Can Wavefunction Collapse Conserve Energy?

Total Page:16

File Type:pdf, Size:1020Kb

Can Wavefunction Collapse Conserve Energy? Can Wavefunction Collapse Conserve Energy? Shan Gao∗ April 4, 2012 Abstract The answer may be yes. A discrete model of energy-conserved wave- function collapse is proposed. It is shown that the model is consistent with existing experiments and our macroscopic experience. 1 Introduction In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured by a macroscopic device, it no longer follows the linear Schr¨odingerequation, but instantaneously collapses to one of the wave functions that correspond to definite measurement results. However, this col- lapse postulate is ad hoc, and the theory does not tell us why and how a definite measurement result appears (Bell 1990). A promising solution to this measure- ment problem is dynamical collapse theories, in which the collapse evolution is dynamical and integrated with the normal Schr¨odingerevolution into a unified dynamics (Ghirardi 2008). However, the existing dynamical collapse models are plagued by the serious problem of energy non-conservation (Pearle 2007, 2009). For instance, in the CSL (Continuous Spontaneous Localization) model, the collapse due to an external noise field narrows the wave function in position space, thereby producing an increase of energy. Although it is expected that the conservation laws may be satisfied when the contributions of the noise field to the conserved quantities are taken into account (Pearle 2004; Bassi, Ippoliti and Vacchini 2005), a complete solution has not yet been found, and it is still unknown whether such a solution indeed exists. In this paper, we will propose a discrete model of energy-conserved wave- function collapse, and show that the model is consistent with existing exper- iments and our macroscopic experience. It has been demonstrated that the energy-driven collapse models that conserve energy can't explain the emergence of definite measurement results (Pearle 2004). However, this important re- sult does not imply that all energy-conserved collapse models are inconsistent with experiments. A detailed analysis of this paper will demonstrate that some energy-conserved collapse models can be consistent with existing experiments ∗Unit for HPS and Centre for Time, University of Sydney, NSW 2006, Australia. E-mail: [email protected]. 1 and our macroscopic experience. The key is to assume that the energy uncer- tainty driving the collapse of the entangled state of a many-body system is not the uncertainty of the total energy of all sub-systems as the energy-driven col- lapse models assume, but the sum of the absolute energy uncertainty of every sub-system. 2 A discrete model of energy-conserved wave- function collapse Consider a multi-level system with a constant Hamiltonian. Its initial state is: m X j (0)i = ci(0) jEii; (1) i=1 where jEii is the energy eigenstate of the Hamiltonian of the system, Ei is the corresponding energy eigenvalue, and ci(0) satisfies the normalization relation Pm 2 i=1 jci(0)j = 1. It is assumed that this superposition of energy eigenstates collapses to one of the eigenstates after a discrete dynamical process, and the collapse evolution satisfies the conservation of energy at the ensemble level1. This collapse process is composed of a finite number of discrete tiny collapses. The properties of the tiny collapses is assumed as follows. At each discrete instant t = ntP (where tP is the discrete unit of time), the probability of the tiny collapse happening in 2 each energy branch jEii is Pi(t) ≡ jci(t)j , and this collapse slightly increases the probability of the energy branch and decreases the probabilities of all other branches pro rata. Then during a finite time interval much larger than tP , the probability of each energy branch will undergo a discrete and stochastic evolution. In the end, the probability of one branch will be close to one, and the probabilities of other branches will be close to zero. In other words, the initial superposition will randomly collapse to one of the energy branches in the superposition. Since it has been generally conjectured that the Planck scale is the minimum spacetime scale2, we will assume that the size of each discrete instant, tP , is the Planck time in our following analysis. Now we will give a concrete analysis of this dynamical collapse process. Since the linear Schr¨odingerevolution does not change the energy probability distribution, we may only consider the influence of dynamical collapse on the energy probability distribution. Suppose at a discrete instant t = ntP the tiny 1It can be proved that only when the collapse states are energy eigenstates of the total Hamiltonian for each identical system in an ensemble, can energy be conserved at the ensemble level for wavefunction collapse (see Pearle 2000 for a more detailed analysis). Note that for the linear Schr¨odingerevolution under an external potential, energy is conserved but momentum is not conserved even at the ensemble level, and thus it is not momentum conservation but energy conservation that is a more universal restriction for wavefunction collapse. Moreover, as we will see later, the conservation of energy may also hold true at the individual level for the collapse evolution of some special wave functions. 2Note that the existing arguments, which are based on some sort of combination of quantum theory and general relativity (see, e.g. Garay 1995 for a review), do not imply but only suggest that space and time are discrete. Moreover, the meanings and realization of discrete spacetime are also different in the existing models of quantum gravity. 2 collapse randomly happens in an energy branch jEii, and the probability of the branch Pi(t) changes to i Pi (t + tP ) = Pi(t) + ∆Pi; (2) where the superscript i denotes this tiny collapse event, and ∆Pi is a functional of Pi(t). Due to the conservation of probability, the probability of another 3 branch Pj(t)(j 6= i) correspondingly turns to be i Pj(t)∆Pi Pj (t + tP ) = Pj(t) − ; (3) 1 − Pi(t) where the superscript i still denotes this random event. The probability of this tiny collapse happening in the energy branch jEii at the instant is p(Ei; t) = Pi(t). Then we can work out the diagonal density matrix elements of the evo- lution4: m X j ρii(t + tP ) = p(Ej; t)Pi (t + tP ) j=1 X Pi(t)∆Pj(t) = Pi(t)[Pi(t) + ∆Pi] + Pj(t)[Pi(t) − ] 1 − Pj(t) j6=i X ∆Pj(t) = ρii(t) + Pi(t)[∆Pi − Pj(t) ]: (4) 1 − Pj(t) j6=i Here we shall introduce the first rule of dynamical collapse in our model, which says that the probability distribution of energy eigenvalues for an ensem- ble of identical systems is constant during the dynamical collapse process. It can be seen that this rule is entailed by the principle of energy conservation at the ensemble level. By this rule, we have ρii(t + tP ) = ρii(t) for any i. This leads to the following set of equations: X Pj(t)∆Pj(t) ∆P1(t) − = 0; 1 − Pj(t) j6=1 X Pj(t)∆Pj(t) ∆P2(t) − = 0; 1 − Pj(t) j6=2 ::: X Pj(t)∆Pj(t) ∆Pm(t) − = 0: (5) 1 − Pj(t) j6=m 3One can also obtain this result by first increasing the probability of one branch and Pi(t)+∆ then normalizing the probabilities of all branches. This means that Pi(t + tP ) = 1+∆ Pj (t) ∆ and Pj (t + tP ) = 1+∆ for any j 6= i. In this way, we have ∆Pi = 1+∆ (1 − Pi(t)) and ∆ ∆Pj = 1+∆ Pj (t) for any j 6= i. 4The density matrix describes the ensemble of states which arise from all possible random events. 3 By solving this equations set (e.g. by subtracting each other), we find the following relation for any i: ∆P i = k; (6) 1 − Pi(t) where k is an undetermined dimensionless quantity that relates to the state j (t)i. By using Eq. (6), we can further work out the non-diagonal density matrix elements of the evolution. But it is more convenient to calculate the following variant of non-diagonal density matrix elements: m X l l ρij(t + tP ) = p(El; t)Pi (t + tP )Pj (t + tP ) l=1 X = Pl(t)[Pi(t) − kPi(t)][Pj(t) − kPj(t)] l6=i;j +Pi(t)[Pi(t) + k(1 − Pi(t))][Pj(t) − kPj(t)] +Pj(t)[Pj(t) + k(1 − Pj(t))][Pi(t) − kPi(t)] 2 = (1 − k )ρij(t): (7) 1 Since the usual collapse time, τc, is defined by the relation ρij(τc) = 2 ρij(0), we may use a proper approximation, where k is assumed to be the same as its initial value during the time interval [0; τc], to simplify the calculation of the collapse time. Then we have: 2 n ρij(t) ≈ (1 − k ) ρij(0): (8) The corresponding collapse time is in the order of: 1 τ ≈ t ; (9) c k2 P In the following, we shall analyze the formula of k defined by Eq. (6). To begin with, the probability restricting condition 0 6 Pi(t) 6 1 for any i requires that 0 6 k 6 1. When k = 0, no collapse happens, and when k = 1, collapse happens instantaneously. Note that k cannot be smaller than zero, as this will lead to the negative value of Pi(t) in some cases. For instance, when k is jkj negative and Pi(t) < 1+jkj , Pi(t + tP ) = Pi(t) + k[1 − Pi(t)] will be negative and violate the probability restricting condition. That k is positive indicates that at each discrete instant only the probability of one branch increases and the probabilities of all other branches decrease, which is consistent with our previous assumption.
Recommended publications
  • Unit 1 Old Quantum Theory
    UNIT 1 OLD QUANTUM THEORY Structure Introduction Objectives li;,:overy of Sub-atomic Particles Earlier Atom Models Light as clectromagnetic Wave Failures of Classical Physics Black Body Radiation '1 Heat Capacity Variation Photoelectric Effect Atomic Spectra Planck's Quantum Theory, Black Body ~diation. and Heat Capacity Variation Einstein's Theory of Photoelectric Effect Bohr Atom Model Calculation of Radius of Orbits Energy of an Electron in an Orbit Atomic Spectra and Bohr's Theory Critical Analysis of Bohr's Theory Refinements in the Atomic Spectra The61-y Summary Terminal Questions Answers 1.1 INTRODUCTION The ideas of classical mechanics developed by Galileo, Kepler and Newton, when applied to atomic and molecular systems were found to be inadequate. Need was felt for a theory to describe, correlate and predict the behaviour of the sub-atomic particles. The quantum theory, proposed by Max Planck and applied by Einstein and Bohr to explain different aspects of behaviour of matter, is an important milestone in the formulation of the modern concept of atom. In this unit, we will study how black body radiation, heat capacity variation, photoelectric effect and atomic spectra of hydrogen can be explained on the basis of theories proposed by Max Planck, Einstein and Bohr. They based their theories on the postulate that all interactions between matter and radiation occur in terms of definite packets of energy, known as quanta. Their ideas, when extended further, led to the evolution of wave mechanics, which shows the dual nature of matter
    [Show full text]
  • Quantum Theory of the Hydrogen Atom
    Quantum Theory of the Hydrogen Atom Chemistry 35 Fall 2000 Balmer and the Hydrogen Spectrum n 1885: Johann Balmer, a Swiss schoolteacher, empirically deduced a formula which predicted the wavelengths of emission for Hydrogen: l (in Å) = 3645.6 x n2 for n = 3, 4, 5, 6 n2 -4 •Predicts the wavelengths of the 4 visible emission lines from Hydrogen (which are called the Balmer Series) •Implies that there is some underlying order in the atom that results in this deceptively simple equation. 2 1 The Bohr Atom n 1913: Niels Bohr uses quantum theory to explain the origin of the line spectrum of hydrogen 1. The electron in a hydrogen atom can exist only in discrete orbits 2. The orbits are circular paths about the nucleus at varying radii 3. Each orbit corresponds to a particular energy 4. Orbit energies increase with increasing radii 5. The lowest energy orbit is called the ground state 6. After absorbing energy, the e- jumps to a higher energy orbit (an excited state) 7. When the e- drops down to a lower energy orbit, the energy lost can be given off as a quantum of light 8. The energy of the photon emitted is equal to the difference in energies of the two orbits involved 3 Mohr Bohr n Mathematically, Bohr equated the two forces acting on the orbiting electron: coulombic attraction = centrifugal accelleration 2 2 2 -(Z/4peo)(e /r ) = m(v /r) n Rearranging and making the wild assumption: mvr = n(h/2p) n e- angular momentum can only have certain quantified values in whole multiples of h/2p 4 2 Hydrogen Energy Levels n Based on this model, Bohr arrived at a simple equation to calculate the electron energy levels in hydrogen: 2 En = -RH(1/n ) for n = 1, 2, 3, 4, .
    [Show full text]
  • The Concept of Quantum State : New Views on Old Phenomena Michel Paty
    The concept of quantum state : new views on old phenomena Michel Paty To cite this version: Michel Paty. The concept of quantum state : new views on old phenomena. Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner. Revisiting the Founda- tions of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, p. 451-478, 2003. halshs-00189410 HAL Id: halshs-00189410 https://halshs.archives-ouvertes.fr/halshs-00189410 Submitted on 20 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « The concept of quantum state: new views on old phenomena », in Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner (eds.), Revisiting the Foundations of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, 451-478. , 2003 The concept of quantum state : new views on old phenomena par Michel PATY* ABSTRACT. Recent developments in the area of the knowledge of quantum systems have led to consider as physical facts statements that appeared formerly to be more related to interpretation, with free options.
    [Show full text]
  • Vibrational Quantum Number
    Fundamentals in Biophotonics Quantum nature of atoms, molecules – matter Aleksandra Radenovic [email protected] EPFL – Ecole Polytechnique Federale de Lausanne Bioengineering Institute IBI 26. 03. 2018. Quantum numbers •The four quantum numbers-are discrete sets of integers or half- integers. –n: Principal quantum number-The first describes the electron shell, or energy level, of an atom –ℓ : Orbital angular momentum quantum number-as the angular quantum number or orbital quantum number) describes the subshell, and gives the magnitude of the orbital angular momentum through the relation Ll2 ( 1) –mℓ:Magnetic (azimuthal) quantum number (refers, to the direction of the angular momentum vector. The magnetic quantum number m does not affect the electron's energy, but it does affect the probability cloud)- magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field-Zeeman effect -s spin- intrinsic angular momentum Spin "up" and "down" allows two electrons for each set of spatial quantum numbers. The restrictions for the quantum numbers: – n = 1, 2, 3, 4, . – ℓ = 0, 1, 2, 3, . , n − 1 – mℓ = − ℓ, − ℓ + 1, . , 0, 1, . , ℓ − 1, ℓ – –Equivalently: n > 0 The energy levels are: ℓ < n |m | ≤ ℓ ℓ E E 0 n n2 Stern-Gerlach experiment If the particles were classical spinning objects, one would expect the distribution of their spin angular momentum vectors to be random and continuous. Each particle would be deflected by a different amount, producing some density distribution on the detector screen. Instead, the particles passing through the Stern–Gerlach apparatus are deflected either up or down by a specific amount.
    [Show full text]
  • The Quantum Mechanical Model of the Atom
    The Quantum Mechanical Model of the Atom Quantum Numbers In order to describe the probable location of electrons, they are assigned four numbers called quantum numbers. The quantum numbers of an electron are kind of like the electron’s “address”. No two electrons can be described by the exact same four quantum numbers. This is called The Pauli Exclusion Principle. • Principle quantum number: The principle quantum number describes which orbit the electron is in and therefore how much energy the electron has. - it is symbolized by the letter n. - positive whole numbers are assigned (not including 0): n=1, n=2, n=3 , etc - the higher the number, the further the orbit from the nucleus - the higher the number, the more energy the electron has (this is sort of like Bohr’s energy levels) - the orbits (energy levels) are also called shells • Angular momentum (azimuthal) quantum number: The azimuthal quantum number describes the sublevels (subshells) that occur in each of the levels (shells) described above. - it is symbolized by the letter l - positive whole number values including 0 are assigned: l = 0, l = 1, l = 2, etc. - each number represents the shape of a subshell: l = 0, represents an s subshell l = 1, represents a p subshell l = 2, represents a d subshell l = 3, represents an f subshell - the higher the number, the more complex the shape of the subshell. The picture below shows the shape of the s and p subshells: (notice the electron clouds) • Magnetic quantum number: All of the subshells described above (except s) have more than one orientation.
    [Show full text]
  • 4 Nuclear Magnetic Resonance
    Chapter 4, page 1 4 Nuclear Magnetic Resonance Pieter Zeeman observed in 1896 the splitting of optical spectral lines in the field of an electromagnet. Since then, the splitting of energy levels proportional to an external magnetic field has been called the "Zeeman effect". The "Zeeman resonance effect" causes magnetic resonances which are classified under radio frequency spectroscopy (rf spectroscopy). In these resonances, the transitions between two branches of a single energy level split in an external magnetic field are measured in the megahertz and gigahertz range. In 1944, Jevgeni Konstantinovitch Savoiski discovered electron paramagnetic resonance. Shortly thereafter in 1945, nuclear magnetic resonance was demonstrated almost simultaneously in Boston by Edward Mills Purcell and in Stanford by Felix Bloch. Nuclear magnetic resonance was sometimes called nuclear induction or paramagnetic nuclear resonance. It is generally abbreviated to NMR. So as not to scare prospective patients in medicine, reference to the "nuclear" character of NMR is dropped and the magnetic resonance based imaging systems (scanner) found in hospitals are simply referred to as "magnetic resonance imaging" (MRI). 4.1 The Nuclear Resonance Effect Many atomic nuclei have spin, characterized by the nuclear spin quantum number I. The absolute value of the spin angular momentum is L =+h II(1). (4.01) The component in the direction of an applied field is Lz = Iz h ≡ m h. (4.02) The external field is usually defined along the z-direction. The magnetic quantum number is symbolized by Iz or m and can have 2I +1 values: Iz ≡ m = −I, −I+1, ..., I−1, I.
    [Show full text]
  • Entanglement of the Uncertainty Principle
    Open Journal of Mathematics and Physics | Volume 2, Article 127, 2020 | ISSN: 2674-5747 https://doi.org/10.31219/osf.io/9jhwx | published: 26 Jul 2020 | https://ojmp.org EX [original insight] Diamond Open Access Entanglement of the Uncertainty Principle Open Quantum Collaboration∗† August 15, 2020 Abstract We propose that position and momentum in the uncertainty principle are quantum entangled states. keywords: entanglement, uncertainty principle, quantum gravity The most updated version of this paper is available at https://osf.io/9jhwx/download Introduction 1. [1] 2. Logic leads us to conclude that quantum gravity–the theory of quan- tum spacetime–is the description of entanglement of the quantum states of spacetime and of the extra dimensions (if they really ex- ist) [2–7]. ∗All authors with their affiliations appear at the end of this paper. †Corresponding author: [email protected] | Join the Open Quantum Collaboration 1 Quantum Gravity 3. quantum gravity quantum spacetime entanglement of spacetime 4. Quantum spaceti=me might be in a sup=erposition of the extra dimen- sions [8]. Notation 5. UP Uncertainty Principle 6. UP= the quantum state of the uncertainty principle ∣ ⟩ = Discussion on the notation 7. The universe is mathematical. 8. The uncertainty principle is part of our universe, thus, it is described by mathematics. 9. A physical theory must itself be described within its own notation. 10. Thereupon, we introduce UP . ∣ ⟩ Entanglement 11. UP α1 x1p1 α2 x2p2 α3 x3p3 ... 12. ∣xi ⟩u=ncer∣tainty⟩ +in po∣ sitio⟩n+ ∣ ⟩ + 13. pi = uncertainty in momentum 14. xi=pi xi pi xi pi ∣ ⟩ = ∣ ⟩ ∣ ⟩ = ∣ ⟩ ⊗ ∣ ⟩ 2 Final Remarks 15.
    [Show full text]
  • Path Integral for the Hydrogen Atom
    Path Integral for the Hydrogen Atom Solutions in two and three dimensions Vägintegral för Väteatomen Lösningar i två och tre dimensioner Anders Svensson Faculty of Health, Science and Technology Physics, Bachelor Degree Project 15 ECTS Credits Supervisor: Jürgen Fuchs Examiner: Marcus Berg June 2016 Abstract The path integral formulation of quantum mechanics generalizes the action principle of classical mechanics. The Feynman path integral is, roughly speaking, a sum over all possible paths that a particle can take between fixed endpoints, where each path contributes to the sum by a phase factor involving the action for the path. The resulting sum gives the probability amplitude of propagation between the two endpoints, a quantity called the propagator. Solutions of the Feynman path integral formula exist, however, only for a small number of simple systems, and modifications need to be made when dealing with more complicated systems involving singular potentials, including the Coulomb potential. We derive a generalized path integral formula, that can be used in these cases, for a quantity called the pseudo-propagator from which we obtain the fixed-energy amplitude, related to the propagator by a Fourier transform. The new path integral formula is then successfully solved for the Hydrogen atom in two and three dimensions, and we obtain integral representations for the fixed-energy amplitude. Sammanfattning V¨agintegral-formuleringen av kvantmekanik generaliserar minsta-verkanprincipen fr˚anklassisk meka- nik. Feynmans v¨agintegral kan ses som en summa ¨over alla m¨ojligav¨agaren partikel kan ta mellan tv˚a givna ¨andpunkterA och B, d¨arvarje v¨agbidrar till summan med en fasfaktor inneh˚allandeden klas- siska verkan f¨orv¨agen.Den resulterande summan ger propagatorn, sannolikhetsamplituden att partikeln g˚arfr˚anA till B.
    [Show full text]
  • Two-State Systems
    1 TWO-STATE SYSTEMS Introduction. Relative to some/any discretely indexed orthonormal basis |n) | ∂ | the abstract Schr¨odinger equation H ψ)=i ∂t ψ) can be represented | | | ∂ | (m H n)(n ψ)=i ∂t(m ψ) n ∂ which can be notated Hmnψn = i ∂tψm n H | ∂ | or again ψ = i ∂t ψ We found it to be the fundamental commutation relation [x, p]=i I which forced the matrices/vectors thus encountered to be ∞-dimensional. If we are willing • to live without continuous spectra (therefore without x) • to live without analogs/implications of the fundamental commutator then it becomes possible to contemplate “toy quantum theories” in which all matrices/vectors are finite-dimensional. One loses some physics, it need hardly be said, but surprisingly much of genuine physical interest does survive. And one gains the advantage of sharpened analytical power: “finite-dimensional quantum mechanics” provides a methodological laboratory in which, not infrequently, the essentials of complicated computational procedures can be exposed with closed-form transparency. Finally, the toy theory serves to identify some unanticipated formal links—permitting ideas to flow back and forth— between quantum mechanics and other branches of physics. Here we will carry the technique to the limit: we will look to “2-dimensional quantum mechanics.” The theory preserves the linearity that dominates the full-blown theory, and is of the least-possible size in which it is possible for the effects of non-commutivity to become manifest. 2 Quantum theory of 2-state systems We have seen that quantum mechanics can be portrayed as a theory in which • states are represented by self-adjoint linear operators ρ ; • motion is generated by self-adjoint linear operators H; • measurement devices are represented by self-adjoint linear operators A.
    [Show full text]
  • Structure of a Spin ½ B
    Structure of a spin ½ B. C. Sanctuary Department of Chemistry, McGill University Montreal Quebec H3H 1N3 Canada Abstract. The non-hermitian states that lead to separation of the four Bell states are examined. In the absence of interactions, a new quantum state of spin magnitude 1/√2 is predicted. Properties of these states show that an isolated spin is a resonance state with zero net angular momentum, consistent with a point particle, and each resonance corresponds to a degenerate but well defined structure. By averaging and de-coherence these structures are shown to form ensembles which are consistent with the usual quantum description of a spin. Keywords: Bell states, Bell’s Inequalities, spin theory, quantum theory, statistical interpretation, entanglement, non-hermitian states. PACS: Quantum statistical mechanics, 05.30. Quantum Mechanics, 03.65. Entanglement and quantum non-locality, 03.65.Ud 1. INTRODUCTION In spite of its tremendous success in describing the properties of microscopic systems, the debate over whether quantum mechanics is the most fundamental theory has been going on since its inception1. The basic property of quantum mechanics that belies it as the most fundamental theory is its statistical nature2. The history is well known: EPR3 showed that two non-commuting operators are simultaneously elements of physical reality, thereby concluding that quantum mechanics is incomplete, albeit they assumed locality. Bohr4 replied with complementarity, arguing for completeness; thirty years later Bell5, questioned the locality assumption6, and the conclusion drawn that any deeper theory than quantum mechanics must be non-local. In subsequent years the idea that entangled states can persist to space-like separations became well accepted7.
    [Show full text]
  • A Relativistic Electron in a Coulomb Potential
    A Relativistic Electron in a Coulomb Potential Alfred Whitehead Physics 518, Fall 2009 The Problem Solve the Dirac Equation for an electron in a Coulomb potential. Identify the conserved quantum numbers. Specify the degeneracies. Compare with solutions of the Schrödinger equation including relativistic and spin corrections. Approach My approach follows that taken by Dirac in [1] closely. A few modifications taken from [2] and [3] are included, particularly in regards to the final quantum numbers chosen. The general strategy is to first find a set of transformations which turn the Hamiltonian for the system into a form that depends only on the radial variables r and pr. Once this form is found, I solve it to find the energy eigenvalues and then discuss the energy spectrum. The Radial Dirac Equation We begin with the electromagnetic Hamiltonian q H = p − cρ ~σ · ~p − A~ + ρ mc2 (1) 0 1 c 3 with 2 0 0 1 0 3 6 0 0 0 1 7 ρ1 = 6 7 (2) 4 1 0 0 0 5 0 1 0 0 2 1 0 0 0 3 6 0 1 0 0 7 ρ3 = 6 7 (3) 4 0 0 −1 0 5 0 0 0 −1 1 2 0 1 0 0 3 2 0 −i 0 0 3 2 1 0 0 0 3 6 1 0 0 0 7 6 i 0 0 0 7 6 0 −1 0 0 7 ~σ = 6 7 ; 6 7 ; 6 7 (4) 4 0 0 0 1 5 4 0 0 0 −i 5 4 0 0 1 0 5 0 0 1 0 0 0 i 0 0 0 0 −1 We note that, for the Coulomb potential, we can set (using cgs units): Ze2 p = −eΦ = − o r A~ = 0 This leads us to this form for the Hamiltonian: −Ze2 H = − − cρ ~σ · ~p + ρ mc2 (5) r 1 3 We need to get equation 5 into a form which depends not on ~p, but only on the radial variables r and pr.
    [Show full text]
  • Hamilton Equations, Commutator, and Energy Conservation †
    quantum reports Article Hamilton Equations, Commutator, and Energy Conservation † Weng Cho Chew 1,* , Aiyin Y. Liu 2 , Carlos Salazar-Lazaro 3 , Dong-Yeop Na 1 and Wei E. I. Sha 4 1 College of Engineering, Purdue University, West Lafayette, IN 47907, USA; [email protected] 2 College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 3 Physics Department, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 4 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China; [email protected] * Correspondence: [email protected] † Based on the talk presented at the 40th Progress In Electromagnetics Research Symposium (PIERS, Toyama, Japan, 1–4 August 2018). Received: 12 September 2019; Accepted: 3 December 2019; Published: 9 December 2019 Abstract: We show that the classical Hamilton equations of motion can be derived from the energy conservation condition. A similar argument is shown to carry to the quantum formulation of Hamiltonian dynamics. Hence, showing a striking similarity between the quantum formulation and the classical formulation. Furthermore, it is shown that the fundamental commutator can be derived from the Heisenberg equations of motion and the quantum Hamilton equations of motion. Also, that the Heisenberg equations of motion can be derived from the Schrödinger equation for the quantum state, which is the fundamental postulate. These results are shown to have important bearing for deriving the quantum Maxwell’s equations. Keywords: quantum mechanics; commutator relations; Heisenberg picture 1. Introduction In quantum theory, a classical observable, which is modeled by a real scalar variable, is replaced by a quantum operator, which is analogous to an infinite-dimensional matrix operator.
    [Show full text]