Seasonal Variation of Coyote Diet in Northwestern Wyoming: Implications for Dietary Overlap with Canada Lynx?

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Variation of Coyote Diet in Northwestern Wyoming: Implications for Dietary Overlap with Canada Lynx? University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2012 Seasonal Variation of Coyote Diet in Northwestern Wyoming: Implications for Dietary Overlap with Canada Lynx? Jennifer L. B. Dowd Utah State University Eric M. Gese USDA/APHIS/WS National Wildlife Research Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Dowd, Jennifer L. B. and Gese, Eric M., "Seasonal Variation of Coyote Diet in Northwestern Wyoming: Implications for Dietary Overlap with Canada Lynx?" (2012). USDA National Wildlife Research Center - Staff Publications. 1125. https://digitalcommons.unl.edu/icwdm_usdanwrc/1125 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Jennifer L. B. Dowd, Department of Wildland Resources, Utah State University, Logan, Utah, 84322 and Eric M. Gese1, U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Department of Wildland Resources, Utah State University, Logan, Utah, 84322 Seasonal Variation of Coyote Diet in Northwestern Wyoming: Implications for Dietary Overlap with Canada Lynx? Abstract Exploitative competition through resource utilization may occur between coyotes (Canis latrans) and other carnivores. In the southern periphery of Canada lynx (Lynx canadensis) range, there is concern that increased snowmobile activity may enable coyotes to increase their movements into deep snow areas during the winter months, thereby potentially creating heightened resource competition with lynx, mainly for the lynx’s main prey, snowshoe hares (Lepus americanus). We studied the seasonal variation of coyote diets and the dietary overlap between coyotes and lynx in a 512-km2 high-elevation study area in northwestern Wyoming. Dietary shifts by coyotes were documented during the winter, spring, summer, and fall from August 2006 through June 2008. Although lynx are known to primarily prey on snowshoe hares, lynx scats were also collected to assess their diet for comparative purposes. A total of 470 coyote scats and 24 lynx scats were collected, dried and analyzed. Mule deer (Odocoileus hemionus) was the predominant prey item for coyotes by percent occurrence (20.1%) for all 3 years combined, followed by elk (Cervus elaphus, 12.5%), montane vole (Microtus montanus, 12.0%), and snowshoe hare (8.0%). Snowshoe hares were the dominant prey item for lynx during the winter, accounting for 85.2% of all prey occurrences. Coyote use of snowshoe hares peaked in the fall (24.1% of all occurrences). We found little dietary overlap between coyotes and lynx during the winter months when lynx mainly fed on snowshoe hares and coyotes fed mostly on ungulates. Key Words: Exploitative competition, resource competition, diet overlap Introduction and Anthony 1988, Morey et al. 2007) and demon- strate behavioral flexibility in their diet (Patterson Canada lynx (Lynx canadensis) were listed un- et al. 1998, Bartel and Knowlton 2004). One way der the Endangered Species Act due to a lack to gain insight into what role coyotes play in an of adequate management plans incorporating ecosystem is to document their food habits in a monitoring and research to identify potential given environment (Bartel and Knowlton 2004). factors influencing their viability and protection Because recent findings indicate humans may of critical habitats (Ruediger et al. 2000). One of be facilitating coyote access to habitats used by the key research needs for lynx management was lynx via increased winter recreation (Ruggiero an understanding of community interactions and et al. 2000, Bunnell et al. 2006), biologists have how various predator species may compete with become increasingly concerned with interactions lynx for resources. Ruggiero et al. (2000) reported between coyotes and lynx. the number of generalist predators competing with lynx increased from the northern to southern part Coyotes and lynx are sympatric in areas of of their range. Coyotes (Canis latrans) have been Canada and the United States. In the southern recognized as a potential competitor with lynx periphery of lynx distribution, coyote populations (Buskirk et al. 2000, Ruediger et al. 2000). Not have remained stable or increased while lynx only are coyotes highly adaptable, but they can numbers have declined (Buskirk et al. 2000). thrive in human-dominated landscapes (Toweill These sympatric predators have coexisted be- cause morphological differences allow them to 1Author to whom correspondence should be addressed. occupy separate niches within an ecosystem and Email: [email protected] utilize different resources (Krebs 1978). In the Northwest Science, Vol. 86, No. 4, 2012 289 past, coyotes and lynx in many regions of North with winter recreation. Furthermore, no studies America have occupied different habitats during have assessed variations in seasonal coyote diets winter due to the inability of coyotes to travel and within habitats used by lynx near the southern effectively hunt in deep snow (Murray and Boutin periphery of their range, aside from winter analy- 1991, Litvaitis 1992, Crete and Lariviere 2003). ses conducted in western Montana (Kolbe et al. With increased popularity of winter recreation 2007). Where southern populations persist, lynx (particularly snowmobiling), access to some deep and snowshoe hares have been reported as scarce snow landscapes have been altered. Studies con- and patchily distributed (Murie 1940, Aubry et al. ducted on southern lynx populations have found 2000, Hodges 2000, Squires and Laurion 2000), as coyotes are not only using snow-compacted trails, well as susceptible to generalist predators because but establishing themselves year-round in areas of habitat alteration and increased fragmentation they previously used only seasonally (Murray and (Ruggiero et al. 2000). Boutin 1991, Koehler and Aubry 1994, Murray Our objective was to determine the seasonal et al. 1995, Lewis and Wenger 1998, Bunnell et variation, dietary diversity, and dietary overlap al. 2006). In these areas, snowmobile activity and of coyotes and lynx in high elevation terrain in trail systems managed for winter recreation have northwestern Wyoming. A secondary objective was created travel networks for coyotes (Bunnell et al. to identify during which seasons dietary overlap 2006), leading to a potential breakdown of spatial was occurring and, for coyote diets, determine segregation between coyotes and lynx. whether specific prey items were correlated with Competition between coyotes and lynx oc- snow depth. We hypothesized coyote diets would curs via exploitation competition, interference reflect a generalist nature during all seasons with competition, or both. Exploitation competition greater dietary diversity occurring during the spring between coyotes and lynx may be documented in and summer when more prey species were avail- an overlap of coyote and lynx diets. Several stud- able. We further hypothesized that if snowshoe ies (e.g., Todd et al. 1981, Parker 1986, Murray hares occurred in coyote diets, they would peak et al. 1994, O’Donoghue et al. 1998, Patterson et in the fall and winter when other prey items were al. 1998) have identified snowshoe hares (Lepus less available. Similar to studies conducted in the americanus) as a major component of coyote northern part of their range, we hypothesized lynx winter diets in North America. O’Donoghue et diets would consist primarily of snowshoe hares al. (1997) found lynx were more abundant where with a small component of other small mammals, coyotes were less dense, rather than where hares such as red squirrel (Tamiansciurus hudsonicus) were denser, suggesting interactions with coyotes and dietary diversity of lynx would increase during may be more of a limiting factor for lynx popula- the spring and summer. tion size than the availability of snowshoe hares. Litvaitis and Harrison (1989) found in areas where Study Area coyote populations were increasing, they were We conducted this study on the east and west sides reducing the prey availability for subordinate of Togwotee Pass in northwestern Wyoming. The species, therefore reducing carrying capacity for 512-km2 study area was characterized by extensive those species. recreational trails and roads maintained year-round. Although exploitation competition between The area was composed of the Bridger-Teton coyotes and lynx may be a concern during the and Shoshone National Forests, plus some large, fall (Aubry et al. 2000, McKelvey et al. 2000, privately-owned ranches. Elevations ranged from Kolbe et al. 2007) and winter (Ozoga and Harger 1800 m to >3600 m. The area was characterized 1966, Murray et al. 1995, Buskirk et al. 2000, by short, cool summers (mean temperature of Bunnell et al. 2006), few studies have conducted 12°C) and long winters (mean temperature of multi-seasonal dietary analyses to determine the -8°C). Precipitation occurred mostly as snow, variation of coyote diets in high elevation areas and mean maximum snow depths ranged from 290 Dowd and Gese 100 cm at lower elevations to >245 cm at inter- Methods mediate elevations (2000 - 2400
Recommended publications
  • Eastern Coyotes in Massachusetts
    LIVING WITH WILDLIFE EASTERN COYOTES IN MASSACHUSETTS The eastern coyote is well established throughout season peaks in mid-February. They give birth in a den to Massachusetts except on Nantucket and Martha’s 4–8 pups in April or May. Coyotes maintain seasonal social Vineyard. A medium-sized predator, it is an opportunistic units that consist of the adult pair and the pups until the feeder and extraordinarily adaptable to a wide range of pups disperse on their own in late autumn. habitats. Coyotes thrive in suburban, urban, and rural areas. They will utilize whatever food is naturally available, FOOD, HABITS, AND HABITAT including small animals, birds, insects and fruits, as well as Coyotes are typically shy and elusive, but they can artificial sources such as garbage, pet food, birdseed, and frequently be seen individually, in pairs, or in small groups compost. where food is commonly found. They communicate by vocalizing, scent marking, and through a variety of body DESCRIPTION displays. It is common to hear them howling and yipping The eastern coyote resembles a medium-sized dog in body at night, or even during the day in response to sirens and size and shape, but has longer, denser fur and pointed, erect other loud noises. Coyotes remain active year-round and ears. The tail is long, black-tipped, and bushy. Typical coat do not hibernate. They are opportunistic feeders, meaning color is a grizzled gray but can vary from creamy blonde to they will feed on whatever is most readily available and red or nearly solid black. Typical weights for females are easiest to obtain.
    [Show full text]
  • Northeastern Coyote/Coywolf Taxonomy and Admixture: a Meta-Analysis
    Way and Lynn Northeastern coyote taxonomy Copyright © 2016 by the IUCN/SSC Canid Specialist Group. ISSN 1478-2677 Synthesis Northeastern coyote/coywolf taxonomy and admixture: A meta-analysis Jonathan G. Way1* and William S. Lynn2 1 Eastern Coyote Research, 89 Ebenezer Road, Osterville, MA 02655, USA. Email [email protected] 2 Marsh Institute, Clark University, Worcester, MA 01610, USA. Email [email protected] * Correspondence author Keywords: Canis latrans, Canis lycaon, Canis lupus, Canis oriens, cladogamy, coyote, coywolf, eastern coyote, eastern wolf, hybridisation, meta-analysis, northeastern coyote, wolf. Abstract A flurry of recent papers have attempted to taxonomically characterise eastern canids, mainly grey wolves Canis lupus, eastern wolves Canis lycaon or Canis lupus lycaon and northeastern coyotes or coywolves Canis latrans, Canis latrans var. or Canis latrans x C. lycaon, in northeastern North America. In this paper, we performed a meta-analysis on northeastern coyote taxonomy by comparing results across studies to synthesise what is known about genetic admixture and taxonomy of this animal. Hybridisation or cladogamy (the crossing between any given clades) be- tween coyotes, wolves and domestic dogs created the northeastern coyote, but the animal now has little genetic in- put from its parental species across the majority of its northeastern North American (e.g. the New England states) range except in areas where they overlap, such as southeastern Canada, Ohio and Pennsylvania, and the mid- Atlantic area. The northeastern coyote has roughly 60% genetic influence from coyote, 30% wolf and 10% domestic dog Canis lupus familiaris or Canis familiaris. There is still disagreement about the amount of eastern wolf versus grey wolf in its genome, and additional SNP genotyping needs to sample known eastern wolves from Algonquin Pro- vincial Park, Ontario to verify this.
    [Show full text]
  • White-Tailed Deer, Coyotes, and the Ecology of Fear in a Longleaf
    WHITE-TAILED DEER, COYOTES, AND THE ECOLOGY OF FEAR IN A LONGLEAF PINE SAVANNA By MICHAEL JOHN CHERRY (Under the Direction of Robert J. Warren) Abstract Predators can exert powerful influence on their prey, independent of direct killing, by inducing antipredator responses. Coyotes (Canis latrans) have recently achieved abundances capable of influencing white-tailed deer (Odocoileus virginianus) population demography in the southeastern USA, but the effects of antipredator responses have not been reported. I conducted a multifaceted investigation of coyote and white-tailed deer interactions, using population monitoring data, harvest data, and results from controlled experimentation with predator exclosures. This work provided evidence that coyotes can influence white-tailed deer space use and vigilance while foraging, and documented a negative relationship between coyote abundance and body mass of adult female deer during an 11-year period. I compared multiple measures of reproductive success during a 7-year period that encompassed high and low coyote-deer ratios to elucidate the relative contributions of direct predation and predation risk effects to an observed increase on recruitment as measured by fawn-adult female ratios. Fawn survival rates were similar between periods, but the proportion of females with evidence of ovulation increased during the period of low coyote-deer ratios. Increases in ovulation were similar to increases in the proportion of females with evidence of lactation and fawn-adult female ratios. While direct killing by predators greatly influenced survival of fawns during both periods, changes in recruitment resulted from variations in fecundity. I tested hypotheses predicting the consequences of 10 years of predator exclusion on oak (Quercus sp.) recruitment and the density of selected deer forage species.
    [Show full text]
  • Coyotes in New Jersey
    If You See A Coyote Informational Links DO NOT allow a coyote to approach you or your pet. http://coyoteyipps.com/ People have been injured while COYOTES http://www.state.nj.us/dep/fgw/coyote_info.htm attempting to protect small pets from coyotes. Call 911 first and do http://www.state.nj.us/dep/fgw/coyote_mgt06.htm not attempt to touch the coyote. IN http://www.nj.com/hunterdon-county- Instead, show them that they are democrat/index.ssf/2013/11/new_jersey_wildlife_the_easter. not welcome. Make loud noises NEW JERSEY (hit pots, throw rocks, spray html The first coyote sighting in New Jersey water etc.) http://www.esf.edu/pubprog/brochure/coyote/coyote.htm took place in Hunterdon County in 1939. http://www.humanesociety.org/animals/coyotes/tips/agains Since then, the coyote population of t_killing_coyotes.html has risen to over 14,000. http://www.dec.ny.gov/animals/9359.html Coyotes are NOT native to New Jersey. It is believed that western coyote migrated here and bred with wolves to create the eastern coyote. Relocation? Kaela Shepard In the past, Coyotes have been Girl Scouts of Northern New Jersey relocated. This approach has proven Gold Award Leadership Project unsuccessful for humans and coyotes alike. Coyotes that have been relocated will travel great distances to find their way back to familiar territory in search of food, water, and shelter. They are shunned by other coyotes, and are sometimes killed on unfamiliar roads. Facts Why they are in New Jersey The eastern coyote resembles a small With the loss of wolves as the top predator, as German Shepherd, but has a long snout and a well as the loss of habitat in the west, the bushy, black-tipped tail.
    [Show full text]
  • CANAAN VALLEY NATIONAL WILDLIFE REFUGE April 2007
    AMENDED ENVIRONMENTAL ASSESSMENT HUNT PROGRAM PROPOSAL CANAAN VALLEY NATIONAL WILDLIFE REFUGE April 2007 U.S. Department of the Interior Fish and Wildlife Service Canaan Valley National Wildlife Refuge Tucker County, West Virginia ENVIRONMENTAL ASSESSMENT/HUNTING CANAAN VALLEY NWR TABLE OF CONTENTS LIST OF FIGURES/TABLES ....................................................................................................... vi LIST OF ACRONYMS ................................................................................................................ vii I. Introduction..........................................................................................................................1 II. Purpose and Need for the Proposed Action .........................................................................5 A. Proposed Action.......................................................................................................5 B. Purpose.....................................................................................................................5 C. Need for the Proposed Action..................................................................................6 III. Proposed Action and Its Alternatives ..................................................................................6 A. Summary of the Alternatives ...................................................................................7 B. Alternatives Dismissed from Consideration............................................................7 C. Description of Alternatives......................................................................................7
    [Show full text]
  • Coywolf: Eastern Coyote Genetics, Ecology, Management, and Politics
    Coywolf: Eastern Coyote Genetics, Ecology, Management, and Politics By Jonathan G. Way Published by Eastern Coyote/Coywolf Research - www.EasternCoyoteResearch.com E-book • Citation: • Way, J.G. 2021. E-book. Coywolf: Eastern Coyote Genetics, Ecology, Management, and Politics. Eastern Coyote/Coywolf Research, Barnstable, Massachusetts. 277 pages. Open Access URL: http://www.easterncoyoteresearch.com/CoywolfBook. • Copyright © 2021 by Jonathan G. Way, Ph.D., Founder of Eastern Coyote/Coywolf Research. • Photography by Jonathan Way unless noted otherwise. • All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, e-mailing, or by any information storage, retrieval, or sharing system, without permission in writing or email to the publisher (Jonathan Way, Eastern Coyote Research). • To order a copy of my books, pictures, and to donate to my research please visit: • http://www.easterncoyoteresearch.com/store or MyYellowstoneExperience.org • Previous books by Jonathan Way: • Way, J. G. 2007 (2014, revised edition). Suburban Howls: Tracking the Eastern Coyote in Urban Massachusetts. Dog Ear Publishing, Indianapolis, Indiana, USA. 340 pages. • Way, J. G. 2013. My Yellowstone Experience: A Photographic and Informative Journey to a Week in the Great Park. Eastern Coyote Research, Cape Cod, Massachusetts. 152 pages. URL: http://www.myyellowstoneexperience.org/bookproject/ • Way, J. G. 2020. E-book (Revised, 2021). Northeastern U.S. National Parks: What Is and What Could Be. Eastern Coyote/Coywolf Research, Barnstable, Massachusetts. 312 pages. Open Access URL: http://www.easterncoyoteresearch.com/NortheasternUSNationalParks/ • Way, J.G. 2020. E-book (Revised, 2021). The Trip of a Lifetime: A Pictorial Diary of My Journey Out West.
    [Show full text]
  • North American Game Birds Or Animals
    North American Game Birds & Game Animals LARGE GAME Bear: Black Bear, Brown Bear, Grizzly Bear, Polar Bear Goat: bezoar goat, ibex, mountain goat, Rocky Mountain goat Bison, Wood Bison Moose, including Shiras Moose Caribou: Barren Ground Caribou, Dolphin Caribou, Union Caribou, Muskox Woodland Caribou Pronghorn Mountain Lion Sheep: Barbary Sheep, Bighorn Deer: Axis Deer, Black-tailed Deer, Sheep, California Bighorn Sheep, Chital, Columbian Black-tailed Deer, Dall’s Sheep, Desert Bighorn Mule Deer, White-tailed Deer Sheep, Lanai Mouflon Sheep, Nelson Bighorn Sheep, Rocky Elk: Rocky Mountain Elk, Tule Elk Mountain Bighorn Sheep, Stone Sheep, Thinhorn Mountain Sheep Gemsbok SMALL GAME Armadillo Marmot, including Alaska marmot, groundhog, hoary marmot, Badger woodchuck Beaver Marten, including American marten and pine marten Bobcat Mink North American Civet Cat/Ring- tailed Cat, Spotted Skunk Mole Coyote Mouse Ferret, feral ferret Muskrat Fisher Nutria Fox: arctic fox, gray fox, red fox, swift Opossum fox Pig: feral swine, javelina, wild boar, Lynx wild hogs, wild pigs Pika Skunk, including Striped Skunk Porcupine and Spotted Skunk Prairie Dog: Black-tailed Prairie Squirrel: Abert’s Squirrel, Black Dogs, Gunnison’s Prairie Dogs, Squirrel, Columbian Ground White-tailed Prairie Dogs Squirrel, Gray Squirrel, Flying Squirrel, Fox Squirrel, Ground Rabbit & Hare: Arctic Hare, Black- Squirrel, Pine Squirrel, Red Squirrel, tailed Jackrabbit, Cottontail Rabbit, Richardson’s Ground Squirrel, Tree Belgian Hare, European
    [Show full text]
  • Effects on White-Tailed Deer Following Eastern Coyote Colonization
    The Journal of Wildlife Management; DOI: 10.1002/jwmg.21651 Research Article Effects on White-Tailed Deer Following Eastern Coyote Colonization EUGENIA V. BRAGINA,1 Fisheries, Wildlife, and Conservation Biology Program, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA ROLAND KAYS, North Carolina Museum of Natural Sciences, 11 West Jones Street, Raleigh, NC 27601, USA ALLISON HODY, Fisheries, Wildlife, and Conservation Biology Program, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA CHRISTOPHER E. MOORMAN, Fisheries, Wildlife, and Conservation Biology Program, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA CHRISTOPHER S. DEPERNO, Fisheries, Wildlife, and Conservation Biology Program, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA L. SCOTT MILLS, Wildlife Biology Program and Of®ce of Research and Creative Scholarship, University of Montana, Missoula, MT 59812, USA ABSTRACT The expansion or recovery of predators can affect local prey populations. Since the 1940s, coyotes (Canis latrans) have expanded into eastern North America where they are now the largest predator and prey on white-tailed deer (Odocoileus virginianus). However, their effect on deer populations remains controversial. We tested the hypothesis that coyotes, as a novel predator, would affect deer population dynamics across large spatial scales, and the strongest effects would occur after a time lag following initial coyote colonization that allows for the predator populations to grow. We evaluated deer population trends from 1981 to 2014 in 384 counties of 6 eastern states in the United States with linear mixed models.
    [Show full text]
  • Native & Naturalized Shoreland Plantings for New Hampshire
    Native Shoreland/Riparian Buffer Plantings for New Hampshire* * This list is referenced in Env-Wq 1400 Shoreland Protection as Appendix D Common Growth Light Soil Associated Birds and Mammals Latin Name Height Rooting Habitat Name(s) Rate Preference Preference (Cover, Nesting or Food) and Food Value Trees American Basswood Rich woods, valleys, Wildlife: Pileated woodpecker, wood duck, Medium-Large Full/Part Shade (American Linden) Tilia americana Moderate Deep Moist gentle slopes other birds; deer, rabbit, squirrel 60-100’ or Full Sun Food: Seeds, twigs Wildlife: Blue jay, chickadees, nuthatches, quail, ruffed grouse, tufted titmouse, wild Fagus Medium-Large Full/Part Shade Rich woods, turkey, wood duck, woodpeckers; bear, American Beech Slow Shallow Dry or Moist grandifolia 60-90’ or Full Sun well-drained lowlands chipmunk, deer, fox, porcupine, snowshoe hare, squirrel Food: Nuts, buds, sap Wildlife: Downy woodpecker, mockingbird, American purple finch, ring-necked pheasant, rose- Ostrya Small Full/Part Shade Hophornbeam Slow Shallow Dry or Moist Rich woods breasted grosbeak, ruffed grouse, wild turkey, virginiana 20-40’ or Full Sun wood quail; deer, rabbit, squirrel (Ironwood) Food: Nuts, buds, seeds Rich woods, forested Wildlife: Quail, ruffed grouse, wood duck; American Hornbeam Carpinus Small/Shrubby Full/Part Shade Dry, Moist, Flood (Blue Slow Moderate wetlands, ravines, beaver, deer, squirrel caroliniana 20-40’ or Full Sun Tolerant Beech/Musclewood) streambanks Food: Seeds, buds Wildlife: Bluebird, brown thrasher, catbird, American
    [Show full text]
  • The Journal of Wildlife Management 83(8):1636–1640; 2019; DOI: 10.1002/Jwmg.21735
    The Journal of Wildlife Management 83(8):1636–1640; 2019; DOI: 10.1002/jwmg.21735 Letter to the Editor Coyotes and White‐Tailed Deer Populations in the East: A Comment on Bragina et al. (2019) JOHN C. KILGO,1 USDA Forest Service, Southern Research Station, P.O Box 700, New Ellenton, SC 29809, USA MICHAEL J. CHERRY, Department of Fish and Wildlife Conservation, 310 West Campus Drive, Cheatham Hall, RM101, Virginia Tech (MC 0321), Blacksburg, VA 24061, USA STEPHEN S. DITCHKOFF, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA WILLIAM D. GULSBY, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA KARL V. MILLER, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Nearly 10 years ago, Kilgo et al. (2010) published a limited to red grouse (Lagopus lagopus scotica) in the United commentary that raised the question, “Can coyotes affect Kingdom, a species and study system much different from deer populations in southeastern North America?” Since white‐tailed deer in the eastern United States. In contrast, then, numerous field studies have shed light on, if not Imperio et al. (2010) focused on 5 ungulate species in Italy, unequivocally answered, that question. Those studies, which making their findings more relevant to Bragina et al. (2019). have spanned the region in question, have been virtually Imperio et al. (2010), however, suggested that the use of bag unanimous in concluding that coyotes (Canis latrans) can records not corrected for hunting effort and without any indeed influence deer population dynamics through heavy previous validation, conditions not met by Bragina et al.
    [Show full text]
  • Recovery Plan for the Canada Lynx (Lynx Canadensis ) in Nova Scotia
    Nova Scotia Endangered Species Act Recovery Plan Series Recovery Plan for the Canada Lynx (Lynx canadensis) in Nova Scotia February 2007 Recovery Plan for the Canada Lynx in Nova Scotia February 2007 Recommended Citation Nova Scotia Lynx Recovery Team. 2006. Provincial Recovery Plan for the Canada Lynx (Lynx canadensis), Nova Scotia. 32 pp. Additional Copies Additional copies of this report are available from Nova Scotia Department of Natural Resources at www.gov.ns.ca, at www.speciesatrisk.ca, or by contacting Mike O’Brien at [email protected]. i Recovery Plan for the Canada Lynx in Nova Scotia February 2007 Recovery Plan for the Canada Lynx (Lynx canadensis) in Nova Scotia February 2007 Recovery of this species is considered technically or biologically feasible at this time. ii Recovery Plan for the Canada Lynx in Nova Scotia February 2007 Responsible Jurisdictions Government of Nova Scotia: Nova Scotia Department of Natural Resources Authors This report was prepared by Amanda Lavers with the assistance of the Nova Scotia Lynx Recovery Team. A list of recovery team members is found on page 26. Acknowledgments The Recovery Team for Nova Scotia Lynx has contributed extensively to the writing of this recovery strategy. A list of members and their affiliations is found on page 26. The preparation of this Recovery Plan was funded by Nova Scotia Department of Natural Resources. Preface This recovery plan has been prepared by the responsible jurisdiction, the Nova Scotia Department of Natural Resources in cooperation with the Recovery Team for Canada Lynx in Nova Scotia. The recovery plan defines the recovery goal, objectives, strategies, and actions that are deemed necessary to protect, conserve, and recover Canada Lynx in Nova Scotia.
    [Show full text]
  • Coyotes, Look Christine to Their Wolf Relatives Schadler
    To understand By Eastern coyotes, look Christine to their wolf relatives Schadler housands of Eastern coyotes live among us – rarely seen, often heard and frequently discussed. Some T people resent the presence of coyotes and fear them as predators of pets, livestock and game animals. Others admire their resilience, and are thrilled to hear their return- to-the-wild howl and all it represents. In short, the coyote is a topic of contention. The Eastern coyote (Canis latrans var.) and the Eastern wolf (Canis lupus lycaon) are closely related and similar enough in appearance that it can be hard to distinguish them. Yet coyotes are abundant throughout their range in the face of liberal hunting and trapping seasons, while the wolf is protected by the Endangered Species Act. The answer to this dichotomy lies in the apparent vulnerability of the wolf and the undeniable success of the coyote. Susceptible to overhunting and habitat loss, wolves in the lower 48 were nearly eradicated over a century ago. Today, wolves roam through- out the West and the Great Lake states, saved by protection and reintroductions. The coyote’s success, on the other hand, has created a public relations night- mare for itself. Despite over a century of relentless persecution, coyotes have thwarted every effort at control and have expanded their range into the densely settled East Coast. Studies show that where coyote bounties (paying hunters to kill coyotes), open hunting seasons, poisoning, snaring and other control measures have been attempted, success varies depending on scale. Nationwide, there are tens of 8 November/December 2010 • WILDLIFE JOURNAL O T PHO S AM AD AY AY NDS © LI WILDLIFEILDLIFE JJOURNAL •• November/December 2010 9 Wolf or Coyote? Side by side, the differences between wolves (that’s a gray wolf on the left) and Eastern coyotes (right) are clear.
    [Show full text]