Adaptive Clock Synchronization in Sensor Networks

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive Clock Synchronization in Sensor Networks Adaptive Clock Synchronization in Sensor Networks Santashil PalChaudhuri Amit Kumar Saha David B. Johnson [email protected] [email protected] [email protected] Department of Computer Science Rice University Houston, TX 77005 ABSTRACT 1. INTRODUCTION Recent advances in technology have made low cost, low Recent advances in technology have made low-cost, low- power wireless sensors a reality. Clock synchronization is an power wireless sensors a reality. Sensor networks formed important service in any distributed system, including sen- from such sensors can be deployed in an ad hoc fashion and sor network systems. Applications of clock synchronization cooperate to sense and process a physical phenomenon. As in sensor networks include data integration in sensors, sen- each sensor has a finite battery source, an important feature sor reading fusion, TDMA medium access scheduling, and of sensor network is energy efficiency to extend the network's power mode energy saving. However, for a number of rea- lifetime. sons, standard clock synchronization protocols are unsuit- As in any distributing computer system, clock synchro- able for direct application in sensor networks. nization is an important service in sensor networks. Sensor In this paper, we introduce the concept of adaptive clock network applications can use synchronization for data inte- synchronization based on the need of the application and gration and sensor reading fusion. A sensor network may the resource constraint in the sensor networks. We describe also use synchronization for TDMA medium access schedul- a probabilistic method for clock synchronization that uses ing, power mode energy savings, and scheduling for direc- the higher precision of receiver-to-receiver synchronization, tional antenna reception. Sensor networks show some unique as described in Reference Broadcast Synchronization (RBS) characteristics that make it difficult to directly apply tradi- protocol. This deterministic protocol is extended to pro- tional network clock synchronization approaches. vide a probabilistic bound on the accuracy of the clock syn- The error in clock synchronization comes mainly from the chronization, allowing for a tradeoff between accuracy and non-deterministic random time delay for a message transfer resource requirement. Expressions to convert service spec- between two nodes. Kopetz et al. [1] first characterized this ifications (maximum clock synchronization error and confi- message delay. In some recent work, this non-determinism dence probability) to actual protocol parameters (minimum has been reduced to provide tighter bounds on the clock number of messages and synchronization overhead) are de- synchronization error [2, 3]. Our work, which is based on the rived. Further, we extend this protocol for maintaining clock Reference Broadcast Synchronization (RBS) [3], provides an synchronization in a multihop network. analytical way to convert service specifications to protocol parameters. Categories and Subject Descriptors The need in sensor networks is to provide the best possible clock synchronization under existing circumstances, given C.2 [COMPUTER-COMMUNICATION NETWORKS]: the limited resources of the nodes and the network in the [Network Protocols, Applications]; G.3 [PROBABILITY system. Highly accurate clock synchronization typically re- AND STATISTIC]: [Probabilistic algorithms] quires more message transfers and processing as part of the synchronization protocol. In situations where the system General Terms energy is extremely low, it might not be possible to provide high accuracy. The accuracy needed in clock synchroniza- Algorithms, Design tion is variable, depending on the higher layer application requirements. If the need for determinism can be relaxed, Keywords probabilistic guarantees often suffice for the needs of an ap- Clock synchronization, Sensor Networks, Probabilistic Al- plication, while allowing for optimal use of resources. Prob- gorithms abilistic guarantees provide better accuracy in most cases as compared to deterministic accuracy in all cases. Also the failure probability of achieving a certain accuracy can be bounded. Quality of Service (QoS) in networks make exten- Permission to make digital or hard copies of all or part of this work for sive use of this concept to give probabilistic guarantees by personal or classroom use is granted without fee provided that copies are allowing resources to be allocated on the basis of expected not made or distributed for pro®t or commercial advantage and that copies aggregate demand. Previous work [4, 5] uses this concept for bear this notice and the full citation on the ®rst page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior speci®c providing probabilistic clock synchronization in distributed permission and/or a fee. systems. IPSN'04, April 26±27, 2004, Berkeley, California, USA. Clock synchronization might not be necessary at all times, Copyright 2004 ACM 1-58113-846-6/04/0004 ...$5.00. 340 except during sensor reading integration. In such a case, Multihop: Most of the typical synchronization pro- providing clock synchronization all the time will be a waste • tocols have a highly accurate clock present in the LAN, on the limited available resources of sensors. The sensor such that all the nodes in the system can directly ex- clocks can be allowed to go out of sync, and then re-synchronize change messages. Sensor networks span many hops, only when there is a need for synchronization, thereby sav- with higher jitter. So the algorithms for sensor net- ing resources. work clock synchronization need to have some sort of We design our adaptive clock synchronization protocol localization to reduce this error, as well as some other keeping in mind the concepts discussed above. The remain- means of achieving multihop synchronization even in der of this paper is organized as follows. In Section 2, we the presence of high jitter. describe the various concepts of clock synchronization in de- Server-less: Traditional protocols have specified tail and motivate the design principles used in building our • algorithm. In Section 3, we survey the related work in this servers, with multiple accuracy levels which are sources area. Section 4 describes the RBS protocol, along with our of accurate time. Sensor networks do not have any ex- improvements. Section 6 evaluates the performance of the ternal infrastructure present and can be large in scale. protocol. Section 5 extends this protocol for multihop sensor Maintaining global time scale in this network is thus networks. Finally, we discuss our conclusions in Section 7. harder, if no external broadcast source of global time such as GPS is present. Elson et al. [7] proposed that each node maintain an undisciplined clock, augmented 2. DESIGN PRINCIPLES with the relative frequency and phase information of In the paper describing the Network Time Protocol (NTP), its neighbors. We also use this approach in our work. Mills [6] defines the various terms used in clock synchro- nization. The stability of a clock is how well the physical 2.2 Theoretical Bounds on Clock Synchroniza- clock can maintain a constant frequency. Accuracy refers tion to how well the maintained time is true to the standard There have been various theoretical results that have been time. The offset of two clocks is the actual time difference proven regarding clock synchronization. These analytical between them, and the skew is the frequency difference be- results and their consequences are useful when designing a tween them. To synchronize frequency means to adjust the clock synchronization protocol: clocks to run at the same frequency, and to synchronize time From the causality property in a system, the ordering of means to set their time at a particular epoch to be exactly events can be formally stated. If an event a occurs before the same. To synchronize clock means to synchronize the another event b, then a should happen at an earlier time clocks in both frequency and time. In this paper, our algo- than b. Let Ci(a) be the clock value of process i when event rithm will synchronize clocks, i.e., it will synchronize both a occurs. Then it can be formally stated that: frequency and time. If a and b are events in process i, and event a 2.1 Traditional versus Sensor Network occurs before event b, then C (a) < C (b) . Synchronization i i NTP is scalable, robust to failures, self-configuring, and Lamport [8] showed that, when the value of a clock needs to has various properties that are needed in the sensor network be adjusted, it always has to be set forward and never back. world. However, wireless sensor networks pose a number of Setting the clock back could cause the above condition to be challenges beyond traditional network systems. Elson and violated. Hence, in an ideal system, the slower clocks needs Romer [7] describe the differences quite exhaustively. We to be adjusted to the value of the fastest clock, for all clocks state the design principles that are used in the design of the to be synchronized. This restriction will also maintain the protocol. partial ordering of the events. It is useful to have a bound on the best accuracy achiev- Energy Constraint: Energy efficiency is very im- able in any system, such that no bound lower than that is • portant for sensor networks as opposed to traditional specified. Srikanth et al. [9] have shown that for any syn- networks. chronization algorithm, even in the absence of faults, the bound on the rate of drift of logical clocks from real time Tunable Accuracy: Traditional synchronization is greater than the bound on the rate of drift of physical • protocols try to achieve the highest degree of accuracy clocks. In the presence of faults | such as message losses possible. The higher the level of accuracy required, and node failures | the accuracy of logical clocks becomes the higher the resource requirement. The accuracy of even worse. required synchronization depends on the application Most clock synchronization algorithms proposed in liter- requirement. Therefore, there is a need for a trade- ature try to guarantee a deterministic upper bound on the off between resource requirements and accuracy, de- clock skew.
Recommended publications
  • Lecture 12: March 18 12.1 Overview 12.2 Clock Synchronization
    CMPSCI 677 Operating Systems Spring 2019 Lecture 12: March 18 Lecturer: Prashant Shenoy Scribe: Jaskaran Singh, Abhiram Eswaran(2018) Announcements: Midterm Exam on Friday Mar 22, Lab 2 will be released today, it is due after the exam. 12.1 Overview The topic of the lecture is \Time ordering and clock synchronization". This lecture covered the following topics. Clock Synchronization : Motivation, Cristians algorithm, Berkeley algorithm, NTP, GPS Logical Clocks : Event Ordering 12.2 Clock Synchronization 12.2.1 The motivation of clock synchronization In centralized systems and applications, it is not necessary to synchronize clocks since all entities use the system clock of one machine for time-keeping and one can determine the order of events take place according to their local timestamps. However, in a distributed system, lack of clock synchronization may cause issues. It is because each machine has its own system clock, and one clock may run faster than the other. Thus, one cannot determine whether event A in one machine occurs before event B in another machine only according to their local timestamps. For example, you modify files and save them on machine A, and use another machine B to compile the files modified. If one wishes to compile files in order and B has a faster clock than A, you may not correctly compile the files because the time of compiling files on B may be later than the time of editing files on A and we have nothing but local timestamps on different machines to go by, thus leading to errors. 12.2.2 How physical clocks and time work 1) Use astronomical metrics (solar day) to tell time: Solar noon is the time that sun is directly overhead.
    [Show full text]
  • Distributed Synchronization
    Distributed Synchronization CIS 505: Software Systems Communication between processes in a distributed system can have Lecture Note on Physical Clocks unpredictable delays, processes can fail, messages may be lost Synchronization in distributed systems is harder than in centralized systems because the need for distributed algorithms. Properties of distributed algorithms: 1 The relevant information is scattered among multiple machines. 2 Processes make decisions based only on locally available information. 3 A single point of failure in the system should be avoided. Insup Lee 4 No common clock or other precise global time source exists. Department of Computer and Information Science Challenge: How to design schemes so that multiple systems can University of Pennsylvania coordinate/synchronize to solve problems efficiently? CIS 505, Spring 2007 1 CIS 505, Spring 2007 Physical Clocks 2 The Myth of Simultaneity Event Timelines (Example of previous Slide) time “Event 1 and event 2 at same time” Event 1 Node 1 Event 2 Event 1 Event 2 Node 2 Observer A: Node 3 Event 2 is earlier than Event 1 Observer B: Node 4 Event 2 is simultaneous to Event 1 Observer C: Node 5 Event 1 is earlier than Event 2 e1 || e2 = e1 e2 | e2 e1 Note: The arrows start from an event and end at an observation. The slope of the arrows depend of relative speed of propagation CIS 505, Spring 2007 Physical Clocks 3 CIS 505, Spring 2007 Physical Clocks 4 1 Causality Event Timelines (Example of previous Slide) time Event 1 causes Event 1 Event 2 Node 1 Event 2 Node 2 Observer A: Event 1 before Event 2 Node 3 Observer B: Event 1 before Event 2 Node 4 Observer C: Event 1 before Event 2 Node 5 Note: In the timeline view, event 2 must be caused by some passage of Requirement: We have to establish causality, i.e., each observer must see information from event 1 if it is caused by event 1 event 1 before event 2 CIS 505, Spring 2007 Physical Clocks 5 CIS 505, Spring 2007 Physical Clocks 6 Why need to synchronize clocks? Physical Time foo.o created Some systems really need quite accurate absolute times.
    [Show full text]
  • Clock Synchronization Clock Synchronization Part 2, Chapter 5
    Clock Synchronization Clock Synchronization Part 2, Chapter 5 Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch 5/1 5/2 Overview TexPoint fonts used in EMF. Motivation Read the TexPoint manual before you delete this box.: AAAA A • Logical Time (“happened-before”) • Motivation • Determine the order of events in a distributed system • Real World Clock Sources, Hardware and Applications • Synchronize resources • Clock Synchronization in Distributed Systems • Theory of Clock Synchronization • Physical Time • Protocol: PulseSync • Timestamp events (email, sensor data, file access times etc.) • Synchronize audio and video streams • Measure signal propagation delays (Localization) • Wireless (TDMA, duty cycling) • Digital control systems (ESP, airplane autopilot etc.) 5/3 5/4 Properties of Clock Synchronization Algorithms World Time (UTC) • External vs. internal synchronization • Atomic Clock – External sync: Nodes synchronize with an external clock source (UTC) – UTC: Coordinated Universal Time – Internal sync: Nodes synchronize to a common time – SI definition 1s := 9192631770 oscillation cycles of the caesium-133 atom – to a leader, to an averaged time, ... – Clocks excite these atoms to oscillate and count the cycles – Almost no drift (about 1s in 10 Million years) • One-shot vs. continuous synchronization – Getting smaller and more energy efficient! – Periodic synchronization required to compensate clock drift • Online vs. offline time information – Offline: Can reconstruct time of an event when needed • Global vs.
    [Show full text]
  • Clock Synchronization
    Middleware Laboratory Sapienza Università di Roma MIDLAB Dipartimento di Informatica e Sistemistica Clock Synchronization Marco Platania www.dis.uniroma1.it/~platania [email protected] Sapienza University of Rome Time notion Each computer is equipped with a physical (hardware) clock It can be viewed as a counter incremented by ticks of an oscillator i At time t, the Operating System (OS) of a process y r o t reads the hardware clock H(t) of the processor a r o b a L e r a C = a H(t) + b w Then, it generates the software clock e l d d i M C approximately measures the time t of process i B A L D I M notion among processes among notion isas known evolve executions distributed (DS) Distributed in Systems Time Problems: how to analyze a in DS factor Time a key is The technique used to coordinate a common time time common a techniqueThe used coordinate to common notion time common of a process state during distributed a computation However, it©s important processes for a share to However, Lacking of a global reference time: it©s hard to know Lackingthe time:it©sknow to hard of a global reference ClockSynchronization MIDLAB Middleware Laboratory Clock Synchronization [10] The hardware clock of a set of computers (system nodes) may differ because they count time with different frequencies Clock Synchronization faces this problem by means of synchronization algorithms y r Standard communication infrastructure o t a r o No additional hardware b a L e r a w e l Clock synchronization algorithms d d i External M Internal B
    [Show full text]
  • PTP Background and Overview
    PTP Background and Overview by Jeff Laird, July 2012 Introduction Precision Time Protocol (PTP) allows computers in a local area network to synchronize their clocks to within a microsecond of each other. The standard was originally defined in 2002. The second and current version of the standard was published in 2008. It is known as “IEEE 1588-2008” (IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems). PTP compared to other synchronization methods PTP is more accurate than NTP but less accurate than GPS. NTP NTP (Network Time Protocol) was standardized in 1985 and is the most common clock synchronization method, being used by tens of millions of client computers to synchronize to NTP servers over the Internet. NTP is primarily used in wide-area networks, where it can achieve accuracy to 10 ms. On a local-area network NTP can achieve accuracy to 200 μs. NTP includes SNTP (Simple NTP), which is stateless (no averaging) and therefore suitable for embedded devices, but less accurate. In NTP terminology, stratum-0 clocks are atomic clocks, GPS satellites, and radio clocks not directly on a network. They provide the time to stratum-1 clocks (network time servers) using a PPS (pulse-per- second) signal over an RS-232 serial connection. Stratum-2 clocks typically synchronize with multiple stratum-1 clocks. Stratum-3 clocks synchronize with one or more stratum-2 clocks, and so on. An NTP timestamp is 64 bits long—32 bits for seconds (to 136 years) and 32 bits for fraction of a second (to <0.25 ns).
    [Show full text]
  • STP Recommendations for the FINRA Clock Synchronization Requirements
    STP recommendations for the FINRA clock synchronization requirements This document can be found on the web, www.ibm.com/support/techdocs Search for document number WP102690 under the category of “White Papers". Version Date: January 20, 2017 George Kozakos [email protected] © IBM Copyright, 2017 Version 1, January 20, 2017 Web location of document ( www.ibm.com/support/techdocs ) ~ 1 ~ STP recommendations for the FINRA clock synchronization requirements Contents Configuring an external time source (ETS) via a network time protocol (NTP) server with pulse per second (PPS) ......................................................................................................... 3 Activating the z/OS time of day (TOD) clock accuracy monitor .............................................. 4 Maintaining time accuracy across power-on-reset (POR) ...................................................... 5 Specifying leap seconds ....................................................................................................... 6 Appendix ............................................................................................................................. 7 References ........................................................................................................................... 8 Trademarks ......................................................................................................................... 8 Feedback ............................................................................................................................
    [Show full text]
  • Distributed Systems: Synchronization
    Chapter 3: Distributed Systems: Synchronization Fall 2013 Jussi Kangasharju Chapter Outline n Clocks and time n Global state n Mutual exclusion n Election algorithms Kangasharju: Distributed Systems 2 Time and Clocks What we need? How to solve? Real time Universal time (Network time) Interval length Computer clock Order of events Network time (Universal time) NOTE: Time is monotonous Kangasharju: Distributed Systems 3 Measuring Time n Traditionally time measured astronomically n Transit of the sun (highest point in the sky) n Solar day and solar second n Problem: Earth’s rotation is slowing down n Days get longer and longer n 300 million years ago there were 400 days in the year ;-) n Modern way to measure time is atomic clock n Based on transitions in Cesium-133 atom n Still need to correct for Earth’s rotation n Result: Universal Coordinated Time (UTC) n UTC available via radio signal, telephone line, satellite (GPS) Kangasharju: Distributed Systems 4 Hardware/Software Clocks n Physical clocks in computers are realized as crystal oscillation counters at the hardware level n Correspond to counter register H(t) n Used to generate interrupts n Usually scaled to approximate physical time t, yielding software clock C(t), C(t) = αH(t) + β n C(t) measures time relative to some reference event, e.g., 64 bit counter for # of nanoseconds since last boot n Simplification: C(t) carries an approximation of real time n Ideally, C(t) = t (never 100% achieved) n Note: Values given by two consecutive clock queries will differ only if clock resolution is sufficiently smaller than processor cycle time Kangasharju: Distributed Systems 5 Problems with Hardware/Software Clocks n Skew: Disagreement in the reading of two clocks n Drift: Difference in the rate at which two clocks count the time n Due to physical differences in crystals, plus heat, humidity, voltage, etc.
    [Show full text]
  • BLAS: Broadcast Relative Localization and Clock Synchronization for Dynamic Dense Multi-Agent Systems Qin Shi, Xiaowei Cui, Sihao Zhao, Shuang Xu, and Mingquan Lu
    1 BLAS: Broadcast Relative Localization and Clock Synchronization for Dynamic Dense Multi-Agent Systems Qin Shi, Xiaowei Cui, Sihao Zhao, Shuang Xu, and Mingquan Lu Abstract—The spatiotemporal information plays crucial roles better capabilities beyond only a single agent, in terms of in a multi-agent system (MAS). However, for a highly dynamic robustness, scalability, and effectiveness. and dense MAS in unknown environments, estimating its spa- Realizing this vision will require MASs to overcome some tiotemporal states is a difficult problem. In this paper, we present BLAS: a wireless broadcast relative localization and clock new unique challenges. Among these, real-time precise relative synchronization system to address these challenges. Our BLAS localization and clock synchronization are two key challenges. system exploits a broadcast architecture, under which a MAS Relative localization is the process of determining the multi- is categorized into parent agents that broadcast wireless packets agent dynamic topology, and clock synchronization provides a and child agents that are passive receivers, to reduce the number common time reference for distributed agents. The spatiotem- of required packets among agents for relative localization and clock synchronization. We first propose an asynchronous broad- poral determination is crucial for MASs to perform basic oper- casting and passively receiving (ABPR) protocol. The protocol ations: 1) Coordination: Spatiotemporal coordination between schedules the broadcast of parent agents using a distributed time agents is necessary for a MAS to collaboratively carry out division multiple access (D-TDMA) scheme and delivers inter- tasks effectively. The difficulty of the coordination operations agent information used for joint relative localization and clock strongly lies in the knowledge of the relative position and clock synchronization.
    [Show full text]
  • Lecture 12: March 4 12.1 Review 12.2 Clock Synchronization
    CMPSCI 677 Operating Systems Spring 2013 Lecture 12: March 4 Lecturer: Prashant Shenoy Scribe: Timothy Wang 12.1 Review Objects and resources in distributed systems have names, which are mainly used to resolve to objects that your application is trying to access. DNS is an example of a naming system. DNS resolves a global sets of clients, and thus itself must be distributed. LDAP is another example of distributed naming system, which provides a more general lookup mechanism. 12.2 Clock Synchronization Assume that a machine has a system clock that tells you the current time. Every application can request the current time from the system clock. Time is unambiguous in centralized systems, so there is no syn- chronization problem in centralized systems. In a distributed system,however,each machine has its own clock. Note that clocks in machines are usually crystal oscillators. They are not very accurate. Thus, the asynchronization among the clocks will cause problems. Let’s use ”make” as an example. Make is an utility that allows you to incrementally compile every source file that was modified since the previous time it was run. The way it works is to compare the time stamps on the source files and the object files. If these files are located in different machines, the clocks on these machines may not be synchronized. Then if you save a source file on a machine with slower clock, its time stamp may be earlier than the object file, and make won’t recompile that source file. Many problems like this occur because of lack of synchronization.
    [Show full text]
  • Optimization of Time Synchronization Techniques on Computer Networks
    THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Spécialité : Informatique Arrêté ministériel : 25 mai 2016 Présentée par Faten MKACHER Thèse dirigée par Andrzej DUDA et coencadrée par Fabrice GUERY Préparée au sein du Laboratoire d’Informatique de Grenoble (LIG), dans l’École Doctorale Mathématiques, Sciences et Technologies de l’Information, Informatique (EDMSTII). Optimization of Time Synchronization Techniques on Computer Networks Thèse soutenue publiquement le 02 juin 2020, devant le jury composé de : Noel de Palma Professeur, Université Grenoble Alpes, Président Katia Jaffrés-Runser Maître de conférence, Université de Toulouse, Rapporteur Hervé Rivano Professeur, Université INSA de Lyon, Rapporteur Andrzej Duda Professeur, Grenoble INP, Directeur de thèse Fabrice Guery Responsable Innovation, Gorgy Timing, Invité 2 Abstract Nowadays, as society has become more interconnected, secure and accurate time-keeping be- comes more and more critical for many applications. Computing devices usually use crystal clocks with low precision for local synchronization. These low-quality clocks cause a large drift between machines. The solution to provide precise time synchronization between them is to use a refer- ence clock having an accurate source of time and then disseminate time over a communication network to other devices. One of the protocols that provide time synchronization over packet- switched networks is Network Time Protocol (NTP). Although NTP has operated well for a general- purpose use for many years, both its security and accuracy are ill-suited for future challenges. Many security mechanisms rely on time as part of their operation. For example, before using a digital certificate, it is necessary to confirm its time validity.
    [Show full text]
  • Time and Synchronization
    FYS3240- 4240 Data acquisition & control Time and synchronization Spring 2018– Lecture #11 Bekkeng, 02.04.2018 Why is time and synchronization so important? • Some examples: – In financial trading we must know the time accurately. – Important to reduce confusion in shared file systems. – Update databases (in parallel). – Tracking security breaches or network usage requires accurate timestamps in logs. – Used in electric power systems (fault recorders, billing meters, etc.). – Necessary in telecommunication networks. – Global Navigation Satellite Systems (GNSS), such as GPS, requires very accurate clock synchronization for position calculations. TU-artikkel : GPS mer enn bare navigasjon How good is a crystal oscillator (XO) ? • Interested in the long-term measurement stability and accuracy • Watch crystal oscillator: about 20 ppm, or worse – Error > 1.73 s in 24 hours (almost 1 minute drift in one month) • The accuracy can be improved using a: – Temperature compensated crystal oscillator (TCXO) – Oven controlled crystal oscillator (OCXO) • the oscillator is enclosed in a temperature controlled oven • Some DAQ card accuracy examples: – TCXO : 1 ppm – OCXO: 50 ppb Chip Scale Atomic Clock (CSAC) • Two orders of magnitude better accuracy than oven-controlled crystal oscillators (OCXOs). • Can keep track of the time if GPS-signals are lost (e.g. inside a building, or due to jamming). • Example: Microsemi CSAC – < 120 mW power consumption – < 17 cm3 volume – 35 g weight – two outputs; a 10 MHz square wave and 1 PPS (Pulse Per Second) The frequency of the TCXO is continuously – Maintains time-of-day (TOD) as a 32-bit compared and corrected to ground state hyperfine frequency of the cesium atoms, unsigned integer which is incremented contained in the “physics package”, which synchronously with the rising edge of the thereby improves the stability and 1 PPS output environmental sensitivity of the TCXO.
    [Show full text]
  • White Paper Precision Clock Synchronization the Standard IEEE
    Hirschmann. Simply a Good Connection. White Paper Precision Clock Synchronization The Standard IEEE 1588 Precision Clock Synchronization – IEEE 1588 White Paper Rev. 1.2 Table of contents Precision Clock Synchronization The Standard IEEE 1588 1 Introduction 3 2 Why time synchronization 3 3 Previous solutions 4 4 PTP applications 4 5 The functional principle of PTP 6 6 Implementation of PTP 7 7 Results 8 8 Cooperation between Hirschmann and the Zurich University of Winterthur 9 9 Further developments 9 10 Summary 10 Annex 1: The PTP protocol in detail 11 Annex 2 – The implementation of PTP in detail 14 Precision Clock Synchronization – IEEE 1588 Rev. 1.2 White Paper 2 / 20 Precision Clock Synchronization The Standard IEEE 1588 1 Introduction Precise time information is especially important for distributed systems in automation technology. With the Precision Time Protocol (PTP) described in IEEE 1588, it is possible to synchronize distributed clocks with an accuracy of less than 1 microsecond via Ethernet networks for the very first time. The demands on the local clocks and the network and computing capacity are relatively low. This White Paper provides you with an overview of the application possibilities and function of the Precision Time Protocol. Further technical information can be found additionally in the annex which explains details of the functional principle and hints on implementing PTP in devices. 2 Why time synchronization We use clocks to synchronize ourselves with persons or processes. The necessary accuracy of the clock depends on the application. Anyone wanting to catch a train has to have his eye on the clock to within a minute.
    [Show full text]