Symmetry, Integrability and Geometry: Methods and Applications SIGMA 10 (2014), 051, 28 pages Gravity in Twistor Space and its Grassmannian Formulation? Freddy CACHAZO y, Lionel MASON z and David SKINNER x y Perimeter Institute for Theoretical Physics, 31 Caroline St., Waterloo, Ontario N2L 2Y5, Canada E-mail:
[email protected] z The Mathematical Institute, 24-29 St. Giles', Oxford OX1 3LB, UK E-mail:
[email protected] x DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK E-mail:
[email protected] Received November 21, 2013, in final form April 23, 2014; Published online May 01, 2014 http://dx.doi.org/10.3842/SIGMA.2014.051 Abstract. We prove the formula for the complete tree-level S-matrix of N = 8 super- gravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As part of the proof, the behavior of the new formula under large BCFW deformations is studied. An unexpected bonus of the analysis is a very straightforward proof of the enigmatic 1=z2 behavior of gravity. In addi- tion, we provide a description of gravity amplitudes as a multidimensional contour integral over a Grassmannian. The Grassmannian formulation has a very simple structure; in the Nk−2MHV sector the integrand is essentially the product of that of an MHV and an MHV amplitude, with k + 1 and n − k − 1 particles respectively. Key words: twistor theory; scattering amplitudes; gravity 2010 Mathematics Subject Classification: 53C28 1 Introduction In a recent paper [15], two of us conjectured that the complete classical S-matrix of maximal supergravity in four dimensions can be described by a certain integral over the space of rational maps to twistor space.