Hepatotoxicity by Drugs: the Most Common Implicated Agents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mechanism and Management of Carbamazepine-Induced Hepatotoxicity
Insights The Mechanism and Management of Carbamazepine-Induced Hepatotoxicity Lucy Rose Driver 2nd year Pharmacology BSc Carbamazepine (CBZ) is a frequently prescribed antiepileptic drug (AED), used in the treatment of epilepsy, neuropathic pain and psychiatric disorders. CBZ was the 176th most commonly prescribed medication in 2017 across the United States, with a total of 3,516,204 prescriptions written that year. CBZ is predominantly metabolised hepatically, subsequently increasing the risk of a CBZ-induced liver injury or CBZ-induced hepatotoxicity; with hepatotoxicity being defined as drug induced liver damage. Deviation beyond the therapeutic range of CBZ is consistent with toxicity, which combined with abnormal liver function tests, would be indicative of CBZ-induced hepatotoxicity. The liver is the leading organ for the maintenance of the body’s internal environment, therefore obstruction of the liver’s ability to conduct its regular function can carry a number of consequences. With a large number of patients receiving CBZ therapy worldwide, it is of absolute importance to understand the best clinical approach to the treatment of CBZ-induced hepatotoxicity. There have been a number of studies reviewing the type of liver damage that occurs in cases of hepatotoxicity, classified as either a hypersensitivity reaction or acute hepatitis, and how different methods of treatment specific to CBZ-induced hepatoxicity directly correlate with a successful outcome. Treatment of CBZ-induced hepatotoxicity can consist of recording serum levels of the drug whilst administering intravenous fluids and continuing CBZ therapy. A different approach would be that of primary gut decontamination with activated charcoal which has proven to be very effective, whilst various means of dialysis have been considered to have a limited ability to remove CBZ from the blood serum alone. -
Management of Chronic Problems
MANAGEMENT OF CHRONIC PROBLEMS INTERACTIONS BETWEEN ALCOHOL AND DRUGS A. Leary,* T. MacDonald† SUMMARY concerned. Alcohol may alter the effects of the drug; drug In western society alcohol consumption is common as is may change the effects of alcohol; or both may occur. the use of therapeutic drugs. It is not surprising therefore The interaction between alcohol and drug may be that concomitant use of these should occur frequently. The pharmacokinetic, with altered absorption, metabolism or consequences of this combination vary with the dose of elimination of the drug, alcohol or both.2 Alcohol may drug, the amount of alcohol taken, the mode of affect drug pharmacokinetics by altering gastric emptying administration and the pharmacological effects of the drug or liver metabolism. Drugs may affect alcohol kinetics by concerned. Interactions may be pharmacokinetic or altering gastric emptying or inhibiting gastric alcohol pharmacodynamic, and while coincidental use of alcohol dehydrogenase (ADH).3 This may lead to altered tissue may affect the metabolism or action of a drug, a drug may concentrations of one or both agents, with resultant toxicity. equally affect the metabolism or action of alcohol. Alcohol- The results of concomitant use may also be principally drug interactions may differ with acute and chronic alcohol pharmacodynamic, with combined alcohol and drug effects ingestion, particularly where toxicity is due to a metabolite occurring at the receptor level without important changes rather than the parent drug. There is both inter- and intra- in plasma concentration of either. Some interactions have individual variation in the response to concomitant drug both kinetic and dynamic components and, where this is and alcohol use. -
Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment. -
Pharmacology – Inhalant Anesthetics
Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers. -
Gender-Affirming Hormone Therapy
GENDER-AFFIRMING HORMONE THERAPY Julie Thompson, PA-C Medical Director of Trans Health, Fenway Health March 2020 fenwayhealth.org GOALS AND OBJECTIVES 1. Review process of initiating hormone therapy through the informed consent model 2. Provide an overview of masculinizing and feminizing hormone therapy 3. Review realistic expectations and benefits of hormone therapy vs their associated risks 4. Discuss recommendations for monitoring fenwayhealth.org PROTOCOLS AND STANDARDS OF CARE fenwayhealth.org WPATH STANDARDS OF CARE, 2011 The criteria for hormone therapy are as follows: 1. Well-documented, persistent (at least 6mo) gender dysphoria 2. Capacity to make a fully informed decision and to consent for treatment 3. Age of majority in a given country 4. If significant medical or mental health concerns are present, they must be reasonably well controlled fenwayhealth.org INFORMED CONSENT MODEL ▪ Requires healthcare provider to ▪ Effectively communicate benefits, risks and alternatives of treatment to patient ▪ Assess that the patient is able to understand and consent to the treatment ▪ Informed consent model does not preclude mental health care! ▪ Recognizes that prescribing decision ultimately rests with clinical judgment of provider working together with the patient ▪ Recognizes patient autonomy and empowers self-agency ▪ Decreases barriers to medically necessary care fenwayhealth.org INITIAL VISITS ▪ Review history of gender experience and patient’s goals ▪ Document prior hormone use ▪ Assess appropriateness for gender affirming medical -
Prophylactic, Preemptive, and Curative Treatment for Sinusoidal Obstruction
Bone Marrow Transplantation (2020) 55:485–495 https://doi.org/10.1038/s41409-019-0705-z FEATURE Prophylactic, preemptive, and curative treatment for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a position statement from an international expert group 1 1 2 3 4 5 Mohamad Mohty ● Florent Malard ● Manuel Abecasis ● Erik Aerts ● Ahmed S. Alaskar ● Mahmoud Aljurf ● 6 7 8 9 10 11 12 Mutlu Arat ● Peter Bader ● Frederic Baron ● Grzegorz Basak ● Ali Bazarbachi ● Didier Blaise ● Fabio Ciceri ● 13 14 15 16 17 18 Selim Corbacioglu ● Jean-Hugues Dalle ● Fiona Dignan ● Takahiro Fukuda ● Anne Huynh ● Jurgen Kuball ● 19 20 21 22 23 Silvy Lachance ● Hillard Lazarus ● Tamas Masszi ● Mauricette Michallet ● Arnon Nagler ● 24 25 26 27 28 Mairead NiChonghaile ● Shinichiro Okamoto ● Antonio Pagliuca ● Christina Peters ● Finn B. Petersen ● 29 30 31 32 33 34 Paul G. Richardson ● Tapani Ruutu ● Wael Saber ● Bipin N. Savani ● Robert Soiffer ● Jan Styczynski ● 35 36 37 38 Elisabeth Wallhult ● Ibrahim Yakoub-Agha ● Rafael F. Duarte ● Enric Carreras Received: 8 May 2019 / Accepted: 6 June 2019 / Published online: 1 October 2019 © The Author(s) 2019. This article is published with open access Sinusoidal obstruction syndrome, also known as veno-occlusive disease (SOS/VOD), is a potentially life-threatening 1234567890();,: 1234567890();,: complication that can develop after hematopoietic cell transplantation (HCT). While SOS/VOD may resolve within a few weeks in the majority of patients with mild-to-moderate disease, the most severe forms result in multiorgan dysfunction and are associated with a high mortality rate (>80%). Therefore, careful surveillance may allow early detection of SOS/VOD, particularly as the licensed available drug is proven to be effective and reduce mortality. -
Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation, Final, July 2009
Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) July 2009 Drug Safety Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 51, rm. 2201 Silver Spring, MD 20993-0002 Tel: 301-796-3400; Fax: 301-847-8714; E-mail: [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm or Office of Communication, Outreach, and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 Tel: 800-835-4709 or 301-827-1800 http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) July 2009 Drug Safety TABLE OF CONTENTS I. INTRODUCTION............................................................................................................. 1 II. BACKGROUND: DILI ................................................................................................... 2 III. SIGNALS OF DILI AND HY’S -
Risk Factors for Erlotinib-Induced Hepatotoxicity
Kim et al. BMC Cancer (2018) 18:988 https://doi.org/10.1186/s12885-018-4891-7 RESEARCH ARTICLE Open Access Risk factors for erlotinib-induced hepatotoxicity: a retrospective follow-up study Min Kyoung Kim1,2†, Jeong Yee3†, Yoon Sook Cho2, Hong Won Jang2, Ji Min Han2,3 and Hye Sun Gwak1,3* Abstract Background: Erlotinib is a drug used for the treatment of non-small cell lung cancer (NSCLC) and pancreatic cancer. Severe hepatotoxicity was observed in 4% to 31% of patients receiving erlotinib treatment prompting delay or termination of treatment. Only a few factors related to hepatotoxicity of erlotinib have been reported. No study has investigated the role of concomitant medications and erlotinib-induced hepatotoxicity. The aim of this study was to investigate the association between erlotinib-induced hepatotoxicity and various factors including concomitant medications in patients with NSCLC and pancreatic cancer. Methods: From January 2014 to June 2017, a retrospective study was conducted in patients with NSCLC and pancreatic cancer, who were treated with erlotinib. Various data were reviewed, including sex, age, body weight, height, body surface area (BSA), underlying disease, Eastern Cooperative Oncology Group (ECOG) Performance Status (PS), smoking history, erlotinib dose, EGFR mutation, and concomitant drugs. Results: The incidence of grade 2 or higher hepatotoxicity in the study group of patients was 17.2%. Multivariate analysis showed a 2.7-fold increase in hepatotoxicity with the concomitant use of CYP3A4 inducers. In NSCLC patients, co- administration of H2-antagonist/PPI increased hepatotoxicity 3.5-fold. Among the demographic factors, liver metastasis and age ≥ 65 years were significant risk factors in all study patients and NSCLC patients, respectively; the attributable risks for liver metastasis and age were 46.3% and 71.8%, respectively. -
Appendix D: Important Facts About Alcohol and Drugs
APPENDICES APPENDIX D. IMPORTANT FACTS ABOUT ALCOHOL AND DRUGS Appendix D outlines important facts about the following substances: $ Alcohol $ Cocaine $ GHB (gamma-hydroxybutyric acid) $ Heroin $ Inhalants $ Ketamine $ LSD (lysergic acid diethylamide) $ Marijuana (Cannabis) $ MDMA (Ecstasy) $ Mescaline (Peyote) $ Methamphetamine $ Over-the-counter Cough/Cold Medicines (Dextromethorphan or DXM) $ PCP (Phencyclidine) $ Prescription Opioids $ Prescription Sedatives (Tranquilizers, Depressants) $ Prescription Stimulants $ Psilocybin $ Rohypnol® (Flunitrazepam) $ Salvia $ Steroids (Anabolic) $ Synthetic Cannabinoids (“K2”/”Spice”) $ Synthetic Cathinones (“Bath Salts”) PAGE | 53 Sources cited in this Appendix are: $ Drug Enforcement Administration’s Drug Facts Sheets1 $ Inhalant Addiction Treatment’s Dangers of Mixing Inhalants with Alcohol and Other Drugs2 $ National Institute on Alcohol Abuse and Alcoholism’s (NIAAA’s) Alcohol’s Effects on the Body3 $ National Institute on Drug Abuse’s (NIDA’s) Commonly Abused Drugs4 $ NIDA’s Treatment for Alcohol Problems: Finding and Getting Help5 $ National Institutes of Health (NIH) National Library of Medicine’s Alcohol Withdrawal6 $ Rohypnol® Abuse Treatment FAQs7 $ Substance Abuse and Mental Health Services Administration’s (SAMHSA’s) Keeping Youth Drug Free8 $ SAMHSA’s Center for Behavioral Health Statistics and Quality’s (CBHSQ’s) Results from the 2015 National Survey on Drug Use and Health: Detailed Tables9 The substances that are considered controlled substances under the Controlled Substances Act (CSA) are divided into five schedules. An updated and complete list of the schedules is published annually in Title 21 Code of Federal Regulations (C.F.R.) §§ 1308.11 through 1308.15.10 Substances are placed in their respective schedules based on whether they have a currently accepted medical use in treatment in the United States, their relative abuse potential, and likelihood of causing dependence when abused. -
Drug and Alcohol Induced Hepatotoxicity
From The Department of Physiology and Pharmacology, Section of Pharmacogenetics Karolinska Institutet, Stockholm, Sweden DRUG AND ALCOHOL INDUCED HEPATOTOXICITY Angelica Butura Stockholm 2008 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. © Angelica Butura, 2008 ISBN 978-91-7409-055-0 To my parents for always believing in me ABSTRACT Drug induced hepatotoxicity is the most common reason cited for withdrawal of already approved drugs from the market and accounts for more than 50 percent of cases of acute liver failure in the United States. Ethanol (EtOH) causes a further substantial amount of liver insufficiencies world wide. The current thesis was focused on the mechanisms behind hepatotoxicity caused by these agents. Using a rat in vivo model for alcoholic liver disease (ALD) it was found that cytokine and chemokine levels in blood accompanied the fluctuating levels of blood EtOH, indicating that they are directly influenced by absolute EtOH concentration. During the early phases of ALD in this model, a strong initial Th1 response was observed as revealed by increased levels of cytokine as well as transcription factor mRNAs, followed by a downregulation, whereas Th2 response was decreased by EtOH over the entire treatment period of four weeks. We found that supplementation with the antioxidant NAC to ethanol treated animals decreases severity of liver damage and somewhat decreases initial inflammatory response mediated by TNFα. NAC also diminished the ethanol-induced formation of protein adducts of lipid peroxidation products like MDA and HNE. Also, the formation of antibodies against neo-antigens formed by MDA, HNE and HER protein adducts was lowered. -
A Single-Dose Toxicity Study on Non-Radioactive Iodinated Hypericin for a Targeted Anticancer Therapy in Mice
Acta Pharmacologica Sinica (2012) 33: 1549–1556 npg © 2012 CPS and SIMM All rights reserved 1671-4083/12 $32.00 www.nature.com/aps Original Article A single-dose toxicity study on non-radioactive iodinated hypericin for a targeted anticancer therapy in mice Jun-jie LI1, 2, Marlein Miranda CONA1, 2, Yuan-bo FENG1, 2, Feng CHEN1, 2, Guo-zhi ZHANG1, Xue-bin FU1, Uwe HIMMELREICH2, Raymond OYEN1, Alfons VERBRUGGEN3, Yi-cheng NI1, 2, * 1Theragnostic Laboratory, Department of Imaging and Pathology, Biomedical Sciences Group, KU Leuven, Belgium; 2Molecular Small Animal Imaging Centre (MoSAIC), Faculty of medicine, KU Leuven, Belgium; 3Faculty of Pharmaceutical Sciences, KU Leuven, Belgium Aim: Hypericin (Hyp) and its radio-derivatives have been investigated in animal models with ischemic heart diseases and malignancies for diagnostic and therapeutic purposes. Before radioiodinated Hyp (123I-Hyp or 131I-Hyp) can be considered as a clinically useful drug, vigorous evaluations on its chemotoxicity are necessary. In the present study, we examined the toxicity of a single dose of non-radioac- tive 127I-Hyp in normal mice for 24 h and 14 d. Methods: Studies were performed on 132 normal mice. 127I -Hyp at a clinically relevant dose of 0.1 mg/kg body weight and a 100- times higher dose of 10 mg/kg was intravenously injected into 40 mice. The safety aspects of clinical manifestations, serological biochemistry, and histopathology were assessed. In another 72 mice, 127I-Hyp was administered intravenously at assumed values to bracket the value of LD50. The rest 20 mice were used in the control groups. Results: At 24 h and 14 d following the injection of 127I -Hyp at either 0.1 or 10 mg/kg, all mice tolerated well without mortality or any observable treatment-related symptoms. -
Newborn Anaesthesia: Pharmacological Considerations D
$38 REFRESHER COURSE OUTLINE Newborn anaesthesia: pharmacological considerations D. Ryan Cook MD Inhalation anaesthetics Several investigators have studied the age-related For the inhalation anaesthetics there are age-related cardiovascular effects of the potent inhalation differences in uptake and distribution, in anaes- anaesthetics at known multiples of MAC. At thetic requirements as reflected by differences in end-tidal concentrations of halothane bracketing MAC, in the effects on the four determinants of MAC, Lerman er al. 2 noted no difference in the cardiac output (preload, afterload, heart rate and incidence of hypotension or bradycardia in neonates contractility), and in the sensitivity of protective and in infants one to six months of age. Likewise, cardiovascular reflexes (e.g., baroreceptor reflex). we 3 have noted no age-related differences in the These differences limit the margin of safety of the determinants of cardiac output in developing piglets potent agents in infants. 1-20 days during either halothane or isoflurane Alveolar uptake of inhalation anaesthetics and anaesthesia. Halothane produced hypotension by a hence whole-body uptake is more rapid in infants reduction in contractility and heart rate; in much than in adults. J Lung washout is more rapid in older animals halothane also decreases peripheral infants than in adults because of the larger ratio vascular resistance. In piglets although blood pres- between alveolar minute ventilation and lung sure was equally depressed with isoflurane and volume (FRC) (3.5:1 in the infant vs. 1.3:1 in the halothane, cardiac output was better preserved adult). Increased brain size (ml.kg-J), limited during isoflurane anaesthesia.