The Importance of Hydraulic Groundwater Theory in Catchment Hydrology: the Legacy of Wilfried Brutsaert and Jean-Yves Parlange Peter A

Total Page:16

File Type:pdf, Size:1020Kb

The Importance of Hydraulic Groundwater Theory in Catchment Hydrology: the Legacy of Wilfried Brutsaert and Jean-Yves Parlange Peter A WATER RESOURCES RESEARCH, VOL. 49, 5099–5116, doi:10.1002/wrcr.20407, 2013 The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange Peter A. Troch,1 Alexis Berne,2 Patrick Bogaart,3 Ciaran Harman,4 Arno G. J. Hilberts,5 Steve W. Lyon,6 Claudio Paniconi,7 Valentijn R. N. Pauwels,8 David E. Rupp,9 John S. Selker,10 Adriaan J. Teuling,11 Remko Uijlenhoet,11 and Niko E. C. Verhoest12 Received 1 March 2013; revised 21 June 2013; accepted 8 July 2013; published 4 September 2013. [1] Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in catchment hydrology, ranging from drought flow analysis to surface water-groundwater interactions, hydraulic groundwater theory simplifies the description of water flow in unconfined riparian and perched aquifers through assumptions attributed to Dupuit and Forchheimer. Boussinesq (1877) derived a general equation to study flow dynamics of unconfined aquifers in uniformly sloping hillslopes, resulting in a remarkably accurate and applicable family of results, though often challenging to solve due to its nonlinear form. Under certain conditions, the Boussinesq equation can be solved analytically allowing compact representation of soil and geomorphological controls on unconfined aquifer storage and release dynamics. The Boussinesq equation has been extended to account for flow divergence/convergence as well as for nonuniform bedrock slope (concave/convex). The extended Boussinesq equation has been favorably compared to numerical solutions of the three-dimensional Richards equation, confirming its validity under certain geometric conditions. Analytical solutions of the linearized original and extended Boussinesq equations led to the formulation of similarity indices for baseflow recession analysis, including scaling rules, to predict the moments of baseflow response. Validation of theoretical recession parameters on real-world streamflow data is complicated due to limited measurement accuracy, changing boundary conditions, and the strong coupling between the saturated aquifer with the overlying unsaturated zone. However, recent advances are shown to have mitigated several of these issues. The extended Boussinesq equation has been successfully applied to represent baseflow dynamics in catchment-scale hydrological models, and it is currently considered to represent lateral redistribution of groundwater in land surface schemes applied in global circulation models. From the review, it is clear that Wilfried Brutsaert and Jean-Yves Parlange stimulated a body of research that has led to several fundamental discoveries and practical applications with important contributions in hydrological modeling. Citation: Troch, P. A., et al. (2013), The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange, Water Resour. Res., 49, 5099–5116, doi: 10.1002/wrcr.20407. 1Department of Hydrology and Water Resources, University of Arizona, 9Oregon Climate Change Research Institute, College of Earth, Ocean Tucson, Arizona, USA. and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, 2Environmental Remote Sensing Laboratory, EPFL, Lausanne, USA. Switzerland. 10Biological & Ecological Engineering Department, Oregon State Uni- 3Copernicus Institute of Sustainable Development, Environmental Sci- versity, Corvallis, Oregon, USA. ences Group, Utrecht University, Utrecht, Netherlands. 11Hydrology and Quantitative Water Management, Wageningen Uni- 4Department of Geography and Environmental Engineering, Johns Hop- versity, Wageningen, Netherlands. kins University, Baltimore, Maryland, USA. 12Laboratory of Hydrology and Water Management, Ghent University, 5Risk Management Solutions Ltd., London, UK. Ghent, Belgium. 6Physical Geography and Quaternary Geology, Stockholm University, Corresponding author: P. A. Troch, Hydrology and Water Resources, Stockholm, Sweden. University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, 7Institut National de la Recherche Scientifique, Centre Eau Terre Envi- USA. ([email protected]) ronnement (INRS-ETE), UniversitedeQuebec, Quebec City, Quebec, Canada. ©2013. American Geophysical Union. All Rights Reserved. 8 Department of Civil Engineering, Monash University, Clayton, Victo- 0043-1397/13/10.1002/wrcr.20407 ria, Australia. 5099 TROCH ET AL.: REVIEW 1. Introduction these hypotheses. In short, it is the scientific method that guarantees advancement in our understanding rather than [2] Quantifying catchment-scale hydrological processes, parameter estimation in absence of insight, as so often states, and fluxes remains difficult due to the scale of the encountered in the literature. chosen control volume and the intrinsic heterogeneities of [5] This review paper describes the importance of hy- soil, vegetation, and topographic parameters that define draulic groundwater theory in catchment hydrology, and these processes. A bottom-up approach (i.e., building large- the role Brutsaert and Parlange have played. Because of scale predictions explicitly from direct measurement of this focus, we selected contributions that have played piv- parameters reflecting basic principles of underlying small- otal roles in developing catchment-scale theory of hydro- scale processes) that attempts to characterize all relevant logic response, and have left out many other important heterogeneities seems to be infeasible with current technol- contributions employing hydraulic groundwater theory. ogy [McDonnell et al., 2007], although important progress Section 2 summarizes the main concepts leading to hydrau- has been made using geophysical and remote sensing meth- lic groundwater theory of riparian and perched aquifers that ods (e.g., ground penetrating radar and electrical resistance drain into the catchment’s channel network. Section 3 tomography to scan subsurface soil properties at hillslope reviews several exact and approximate analytical solutions scales, visible and near IR remote sensing to map vegetation to the main equations of hydraulic groundwater theory, properties). We also lack solid theory that links small-scale many of which were proposed by Brutsaert, Parlange, their variability of soil and vegetation properties to large-scale students, and colleagues. Section 4 focuses on how hydrau- fluxes at the land surface and the subsurface [Troch et al., lic groundwater theory can be used to interpret recession 2008]. Therefore, analysis of catchment data, based on flow at catchment scales. Section 5 extends the baseflow appropriate hydrological theory, is a reasonable approach to analysis methods proposed by Brutsaert and Parlange to progress the understanding of catchment-scale processes. quantify other hydrological fluxes, such as precipitation [3] This approach is at the heart of the research executed and evaporation, as well as develop parsimonious rainfall- by Wilfried Brutsaert and Jean-Yves Parlange. While they runoff models. Section 6 reviews several extensions have addressed many different aspects of hydrology, here recently made to hydraulic groundwater theory that attempt we focus on their groundbreaking contributions regarding to relax some of the important assumptions inherent in tra- the rainfall-runoff response at the catchment scale. In a ditional hydraulic groundwater theory. In section 7, we time when distributed hydrological models became popular present studies that have formulated hydrologic similarity and seemingly the way out of the intractable problem of theory based on the pioneering work of Brutsaert and Par- identifying catchment response in light of landscape heter- lange. Finally, in Section 8, we review recent contributions ogeneity, they emphasized the scientific method: formulate to understanding hydrologic response to climate change the problem in ways that preserve the main physical prop- based on hydraulic groundwater theory. erties but reduce the dimensionality, find exact or approxi- mate solutions to the resulting flow and transport equations 2. Hydraulic Groundwater Theory to better understand the dominant modes of response, test these simplified solutions with real catchment data, develop 2.1. The Dupuit-Forchheimer Assumptions methods to derive catchment-scale parameter values from [6] Hydraulic groundwater theory of unconfined flow in these data sets, and inspire colleagues to explain observed a horizontal or sloping aquifer is founded on the Dupuit- inconsistencies between theory and observations. Forchheimer assumptions. In 1863, Dupuit postulated that [4] Their combined work on hydraulic groundwater given the aspect ratio prevelent in groundwater systems theory is a case study in the power of the scientific method that accurate descriptions of flow could be obtained by that they embraced. Hydraulic groundwater theory is simple ignoring the impact of vertical fluxes, and instead compute enough to allow derivation of exact or approximate analyti- groundwater flux assuming that water moves largely hori- cal solutions to specific flow situations defined by the initial zontally in proportion to the saturated aquifer thickness and and boundary conditions, yet it preserves the main physics the slope of the free surface of the aquifer [Dupuit, 1863]. that drives the flow (i.e., advection and diffusion driven
Recommended publications
  • Journal of Hydrology: Regional Studies 7 (2016) 38–54
    Journal of Hydrology: Regional Studies 7 (2016) 38–54 Contents lists available at ScienceDirect Journal of Hydrology: Regional Studies jo urnal homepage: www.elsevier.com/locate/ejrh Examining runoff generation processes in the Selke catchment in central Germany: Insights from data and semi-distributed numerical model a,b,∗ b b Sumit Sinha , Michael Rode , Dietrich Borchardt a Geography Department, Durham University, Science Site, Durham, DH1 3LE, UK b Department of Aquatic Ecosystem Analysis, Helmholtz Centre for Environmental Research-UFZ, Bruckstrasse 3a, 39114 Magdeburg, Germany a r t i c l e i n f o a b s t r a c t Article history: Study region: Our study is focussed on a mesoscale catchment, Selke, in central Germany Received 9 March 2016 2 having an area of 463 km with spatially diverse land-use from upland to the low-lying Received in revised form 2 June 2016 areas in the vicinity of the catchment outlet. Accepted 11 June 2016 Study focus: This study used rainfall-runoff data available on daily time step to examine Available online 7 July 2016 the spatio-temporal variation of runoff coefficients. We then applied a validated semi- distributed hydrological model, HYPE, for examining the spatio-temporal variation of runoff Keywords: generating mechanisms. HYPE model was modified in a minor fashion and simulations Horton runoff were conducted again to find out the portion of discharge originating from different runoff Dunne runoff generation mechanisms. Runoff generation New hydrological insights for the region: We examined the spatio-temporal variation of runoff Semi-distributed model HYPE model generating mechanisms on the sub-basin level on seasonal basis.
    [Show full text]
  • Incorporating Student-Centered Approaches Into Catchment Hydrology Teaching: a Review and Synthesis
    Hydrol. Earth Syst. Sci., 16, 3263–3278, 2012 www.hydrol-earth-syst-sci.net/16/3263/2012/ Hydrology and doi:10.5194/hess-16-3263-2012 Earth System © Author(s) 2012. CC Attribution 3.0 License. Sciences Incorporating student-centered approaches into catchment hydrology teaching: a review and synthesis S. E. Thompson1, I. Ngambeki2,5, P. A. Troch3, M. Sivapalan4, and D. Evangelou2 1Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA 2School of Engineering Education, Purdue University, West Lafayette, IN, USA 3Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ, USA 4Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, IL, USA 5Global Policy Research Institute and Department of Technology, Leadership, and Innovation, College of Technology, Purdue University, West Lafayette, IN, USA Correspondence to: S. E. Thompson ([email protected]) Received: 15 December 2011 – Published in Hydrol. Earth Syst. Sci. Discuss.: 13 January 2012 Revised: 20 August 2012 – Accepted: 22 August 2012 – Published: 13 September 2012 Abstract. As hydrologists confront the future of water 1 Introduction resources on a globalized, resource-scarce and human- impacted planet, the educational preparation of future gen- erations of water scientists becomes increasingly important. There is an increasing need to understand the dynamics of Although hydrology inherits a tradition of teacher-centered water resources as key determinants of development, hu- direct instruction – based on lecture, reading and assign- man and environmental health, and conflict and sustainabil- ment formats – a growing body of knowledge derived from ity (Gleick and Palaniappan, 2010; Postel and Wolf, 2001; engineering education research suggests that modifications United Nations Development Program, 2011).
    [Show full text]
  • Is There a Baseflow Budyko Curve? Water Resources Research, 55(4), 2838- 2855
    Gnann, S. J. , Woods, R. A., & Howden, N. J. K. (2019). Is There a Baseflow Budyko Curve? Water Resources Research, 55(4), 2838- 2855. https://doi.org/10.1029/2018WR024464 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1029/2018WR024464 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via AGU at https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018WR024464 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ RESEARCH ARTICLE Is There a Baseflow Budyko Curve? 10.1029/2018WR024464 Sebastian J. Gnann1 , Ross A. Woods1 , and Nicholas J. K. Howden1 Key Points: • The fraction of precipitation that 1Department of Civil Engineering, University of Bristol, Bristol, UK becomes baseflow cannot be estimated using the aridity index alone There is no general theory to explain differences in baseflow between catchments, despite • In humid catchments the baseflow Abstract fraction is limited by a catchment's evidence that it is mainly controlled by climate and landscape. One hypothesis is that baseflow fraction wetting potential (storage capacity) (the ratio between baseflow and precipitation) can be primarily attributed to the aridity index (the ratio • In arid catchments the baseflow between potential evapotranspiration and precipitation), that is, that there is a “baseflow Budyko curve.” fraction is limited by high vaporization amounts Comparing catchment data from the United States and the United Kingdom shows, however, that aridity is not always a good predictor of baseflow fraction.
    [Show full text]
  • Approaches to Hydrologic Classification
    Appendix 2 Protocols for hydrologic classification and a review of Australian applications J.D. Olden1, C.A. Reidy Liermann1, B.J. Pusey2 and M.J. Kennard2 1 School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA 2 Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia 1 Summary Hydrologic classification is the process of systematically arranging streams, rivers or catchments into groups that are most similar with respect to characteristics of their flow regime. Previous classification efforts have relied on a plethora of hydrologic metrics that account for characteristics of flow variability that are hypothesised to be important in shaping ecological and physical processes in lotic ecosystems. We review the process of hydrologic classification by (i) exploring its past application in the ecological sciences; (ii) reviewing existing statistical approaches to identify and characterise hydrologic classes; and (iii) providing a methodological framework for hydrologic classification that depicts critical components of the classification process. Ecologists have used hydrologic classification to place individual streams and rivers into a broader spatial context with the goal of maximising the transferability of knowledge among rivers of the same hydrologic class. Regionalisation analyses to predict streamflow behaviour in ungauged catchments often comprise a set of regression models based on several different classes of certain hydrological information at gauged sites. Consequently, by dividing a study area into homogeneous groups that are considered to exhibit similar hydrologic characteristics, records may be extrapolated with more precision, and regionalisation models based on catchment characteristics may be used with greater confidence. Hydrologic classification plays a central role in environmental flow assessments aimed at the development of ecologically sustainable practices for water management.
    [Show full text]
  • Overland Flow Under Rainfall
    OVERLANDFLO WUNDE RRAINFALL : SOMEASPECT SRELATE DT OMODELLIN GAN DCONDITIONIN GFACTOR S ONTVANGEN 2 f!0V. 1C^ SB-KARDEX CENTRALE LANDBOUWCATALOGUS 0000 0359 4435 Hoffî Promotor: dr. ir. W.H. van der Molen oud-hoogleraar ind e agrohydrologie Co-promotor: dr. ir.R.W.R . Koopmans universitair hoofddocent by de vakgroep Hydrologie, Bodemnatuurkunde en Hydraulica ijtJoXTot, ßZi J.L.M.P. de Lima OVERLAND FLOW UNDER RAINFALL: SOME ASPECTS RELATED TOMODELLIN G AND CONDITIONING FACTORS Proefschrift ter verkrijging van de graad van doctor ind e landbouwwetenschappen, op gezag van de rector magnificus, dr. H.C. van der Plas, inhe t openbaar te verdedigen op vrijdag 8decembe r 1989 des namiddags te vier uur ind e aula van de Landbouwuniversiteit te Wageningen Vrw*3 To Isabel and Rui ijiV LANDI3ÜU„ U> :iVERSITEt1" WAOENTNGFN MN>o77o| IZ2^ STATEMENTS 1. Raindrop splash anisotropy is a factor affecting splash erosion. Slope, wind and overland flow velocity are the factors contributing to that anisotropy. This thesis, Section 7.4. 2. At the hillslope scale, wind action should be considered in the modelling of overland flow. This thesis. Sections 7.1 to 7.3. 3. The morphological factors affecting overland flow on slopes are: slope gradient, slope length, slope shape, and slope exposure to prevailing rain-bringingwinds . This thesis, Chapter 6. 4. The processes of overland flow and infiltration occur simultaneously in nature during and after the occurrence of rainfall. What is required in overland flowmodellin g isa combined study of these twoprocesses . R.E. Smith and D.A. Woolhiser, Water Resources Research 7 (1971): 899-913.
    [Show full text]
  • Field-Based Analysis of Runoff Generation Processes in Humid
    water Article Field-Based Analysis of Runoff Generation Processes in Humid Lowlands of the Taihu Basin, China Yue Zhai 1, Chuanhai Wang 1,2, Gang Chen 1,2,* , Chun Wang 1, Xiaoning Li 1,2 and Yating Liu 1 1 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; [email protected] (Y.Z.); [email protected] (C.W.); [email protected] (C.W.); [email protected] (X.L.); [email protected] (Y.L.) 2 Skate Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China * Correspondence: [email protected]; Tel.: +86-139-1302-9378 Received: 6 March 2020; Accepted: 20 April 2020; Published: 24 April 2020 Abstract: In the flat lowland agricultural areas of subtropical climate zones, the runoff process has a great influence on the regional water quantity and quality. In this study, field data about rainfall, evapotranspiration, soil moisture, groundwater table, and surface water dynamics were collected in two different experimental sites in the Taihu Basin, China. Results showed that densely distributed ditches contributed to shallow groundwater depths and persistent near-saturation soil. A correlation analysis was conducted to improve the understandings of runoff generation in humid lowland areas of the Taihu Basin. It was found that a Dunne overland flow was the dominant mechanism responsible for the rapid runoff generation. The total rainfall and runoff expressed a good linear relationship with an R2 of 0.95 in the Hongqiwei test site. The initial groundwater depth was considered as the indicator of the antecedent soil moisture estimation for the close relationship.
    [Show full text]
  • Runoff Production on Forest Roads in a Steep, Mountain Catchment Beverley C
    WATER RESOURCES RESEARCH, VOL. 39, NO. 8, 1220, doi:10.1029/2002WR001744, 2003 Runoff production on forest roads in a steep, mountain catchment Beverley C. Wemple Department of Geography, University of Vermont, Burlington, Vermont, USA Julia A. Jones Department of Geosciences, Oregon State University, Corvallis, Oregon, USA Received 27 September 2002; revised 27 March 2003; accepted 21 May 2003; published 28 August 2003. [1] This study investigated how roads interact with hillslope flow in a steep, forested landscape dominated by subsurface flow and how road interactions with hillslope flow paths influence hydrologic response during storms in a second-order catchment. Runoff was measured continuously from 12 subcatchments draining to road segments and covering 14% of a 101-ha, second-order catchment (WS3) in the Andrews Forest, Oregon. Observed runoff over the 1996 water year was compared to predictions for runoff timing and interception of a hillslope water table based on a simple model of kinematic subsurface storm flow. Observed runoff behavior was consistent with model estimates, a finding that underscores the utility of this simple approach for predicting and explaining runoff dynamics on forest roads constructed on steep hillslopes. Road segments in the study area interacted in at least four distinct ways with complex landforms, potentially producing very different effects depending on landform characteristics. Hillslope length, soil depth, and cutbank depth explained much of the variation in road runoff production among subcatchments and among storm events. Especially during large storm events, a majority of instrumented road segments intercepted subsurface flow and routed it to ditches and thence directly to streams with a timing that contributed to the rising limb of the catchment-wide hydrograph.
    [Show full text]
  • Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment
    hydrology Article Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment Johan van Tol 1,* , George van Zijl 2 and Stefan Julich 3 1 Department of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein 9300, South Africa 2 Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa; [email protected] 3 Institute of Soil Science and Site Ecology, Technische Universität Dresden, Pienner Str. 19, 01737 Tharandt, Germany; [email protected] * Correspondence: [email protected]; Tel.: +27-51-401-2386 Received: 6 May 2020; Accepted: 3 June 2020; Published: 13 June 2020 Abstract: Soil information is critical in watershed-scale hydrological modelling; however, it is still debated which level of complexity the soil data should contain. In the present study, we have compared the effect of two levels of soil data on the hydrologic simulation of a mesoscale, urbanised watershed (630 km2) in central South Africa. The first level of soil data, land type (LT) data, is currently the best, readily available soil information that covers the whole of South Africa. In the LT database, the entire study area is covered by only two soil types. The second level of soil data (DSM) was created by means of digital soil mapping based on hydropedological principles. It resulted in six different soil types with different hydrological behaviour (e.g., interflow, recharge, responsive). The two levels of soil data were each included in the revised version of the Soil and Water Assessment Tool (SWAT+). To compare the effects of different complexity of soil information on the simulated water balance, the outputs of the uncalibrated models were compared to the three nested gauging stations of the watershed.
    [Show full text]
  • The Role of Bedrock Groundwater in Rainfall∓Runoff Response At
    Journal of Hydrology 450–451 (2012) 117–133 Contents lists available at SciVerse ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol The role of bedrock groundwater in rainfall–runoff response at hillslope and catchment scales ⇑ C.P. Gabrielli a, , J.J. McDonnell b, W.T. Jarvis c,d a Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR 97331, USA b Global Institute for Water Security, National Hydrology Research Centre, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, SK, Canada S7N 3H5 c Institute for Water and Watersheds, Oregon State University, Corvallis, OR 97331, USA d Department of Geosciences, Oregon State University, Corvallis, OR 97331, USA article info summary Article history: Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly character- Received 17 November 2011 ized. Direct hydrometric measurements have been limited due to the logistical challenges associated Received in revised form 2 May 2012 with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bed- Accepted 9 May 2012 rock drilling system to explore bedrock groundwater dynamics aimed at quantifying bedrock groundwa- Available online 18 May 2012 ter contributions to hillslope flow and catchment runoff. We present results from the Maimai M8 This manuscript was handled by Philippe Baveye, Editor-in-Chief, with the assistance research catchment in New Zealand and Watershed 10 (WS10) at the H.J. Andrews Experimental Forest of M. Todd Walter, Associate Editor in Oregon, USA. Analysis of bedrock groundwater at Maimai, through a range of flow conditions, revealed that the bedrock water table remained below the soil–bedrock interface, indicating that the bedrock Keywords: aquifer has minimal direct contributions to event-based hillslope runoff.
    [Show full text]
  • Impact of Rainwater Harvesting on Catchment Hydrology: Case Study of the Modder River Basin, South Africa
    Water Resources Management III 59 Impact of rainwater harvesting on catchment hydrology: case study of the Modder River basin, South Africa E. Pretorius, Y. E. Woyessa, S. W. Slabbert & S. Tetsoane School of Civil Engineering and Built Environment, Central University of Technology, Free State, South Africa Abstract The river basin is increasingly acknowledged as the appropriate unit for the analysis and management of water resources, especially as water availability at the basin level becomes the primary constraint to agriculture. The Modder River basin is located within the Upper Orange Water Management Area in central South Africa. The irrigated agriculture in the basin draws water mainly by pumping out of river pools and weirs, whilst the rural small-scale farmers rely on rain-fed agriculture for crop production. In the past few years the Institute for Soil, Climate and Water of the Agricultural Research Council has been developing water harvesting techniques for small farmers in the basin with the objective of harnessing rainwater for crop production. This technique has resulted in a significant increase in crop yield compared to conventional practices and it is therefore expected that this practice will be adopted on a wider scale in the Modder River basin. The purpose of this project is to investigate and determine the impact of wider use of this practice on watershed hydrology and also the impact downstream of the river basin if the technique is applied on a wider scale. Keywords: rainwater harvesting, watershed management, crop production, hydrological modelling. 1 Introduction In a new paradigm shift related to integrated water resources management (IWRM) in the context of a river basin, attention is being drawn to consider the upstream “off-site” influences on the various water use entities, as well as the WIT Transactions on Ecology and the Environment, Vol 80, © 2005 WIT Press www.witpress.com, ISSN 1743-3541 (on-line) 60 Water Resources Management III downstream “off-site” impacts arising from them.
    [Show full text]
  • A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009
    Prepared in cooperation with the Southwest Florida Water Management District A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009 Scientific Investigations Report 2010–5092 U.S. Department of the Interior U.S. Geological Survey Photo Credits Cover and pages i-viii, and 9 — Dan Duerr, U.S. Geological Survey (retired) A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009 By G.R. Kish, C.E. Stringer, M.T. Stewart, M.C. Rains, and A.E. Torres Prepared in cooperation with the Southwest Florida Water Management District Scientific Investigations Report 2010–5092 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.
    [Show full text]
  • 12. a Review of Isotope Applications in Catchment Hydrology
    12. A REVIEW OF ISOTOPE APPLICATIONS IN CATCHMENT HYDROLOGY T. VITVAR, P.K. AGGARWAL Isotope Hydrology Section Division of Physical And Chemical Sciences, International Atomic Energy Agency, Vienna J.J. McDONNELL Oregon State University, Corvallis, Oregon, United States of America 1. Introduction Isotope methods were introduced into catchment hydrology research in the 1960s as complementary tools to conventional hydrologic methods for addressing questions of where water goes when it rains, what pathways it takes to the stream and how long water resides in the catchment (McDonnell, 2003). Despite slow incorporation into routine research applications, the last decade has seen a rapid increase in isotope-based catchment studies. These have been mainly carried out in small well-instrumented experimental catchments, on the order of 0.01 to 100 km2 and located typically in headwater areas (Buttle, 1998). In contrast, little has been done in terms of application and transfer of these concepts and methodologies to large (>100s to 1000s of km2), less instrumented basins. Much potential also waits to be realized in terms of how isotope information may be used to calibrate and test distributed rainfall-runoff models and to aid in the quantification of sustainable water resources management. In this chapter, we review the major applications of isotopes to catchment studies, and address a variety of prospective new directions in research and practice. Our discussion is based primarily on catchments in temperate to wet zones. 151 P.K. Aggarwal, J.R. Gat and K.F.O. Froehlich (eds), Isotopes in the Water Cycle: Past , Present and Future of a Developing Science, 151-169.
    [Show full text]