Clark Ch1 001-113 FINAL 27/5/02 10:35 Am Page 1

Total Page:16

File Type:pdf, Size:1020Kb

Clark Ch1 001-113 FINAL 27/5/02 10:35 Am Page 1 Clark Ch1 001-113 FINAL 27/5/02 10:35 am Page 1 1 Nitrogen, oxygen and sulfur ylides: an overview J. STEPHEN CLARK 1. Introduction Over the past three decades, there has been a rapid increase in the use of oxygen, nitrogen and sulfur ylides in organic synthesis. This is due in large part to the discovery of mild, efficient and general methods for the generation of these unstable and highly reactive intermediates. Much of the impetus for the exploitation of oxygen, nitrogen and sulfur ylides in organic synthesis has resulted from the discovery that these intermediates have a rich chemistry that can be used for the rapid preparation of highly functionalized compounds from relatively simple components. The development of mild catalytic methods for the preparation of a wide range of oxygen, nitrogen and sulfur ylides has generated further interest in these intermediates. Oxygen, nitrogen and sulfur ylide chemistry now covers a very large area of research and embodies a broad range of synthetic and mechanistic work con- cerning both the generation and reaction of ylides. This introductory chapter is intended to provide the reader with an insight into the evolution of oxygen, nitrogen and sulfur ylide chemistry and its application to synthesis, and will focus on important synthetic landmarks and recent innovations. It is not intended to provide a fully comprehensive review of this vast area of organic chemistry. 2. Ammonium ylides1 2.1 Deprotonation of ammonium salts The deprotonation of ammonium salts was the first method for ammonium ylide generation to be discovered; the first example of base-promoted ammo- nium ylide generation and rearrangement was published by Stevens in 1928.2 In this study, Stevens generated the ammonium ylide 2 by deprotonation of phenacylbenzyldimethylammonium bromide (1) with aqueous sodium hydroxide (Scheme 1). Immediate thermal [1,2] rearrangement of the ylide then provided the amino ketone 3 in very high yield. Clark Ch1 001-113 FINAL 27/5/02 10:35 am Page 2 J. S. Clark O Me O Me O 10% NaOH aq., [1,2]-shift N N NMe2 Ph Me heat Ph Me Ph Br Ph Ph Ph 1 2 3 90% Scheme 1 In subsequent mechanistic studies, Stevens demonstrated that there is no cross-over during the rearrangement of a mixture of ammonium ylides gen- erated from ammonium salts of similar reactivity.3 Stevens also showed that the reaction is unimolecular and that it occurs under basic conditions. From these results, he concluded that the reaction proceeds by intramolecular [1,2] rearrangement of an ammonium ylide intermediate and speculated that the process involves an ion pair.3 Further mechanistic insights were gained when reactions of enantiomeri- cally pure ammonium salts bearing chiral migrating groups were studied.4 Treatment of the ammonium salt 4, prepared from enantiomerically pure ␣- methylbenzylamine, with aqueous sodium hydroxide afforded the ammonium ylide 5, which then rearranged to give a mixture of two diastereoisomeric amino ketones 6 of high enantiomeric purity (Scheme 2). This result ruled out any possible mechanism involving dissociated ions as intermediates, but at this stage it was not clear whether the reaction had proceeded with retention or inversion of configuration of the migrating group. Brewster and Kline later showed that the reaction proceeds with retention of configuration of the migrating group,5 a finding which rules out a bimolecular process requiring inversion of configuration. Further work of Stevens6 and Ollis7 confirmed that there is almost complete retention of configuration upon [1,2] rearrangement of ammonium ylides possessing chiral migrating groups. O Me O Me O 10% NaOH aq., [1,2]-shift H N N NMe2 Ph Me heat Ph Me Ph Me Ph Me Ph H H Me Ph H 4 5 6 >99% e.e. Scheme 2 The results of cross-over experiments and the fact that there is retention of configuration at the carbon centre of migrating group during [1,2] rearrange- ment of ␣ chiral ammonium ylides have led to the conclusion that the reaction proceeds by a radical pair mechanism in which the radicals recombine within a solvent cage.7,8 Ollis studied the rearrangement of ammonium ylides in which competing [1,2], [1,3] and [1,4] rearrangements were possible, and found that 2 Clark Ch1 001-113 FINAL 27/5/02 10:35 am Page 3 1: Nitrogen, oxygen and sulfur ylides: an overview chiral migrating groups underwent rearrangement to give products with high enantiomeric excess and retention of configuration.7 In the case of benzylically substituted ammonium ylides, Sommelet–Hauser [2,3] rearrangement can proceed through the aromatic system.9 In the simplest case, equilibration (8Ǟ9) of the benzylic ammonium ylide 8 formed by deprotonation of the salt 7 allows [2,3] rearrangement to occur (Scheme 3).10 Aromatization of the initially formed amine 10 leads to the ortho- substituted toluene 11. The reaction was originally discovered by Sommelet,9 and the mechanism was elucidated later by Hauser.11 Hauser also demon- strated that it is possible to perform the Sommelet–Hauser reaction in an iterative manner to give 2,3,4,5,6-pentamethylbenzyldimethylamine (12) (Scheme 3). Br Me NaNH2, NH3 Me CH2 N N N Me Me Me Me Me Me 798 Me H Me Me NMe2 NMe2 Me Me Me 12 11 96% 10 Me2N Scheme 3 Stevens [1,2] rearrangement frequently competes with Sommelet–Hauser [2,3] rearrangement, and the distribution of products is dependent on the reaction conditions. Several other factors can also limit the synthetic utility of the Sommelet–Hauser rearrangement reaction. Equilibration of the stable benzylic ammonium ylide to give a less stable ylide is required unless an addi- tional activating group is present,11 and the presence of electron-withdrawing substituents on the aromatic ring can retard this equilibration process. In addition, ␤-elimination of the ammonium ylide is often a competing process with substrates bearing substituents other than methyl on the ammonium nitrogen atom.12 Furthermore, problems involving regioselectivity arise in cases where the alkyl groups on nitrogen are non-equivalent. For example, deprotonation of the salt 13 with a strong base leads to a mixture of the expected benzylic ammonium ylide which then equilibrates to give a mixture of the ylides 14 and 15. Sommelet–Hauser rearrangement then produces both amines 16 and 17 (Scheme 4). 3 Clark Ch1 001-113 FINAL 27/5/02 10:35 am Page 4 J. S. Clark Br Me Me base CH2 N N N Me Me Me Et Et Et 13 14 15 Me Et N NMe2 Me Me Me 16 17 Scheme 4 Competitive [1,4] rearrangement of some ammonium ylides during Som- melet–Hauser rearrangement has been reported (Scheme 5).13 For example, deprotonation of the ammonium ion 18 affords the ylides 19 and 20. The ylide 19 undergoes conventional Sommelet–Hauser [2,3] rearrangement to give the amine 24 after aromatization of the triene 21. In contrast, the ylide 20 under- goes either [1,2] rearrangement to give the amine 22 or [1,4] rearrangement to give the intermediate 23, which then undergoes aromatization to give the amine 24, i.e. the product obtained by conventional Sommelet–Hauser rearrangement of the ylide 19. Appropriate 13C labelling studies have con- firmed that [1,4] rearrangement can compete during the Sommelet–Hauser rearrangement of certain base-generated ammonium ylides and that the [1,4] rearrangement can be the dominant pathway under certain reaction conditions.14 CN CN CN Me NaOH aq., Me NaOH aq., Me N Me C6H6 N Me C6H6 N Me CN or CN or CN 19 18 20 K2CO3, DMF K2CO3, DMF [2,3] [1,4] [1,2] CN CN CN CN NMe2 NMe2 NMe2 NMe2 CN H H CN CN CN 21 24 23 22 Scheme 5 4 Clark Ch1 001-113 FINAL 27/5/02 10:35 am Page 5 1: Nitrogen, oxygen and sulfur ylides: an overview The synthetic potential of the symmetry-allowed [2,3] rearrangement of ammonium ylides generated by deprotonation of allylic ammonium salts has been recognized for many years.6,15 The original method of ylide generation involved alkylation of a tertiary allylic amine with an alkyl halide, and sub- sequent base-promoted deprotonation of the resulting quaternary ammonium salt sometimes leads to poor yields. However, Coldham has recently de- veloped an improved one-pot procedure for the generation of ammonium ylides by N-alkylation of the N-allylic ␣-amino ester 25 and in situ deproton- ation (Scheme 6).16 Spontaneous [2,3] rearrangement of the intermediate ammonium ylide delivers the N,N-dialkylated allyl glycine ester 26 in reason- able yield (48–65%), and problems associated with the isolation and handling of the sensitive ammonium salt are avoided when using this method.16 R2 R3 N 2 3 R R X, K2CO3, R1 NCOMe CO Me 2 DBU, DMF, 40 °C 2 ~60:40 R1 25 26 R1 = H, Me R3X = MeI, BnBr R2, R3 = Me, Bn Scheme 6 It has been shown that with certain base-generated allylic ammonium ylides, [1,2] and [1,4] rearrangement reactions may compete effectively with the expected [2,3] rearrangement process.17 Competing [1,2] and [1,4] rearrange- ment reactions are especially prevalent in cases where the allylic ammonium salt possesses two electron-withdrawing groups adjacent to nitrogen and hence has two possible sites for deprotonation. In these cases, interconversion between two allylic ammonium ylides is possible and the product distribution is highly dependent on the substrate structure, the type of base used and the reaction conditions employed.17 One of the most interesting synthetic uses of ammonium ylides generated by deprotonation of allylic amine salts is for the ring contraction or ring expansion of cyclic amines.
Recommended publications
  • New Chiral Auxiliaries for the [3+2]-Cycloaddition of Nonstabilised Azomethine Ylides
    New Chiral Auxiliaries For The [3+2]-Cycloaddition Of Nonstabilised Azomethine Ylides Allan Rostrup Forup Jensen A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Christopher Ingold Laboratories University College London London 20 Gordon Street WC1H OAJ ProQuest Number: 10610918 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10610918 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 /\cjmowieugemenis First and foremost I wish to thank my supervisor, Professor K. J. Hale, for the constant support, encouragement and guidance he has provided throughout the duration of this project. I also wish to take this opportunity to thank my sponsor, Rhone- Poulenc-Rorer, without whom this project would not have been possible. I also wish to thank past and present members of the Hale group for their friendship and encouragement. In particular, Dr. J. Cai was an invaluable help and inspiration. For their friendship and enormous support through good and bad times, Rukpong Tupprasoot, Neha Jogiya, Andrew Calabrese, Dr. Gurpreet Bhatia, Marc Hummersone, Rafaqat Hussain, also deserve to be mentioned.
    [Show full text]
  • 1,3-Dipolar Cycloaddition of Azomethine Ylides Generated from Aziridines in Supercritical Carbon Dioxide Paulo J
    Tetrahedron Letters 47 (2006) 5475–5479 1,3-Dipolar cycloaddition of azomethine ylides generated from aziridines in supercritical carbon dioxide Paulo J. S. Gomes, Cla´udio M. Nunes, Alberto A. C. C. Pais, Teresa M. V. D. Pinho e Melo* and Luis G. Arnaut Department of Chemistry, Coimbra University, 3004-535 Coimbra, Portugal Received 8 March 2006; revised 26 May 2006; accepted 30 May 2006 Abstract—The 1,3-dipolar cycloaddition of azomethine ylides with DMAD in supercritical carbon dioxide is reported. The photo- lysis reaction conditions were optimized with a suitable adjustment of pressure, temperature, irradiation time and co-solvent concen- tration leading to a more efficient reaction than in neat acetonitrile. Similar results were observed using thermal reaction conditions. Supercritical carbon dioxide with a minute co-solvent addition is shown to be a very efficient medium for promoting this type of cycloadditions. Ó 2006 Elsevier Ltd. All rights reserved. Over the last decade, supercritical fluids (SCF) received ology for the synthesis of nitrogen-heterocyclic significant attention as a new class of environmentally compounds. We chose the 1,3-dipolar cycloaddition friendly solvents for organic synthesis. Supercritical flu- of azomethine ylides generated from aziridines as the ids have properties intermediate between the gas and the model reaction. Aziridines (1) undergo electrocyclic ring liquid phases that can be tuned simply by changing the opening in a disrotatory manner upon irradiation and pressure and temperature. In particular, changes of pres- conrotatory ring opening upon thermolysis, giving sure close to the critical point enable drastic changes in azomethine ylides (2), which participate in 1,3-dipolar density and viscosity.
    [Show full text]
  • Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis Christopher K
    Review pubs.acs.org/CR Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis Christopher K. Prier, Danica A. Rankic, and David W. C. MacMillan* Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States References 5360 1. INTRODUCTION CONTENTS A fundamental aim in the field of catalysis is the development 1. Introduction 5322 of new modes of small molecule activation. One approach 2+ toward the catalytic activation of organic molecules that has 2. Photochemistry of Ru(bpy)3 5323 3. Net Reductive Reactions 5324 received much attention recently is visible light photoredox 3.1. Reduction of Electron-Poor Olefins 5324 catalysis. In a general sense, this approach relies on the ability of 3.2. Reductive Dehalogenation 5326 metal complexes and organic dyes to engage in single-electron- 3.3. Reductive Cleavage of Sulfonium and transfer (SET) processes with organic substrates upon Sulfonyl Groups 5328 photoexcitation with visible light. 3.4. Nitrogen Functional Group Reductions 5329 Many of the most commonly employed visible light 3.5. Radical Cyclizations 5330 photocatalysts are polypyridyl complexes of ruthenium and iridium, and are typified by the complex tris(2,2′-bipyridine) 3.6. Reductive Epoxide and Aziridine Opening 5331 2+ 3.7. Reduction-Labile Protecting Groups 5331 ruthenium(II), or Ru(bpy)3 (Figure 1). These complexes 4. Net Oxidative Reactions 5332 4.1. Functional Group Oxidations 5332 4.2. Oxidative Removal of the PMB Group 5334 4.3. Oxidative Biaryl Coupling 5335 4.4. Oxidative Generation of Iminium Ions 5335 4.5. Azomethine Ylide [3 + 2] Cycloadditions 5338 4.6.
    [Show full text]
  • PERSONAL ACCOUNT Binap and Phosphoramidites As Privileged
    PERSONAL ACCOUNT Carmen Nájera,*[a] and José M. Sansano*[b] Binap and phosphoramidites as Dedication ((optional)) privileged chiral ligands for the metal-catalyzed enantioselective 1,3-dipolar cycloaddition of azomethine ylides and dipolarophiles ((Insert Picture for Frontispiece here [18.0×18.0 cm])) [a] Title(s), Initial(s), Surname(s) of Author(s) including Corresponding Author(s) Department Institution Address 1 E-mail: [b] Title(s), Initial(s), Surname(s) of Author(s) Department Institution Address 2 Supporting information for this article is given via a link at the end of the document.((Please delete this text if not appropriate)) 1 PERSONAL ACCOUNT Abstract: Binap and phosphoramidites are privileged chiral starting from enolizable substrates I and electron-deficient ligands which have been tested in the coinage metal-catalyzed alkenes III promoted by coinage metals and the named chiral 1,3-dipolar cycloadditions of metalloazomethine ylides and ligands on the basis of the dipolarophile employed (Scheme 1). electrophilic alkenes. Silver(I), copper(II) and gold(I) salts have Rigid chiral metallodipoles II control of the final absolute been evaluated in all these reactions. Maleimides, acrylates, configuration of the up to four stereogenic centers of fumarates, 1,2-bis(phenylsulfonyl)ethylene and enones reacted polysubstituted proline derivatives IV. with imino esters giving the corresponding endo-prolinates such as HCV inhibitors in high diastereo- and enantioselectivity. In the case of nitroalkenes exo-4-nitroprolinates were obtained. Azlactones reacted with maleimides and acrylates to give pyrrolines only in the presence of binap-gold(I) complexes. The observed enantioselectivity and the mechanism of these 1,3-DC was studied by means of DFT calculations.
    [Show full text]
  • Three-Component Couplings for the Synthesis of Pyrroloquinoxalinones by Azomethine Ylide 1,3-Dipolar Cycloaddition Chemistry
    This is a repository copy of Three-component couplings for the synthesis of pyrroloquinoxalinones by azomethine ylide 1,3-dipolar cycloaddition chemistry. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/154687/ Version: Accepted Version Article: Choi, A. and Coldham, I. orcid.org/0000-0003-4602-6292 (2019) Three-component couplings for the synthesis of pyrroloquinoxalinones by azomethine ylide 1,3-dipolar cycloaddition chemistry. Tetrahedron Letters, 60 (37). ISSN 0040-4039 https://doi.org/10.1016/j.tetlet.2019.151023 Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Graphical Abstract To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered. Three-component couplings for the synthesis of Leave this area blank for abstract info.
    [Show full text]
  • The Huisgen Reaction: Milestones of the 1,3‐Dipolar Cycloaddition
    Angewandte Minireviews Chemie How to cite: Angew. Chem. Int. Ed. 2020, 59, 12293–12307 1,3-Dipolar Cycloadditions International Edition: doi.org/10.1002/anie.202003115 German Edition: doi.org/10.1002/ange.202003115 The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition Martin Breugst* and Hans-Ulrich Reissig* Keywords: In memory of Professor Rolf Huisgen 1,3-dipolar cycloadditions · (June 13, 1920—March 26, 2020) click chemistry · computational chemistry · heterocycles · reaction mechanisms Angewandte Chemie Angew. Chem. Int. Ed. 2020, 59, 12293 – 12307 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 12293 Angewandte Minireviews Chemie The concept of 1,3-dipolar cycloadditions was presented by Rolf heteropropargyl anion systems react Huisgen 60 years ago. Previously unknown reactive intermediates, for with a variety of double- and triple- bond systems to provide five-mem- example azomethine ylides, were introduced to organic chemistry and bered cycloadducts with neutralization the (3+2) cycloadditions of 1,3-dipoles to multiple-bond systems of the formal charges. (Huisgen reaction) developed into one of the most versatile synthetic R. Huisgen and his co-workers methods in heterocyclic chemistry. In this Review, we present the recognized that 1,3-dipoles “abc” can history of this research area, highlight important older reports, and be subdivided in two comprehensive classes (Scheme 2). For the twelve allyl describe the evolution and further development of the concept. The type 1,3-dipoles, the central atom “b” most important mechanistic and synthetic results are discussed. can be nitrogen or oxygen. For the six Quantum-mechanical calculations support the concerted mechanism allenyl-propargyl type 1,3-dipoles, only always favored by R.
    [Show full text]
  • 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides with Aromatic Dipolarophiles
    Reviews and Accounts ARKIVOC 2015 (i) 160-183 1,3-Dipolar cycloaddition reactions of azomethine ylides with aromatic dipolarophiles John H. Ryan CSIRO Manufacturing Flagship, Ian Wark Laboratory, Bayview Avenue, Clayton, VIC 3168, Australia E-mail: [email protected] DOI: http://dx.doi.org/10.3998/ark.5550190.0016.107 Abstract The 1,3-dipolar cycloadditions of azomethine ylides to aromatic dipolarophiles are reviewed and discussed. The reaction proceeds with stabilized and non-stabilized azomethine ylides, although most studies have been with non-stabilized systems. While simple benzene derivatives do not readily undergo such 1,3-dipolar cycloaddition reactions, the dipolarophilic character of benzene emerges when the benzenoid nucleus is embedded within a polycyclic aromatic hydrocarbon, tethered with the azomethine ylide (an intramolecular process) or substituted with highly electron withdrawing nitro groups. Heteroaromatic systems display similar tendencies towards such cycloaddition processes. The review closes with a consideration of the mechanism of the reactions. Keywords: Dearomatization, 1,3-dipolar cycloaddition, azomethine ylide, aromatic dipolarophiles, intramolecular cycloaddition, nitrobenzenes Table of Contents 1. Introduction 2. 1,3-Dipolar Cycloaddition Reactions of a Stabilized Azomethine Ylide with Polycyclic Aromatic Dipolarophiles 3. Intramolecular Reactions of Stabilized Azomethine Ylides with Aromatic and Heteroaromatic Dipolarophiles 4. Reactions of Non-stabilized Azomethine Ylides with Nitro-substituted Heteroaromatic Dipolarophiles 5. Reactions of Non-stabilized Azomethine Ylides with Nitro-substituted Benzenoid Aromatic Dipolarophiles 6. Mechanism Page 160 ©ARKAT-USA, Inc. Reviews and Accounts ARKIVOC 2015 (i) 160-183 7. Acknowledgements 8. References 1. Introduction A large and structurally diverse range of aromatic compounds are available for use as starting materials in organic synthesis and ultimately find use in numerous fine chemical, pharmaceutical and agrochemical products.
    [Show full text]
  • FULL PAPER Stereoselective Ag-Catalyzed 1,3-Dipolar
    Repositorio Institucional de la Universidad Autónoma de Madrid https://repositorio.uam.es Esta es la versión de autor del artículo publicado en: This is an author produced version of a paper published in: Chemistry – A European Journal 22.14 (2016): 4952 - 4959 DOI: http://doi.org/10.1002/chem.201504869 Copyright: © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription FULL PAPER Stereoselective Ag-catalyzed 1,3-Dipolar Cycloaddition of Activated Trifluoromethyl Substituted Azomethine Ylides Alberto Ponce,[a] Inés Alonso,[a] Javier Adrio,[a]* Juan C. Carretero[a]* Dedicated to Prof. José Luis García Ruano on the occasion of his retirement. Abstract: A silver catalyzed 1,3-dipolar cycloaddition of procedure has been recently reported by Ley and co- fluorinated azomethine ylides and activated olefins is reported. workers[9] based on the in situ generation of the The reaction offers a straightforward and atom-economical trifluoromethylated non-stabilized azomethine ylide 1 by procedure for the preparation of fluorinated pyrrolidines. Broad reaction of a functionalized -trimethylsilyl--alkoxyamine in scope and high diastereoselectivities have been achieved simply the presence of a stoichiometric amount of a Lewis acid using AgOAc/PPh3 as catalyst system. The high efficiency of the (Scheme 1, eq 1). In addition, concurrently with the cycloaddition relies on the presence of a metal coordinating development of our work, Wang and co-workers[10] have group at the imine moiety, such as an ester moiety or an just reported the organocatalytic 1,3-dipolar cycloaddition of heteroaromatic ring.
    [Show full text]
  • Lewis Acid-Promoted Cycloaddition Reactions of Aziridines and Cyclopropanes (Under the Direction of Jeffrey Scott Johnson)
    LEWIS ACID-PROMOTED CYCLOADDITION REACTIONS OF AZIRIDINES AND CYCLOPROPANES Patrick Dennis Pohlhaus A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry Chapel Hill 2006 Approved by Advisor: Jeffrey S. Johnson Reader: James P. Morken Reader: Joseph L. Templeton © 2006 Patrick Dennis Pohlhaus ALL RIGHTS RESERVED ii ABSTRACT PATRICK DENNIS POHLHAUS: Lewis Acid-Promoted Cycloaddition Reactions of Aziridines and Cyclopropanes (Under the direction of Jeffrey Scott Johnson) I. Lewis Acid-Promoted Carbon-Carbon Bond Cleavage of Aziridines: Divergent Cycloaddition Pathways of the Derived Ylides The formation of azomethine ylides from aziridines under Lewis acidic conditions and the productive reactivity of these species are described. Efficient carbon-carbon bond cleavage of aziridines through treatment with stoichiometric or catalytic amounts of Zn(II) salts has been shown to occur under relatively mild conditions. Depending on the constitution of the dipolarophile, the resulting azomethine ylides undergo cycloadditions with electron-rich olefins in either a [3+2] or [4+2] manner producing pyrrolidine or tetrahydroquinoline derivatives. Ar H C EDG 2 R N CO2R' CO2R' [3+2] Y EDG Ar OR' N ZnX CO R' 2 R N R 2 O ZnXn CO2R' R'O O Y CO2R' R = Aryl or H [4+2] X = Cl or OTf N CO2R' Z Z R n n iii II. Heterocycle Synthesis Via [3+2] Reactions of Cyclopropanes A review of the literature concerning the use of cyclopropanes in the one-step synthesis of five-membered heterocycles is presented.
    [Show full text]
  • Mesoionic Compounds 3/25/17
    Baran Group Meeting Jacob T. Edwards Mesoionic Compounds 3/25/17 Definitions: Examples of mesoionic compounds: Mesoionic compounds are “five membered heterocycles which cannot be satisfactorily represented by any one covalent or dipolar structure, but only has hybrids of polar R R R R O+ structures…they possess a sextet of electrons.” N+ N+ N+ N+ O- – Ollis and Stanforth, Tetrahedron, 1985, 41, 2239 N - N - - N O O O NH- O O O NH Betaines are compounds that bear a positively charged cationic functional group (such R sydnone sydnone imine as a quaternary ammonium group) and a negatively charged functional group (such as a münchnone münchnone imine isomünchnone carboxylate). R1 R1 S- Mesomeric betaines are neutral conjugated molecules which can be represented by S+ R + N+ N+ dipolar structures in which both the positive and negative charges are delocalized within N+ S the π-system O- N - N O- N O- O O N N R S i. acyclic (1,3- and 1,5-dipoles) R2 R2 ii. conjugated heterocyclic mesomeric betaines thioisomünchnone thiomünchnone iii. cross-conjugated heterocyclic mesomeric betaines iv. pseudo-cross-conjugated heterocyclic mesomeric betaines Other common mesoionic compounds: Zwitterionic compounds are neutral molecules with both positive and negative charges O PR3 (amino acids). O+ S+ O+ 2 3 1 3 O R + R R R R - - - N Me O O O N+ + - + 4 R O S S 1 N CO2 N R N R R2 N - Me Me + oxamünchnone 1,3-dithiolium-4-olate 1,3-dithiolium-4-olate Montréalone O O 5 N R R O- Outline: mesoionic betaine acyclic mesomeric betaine conjugated heterocyclic (azomethine ylide) mesomeric betaine I.
    [Show full text]
  • Asymmetric Metal-Catalyzed [3+2] Cycloadditions of Azomethine Ylides
    Asymmetric Metal-Catalyzed [3+2] Cycloadditions of Azomethine Ylides Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Remo Stohler aus Basel und Ziefen/ Basel und Baselland Basel 2007 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von: Prof. Dr. Andreas Pfaltz Prof. Dr. Wolf-Dietrich Woggon Basel, den 19.12.2006 Prof. Dr. Hans-Peter Hauri Dekan dedicated to my parents Acknowledgments I would like to express my gratitude to my supervisor, Professor Dr. Andreas Pfaltz for giving me the opportunity of joining his group, for his constant support and his confidence as well as for the liberty I was given to work at my project. Special thanks to Professor Dr. Wolf-Dietrich Woggon for co-examing this thesis and the organization of a laboratory course I enjoyed at Kingston University. Furthermore I would like to thank Professor Dr. Marcel Mayor for chairing the examen. A big thanks goes to Florentine Wahl whose excellent work opened the door to intramolecular [3+2] cycloadditions. Dominik Frank is acknowledged for his synthetic work during his Wahlpraktikum. I am grateful to Markus Neuburger and Dr. Silvia Schaffner as well as to Eva Neumann and Stefan Kaiser for recording X-ray data and for refining X-ray structures. Dr. Klaus Kulicke, Axel Franzke and Aurélie Toussaint are acknowledged for their countless hours recording 2D NMR spectra and their help on the interpretation of the data. Dr. Heinz Nadig recorded the EI and FAB mass spectra and Antje Teichert is acknowledged for measuring the ESI mass spectra.
    [Show full text]
  • Phosgene-Free Synthesis of Verdazyl Radicals and Enantioselective 1,3
    Phosgene-Free Synthesis of Verdazyl Radicals and Enantioselective 1,3-Dipolar Cycloaddition Reactions of Azomethine Imines Generated in situ from Verdazyl Radicals by Beom Youn A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Chemistry University of Toronto © Copyright by Beom Youn (2012) Phosgene-free synthesis of verdazyl radicals and enantioselective 1,3-dipolar cycloaddition reactions of azomethine imines generated in situ from verdazyl radicals Beom Youn Master of Science Graduate Department of Chemistry University of Toronto 2012 Abstract Verdazyl radicals started receiving attention as substrates for organic synthesis only a few years ago. Since then, the chemistry of verdazyl radicals has advanced at a very fast rate. There are now a number of generations of novel molecular scaffolds derived from verdazyl radicals. Traditionally, verdazyl radicals have been synthesized from mono-substituted alkyl hydrazine and phosgene, which are extremely dangerous to handle. Alkyl hydrazines are restricted from being imported into certain countries, including Canada. A completely new alkyl hydrazine- and phosgene-free synthesis is reported in this thesis. The new synthesis, relative to previously reported syntheses of verdazyl radicals, is safer, more economical and provides the ability to derivatize verdazyl radicals to a larger extent. In addition, enantioselective 1,3-dipolar cycloaddition reactions with various metal- or organo-catalysts are reported. The project is still in
    [Show full text]