Harvey & Associates, 3150 Almaden Expressway, Suite 145, San Jose, California 95118, USA ([email protected]) Received 29 October 2002, accepted 31 December 2002 SUMMARY AINLEY, D.G. 2002. The Ross Sea: where all ecosystem processes still remain for study, but maybe not for long. Marine Ornithology 30: 55–62. The Ross Sea is a well-defined embayment of Antarctica about the size of southern Europe, bounded by Victoria Land to the west, King Edward VII Peninsula, Marie Byrd Land to the east, the Ross Ice Shelf to the south, and the Pacific Sector of the Southern Ocean to the north. Its waters are composed of two related biotic systems: the Ross Sea Shelf Ecosystem (RSShelfE) and the Ross Sea Slope Ecosystem (RSSlopeE). The Ross Sea is off limits to mineral extraction, but pressures on its biological resources are growing. The economic value of the resources should be weighed against the value of the system as a unique scientific resource. The Ross Sea represents an unparal- leled natural laboratory in which the results of different fishery management strategies could be modeled in the context of short-term and decadal variation in biological populations, with these models applied throughout the Southern Ocean and elsewhere. The RSShelfE is the last Large Marine Ecosystem on Earth (except the Weddell Sea and, perhaps, Hudson Bay in the north of Canada) that has escaped direct anthropogenic alteration; the RSSlopeE, similar to all of Earth’s other marine ecosystems, has lost its large baleen whales but otherwise is intact. -
Patricia L. Yager, Ph.D
Patricia L. Yager, Ph.D. ADDRESS, TELEPHONE Department of Marine Sciences (706) 340-2273 University of Georgia, Athens, Georgia 30602-3636 [email protected] Researcher ID: K-8020-2014 Profile in Google Scholar ORCID: orcid.org/0000-0002-8462-6427 Brazil Lattes: 8808128639645246 EDUCATION 1996 Doctor of Philosophy. Biological Oceanography. School of Oceanography, University of Washington, Seattle, Washington. Major Professor: J. W. Deming. 1988 Master of Science. Marine Geology and Geophysics. School of Oceanography, University of Washington, Seattle, Washington. Major Professor: A. R. M. Nowell. 1985 Bachelor of Science. Geology-Biology. Brown University, Department of Geology, Providence, Rhode Island. Advisor: W. L. Prell. PROFESSIONAL EXPERIENCE 2016– Professor. Department of Marine Sciences, University of Georgia, Athens, Georgia. 2013–16 Visiting Professor. Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. Science without Borders (Ciência sem Fronteiras). Host: F.L. Thompson. 2012– Affiliate Faculty. Latin American and Caribbean Studies Institute, University of Georgia. 2010– Director. Georgia Initiative for Climate and Society. University of Georgia 2007–16 Associate Professor. Department of Marine Sciences, University of Georgia. 1999– Affiliate Faculty. Institute for Women's Studies (IWS), University of Georgia. 1998–07 Assistant Professor. Department of Marine Sciences, University of Georgia. 1996–98 Assistant Professor. Department of Oceanography, Florida State University. 1996 Postdoctoral Fellow. University Corporation for Atmospheric Research (UCAR) Postdoctoral Program in Ocean Modeling. Advisor: Dr. R. G. Wiegert. 1991–96 Graduate Fellow. Department of Energy, Graduate Fellowship for Global Change. University of Washington, Seattle, Washington. Major professor: Dr. J. W. Deming. 1989–91 Research Scientist (Oceanographer I, II). University of Washington, Seattle, Washington. -
Changes in Climate, Ocean and Ice-Sheet Conditions in the Ross Embayment, Antarctica, at 6 Ka
jitnai.' o!''Ginrioiogr 27 1998 t;i Imrmarional Glaciological Society Changes in climate, ocean and ice-sheet conditions in the Ross embayment, Antarctica, at 6 ka ERicJ. STEIG,' CHARLES P. HART,' JAMES W C. WHITE,' WENDY L. CUNNINGHAM : . MATHEW D. DAVIV ERIC S, SALTZMA^' 'Inxilutfaf Antic and Alpine Research, University of Colorado, Boulder, CO 80309, VS 4 tut School of Marine and Atmospheric Science, University oJMiam, Miami, FL 33J49, U.S.A. ABSTR.A.CT. Evidence from the Ross embayment, Antarctica, suggests an abruot cooling and a concomitant uiereasein sea-ice cover at about 6000 BP (6 ka? Stable-isotope |*D, concentrat^ tn theTaylor Dome ice core, at. the wcsterncdge of theRoss «n££ mem, decline rapidly after 6 ka, and continue to decline through, the late Holoce.ne Methanesulfomc acid concentrations at Taylor Dome show opposite trends to SD Sedi- ment cores from the western Ross Sea show a percentage minimum for the sea-ice diatom Fngtbtnejau curia- between 9 and 6 ka, whenTayk>r Dome SD values arc highest followed by an increase through the late Holocene, Radiocarbon dates. from raised beach deposits indicate that the retreat of ice shelves in the .Ross embayment ceased at about 6. ka co- incident with the environmental changes inferred :from the sediment and ice-core records The similarity in timing suggests an important role for climate in controlling the evolu- tion of ice-shelf margins following the end of the last glaciation. INTRODUCTION independent control on marine environmental conditions ir: coastal Antarctica, and suggests that changes in climate in The laic-Wisconsin and HolQcenegl.aciiirhistQ.ryof the Ross the Ross cmbayment had an important influence on Hit Sea embavnicm. -
The Transantarctic Mountains These Watercolor Paintings by Dee Molenaar Were Originally Published in 1985 with His Map of the Mcmurdo Sound Area of Antarctica
The Transantarctic Mountains These watercolor paintings by Dee Molenaar were originally published in 1985 with his map of the McMurdo Sound area of Antarctica. We are pleased to republish these paintings with the permission of the artist who owns the copyright. Gunter Faure · Teresa M. Mensing The Transantarctic Mountains Rocks, Ice, Meteorites and Water Gunter Faure Teresa M. Mensing The Ohio State University The Ohio State University School of Earth Sciences School of Earth Sciences and Byrd Polar Research Center and Byrd Polar Research Center 275 Mendenhall Laboratory 1465 Mt. Vernon Ave. 125 South Oval Mall Marion, Ohio 43302 Columbus, Ohio 43210 USA USA [email protected] [email protected] ISBN 978-1-4020-8406-5 e-ISBN 978-90-481-9390-5 DOI 10.1007/978-90-481-9390-5 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010931610 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover illustration: A tent camp in the Mesa Range of northern Victoria Land at the foot of Mt. Masley. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) We dedicate this book to Lois M. Jones, Eileen McSaveny, Terry Tickhill, and Kay Lindsay who were the first team of women to conduct fieldwork in the Transantarctic Mountains during the 1969/1970 field season.