A New Approach to Multilinear Dynamical Systems and Control*

Total Page:16

File Type:pdf, Size:1020Kb

A New Approach to Multilinear Dynamical Systems and Control* A New Approach to Multilinear Dynamical Systems and Control* Randy C. Hoover1, Kyle Caudle2 and Karen Braman2 Abstract—The current paper presents a new approach to mul- algorithms have played a central role in extending many of the tilinear dynamical systems analysis and control. The approach existing machine learning algorithms [1]–[12]. However, as is based upon recent developments in tensor decompositions their popularity has gained more traction over the last decade, and a newly defined algebra of circulants. In particular, it is shown that under the right tensor multiplication operator, a they have made their way into the dynamical systems and third order tensor can be written as a product of third order controls community as well [13]–[25]. While most applica- tensors that is analogous to a traditional matrix eigenvalue de- tions of Tucker/CP in the dynamical systems and controls composition where the “eigenvectors” become eigenmatrices and community revolve around the reduction of certain classes the “eigenvalues” become eigen-tuples. This new development of nonlinear systems to multilinear counterparts [15]–[21], allows for a proper tensor eigenvalue decomposition to be defined and has natural extension to linear systems theory through a [25], others have focused on time-series modeling [24], [26], tensor-exponential. Through this framework we extend many fuzzy inference [23], or identification/modeling of inverse of traditional techniques used in linear system theory to their dynamics [22]. multilinear counterpart. In the current paper, we describe a new approach to multilinear dynamical systems analysis and control through I. INTRODUCTION Fourier theory and an algebra of circulants as outlined in [27]– Traditional approaches to the analysis and control of lin- [31]. It is shown that under the right tensor multiplication ear time invariant (LTI) systems is well known and well operator, a third order tensor can be written as a product of understood. However as systems become increasingly com- third order tensors in which the left tensor is a collection plex, and multi-dimensional measurement devices become of eigenmatrices, the middle tensor is a front-face diagonal more commonplace, extensions from the linear system to a (denoted as f-diagonal) tensor of eigen-tuples, and the right multilinear system framework needs to be developed. While tensor is the tensor inverse of the eigenmatrices resulting there have been several approaches developed to investigate in a tensor-tensor eignevalue decomposition that is similar multilinear dynamical systems, most rely on decompositions to its matrix counterpart. Moreover, using the aformentioned revolving around either the Tucker or Canonical Decompo- decomposition, [32], [33] illustrates that a multilinear system sition/Parallel Factors (commonly referred to collectively as of ordinary differential equations (MODEs) can be effectively the CP decomposition). Tucker/CP provides a framework for solved via a tensor-version of the matrix exponential (referred decomposing a high order tensor into a collection of factor to as the t-exponential). matrices multiplying a “core tensor”. The structure of the Building on the work of [27]–[33], the contributions of core-tensor depends on which factorization strategy is being the current paper are four fold: (1) we extend the results used (Tucker produces a “dense” core whereas CP produces of [32], [33] to include the zero-state response to the mul- a “diagonal” core). Regardless of the decomposition being tilinear dynamical system in an effort to introduce multi- applied, both are regarded as form of higher order singular linear feedback control, (2) we develop a stability criterion value decomposition [1]–[4]. for the multilinear dynamical system to include exponential As a form of high-order singular value decomposition, convergence of system trajectories, (3) we introduce a new arXiv:2108.13583v1 [cs.LG] 31 Aug 2021 Tucker/CP algorithms have a natural fit within the machine approach to validate controllability of multilinear systems learning community where data naturally arises as two- using a block-Krylov subspace condition, and finally (4) we dimensional structures, e.g. digital image data. As such, these present a method to design multilinear state-feedback control using the developments of (1) - (3). *The current research was supported in part by the Department of the The remainder of this paper is organized as follows: In Navy, Naval Engineering Education Consortium under Grant No. (N00174- Section II we discuss the relevant tensor algebra and the 19-1-0014), the NASA Space Grant Consortium and the National Science Foundation under Grant No. (2007367). Any opinions, findings, and conclu- newly defined tensor multiplication operator. In Section III sions or recommendations expressed in this material are those of the authors we present the tensor-tensor eigenvalue decomposition and and do not necessarily reflect the views of the Naval Engineering Education show how it can be used to define functions on tensors Consortium, NASA or the National Science Foundation. 1Randy C. Hoover is with the department of Computer Sci- (namely the tensor exponential). In Section IV we provide ence and Engineering, South Dakota Mines, Rapid City, SD, USA several extensions of traditional linear systems theory to their [email protected] multilinear counterpart. Section V we provide an illustrative 2Kyle Caudle and Karen Braman the Department Math- ematics, South Dakota Mines, Rapid City, SD, USA example of the newly developed theory and finally, Section VI fkyle.caudle,karen.bramang@sdsmt,edu presents some discussion and provides some insight into future research directions. If A 2 R`×m×n with ` × m frontal slices then 2 A(1) A(n) A(n−1) :::A(2) 3 II. MATHEMATICAL FOUNDATIONS OF TENSORS (2) (1) (n) (3) 6 A A A :::A 7 6 7 bcirc(A) = 6 . 7 ; In the current section we discuss the mathematical founda- 6 . .. .. .. 7 tions of the tensor decompositions used in the current work. 4 5 (n) (n−1) .. (2) (1) While most of the theory in this section is outlined in [10], A A . A A [27]–[29], [32], [33], we summarize this theory here to keep is a block circulant matrix of size `n × mn. the current work self contained. We anchor the MatVec command to the frontal slices of The term tensor, as used in the context of this paper, refers the tensor. MatVec(A) takes an ` × m × n tensor and returns to a multi-dimensional array of numbers, sometimes called a block `n × m matrix `×m×n an n-way or n-mode array. If, for example, A 2 R 2 A(1) 3 then we say A is a third-order tensor where order is the (2) 6 A 7 number of ways or modes of the tensor. Thus, matrices and MatVec(A) = 6 7 : 6 . 7 vectors are second-order and first-order tensors, respectively. 4 . 5 Fundamental to the results presented in this paper is a recently A(n) defined multiplication operation on third-order tensors which The operation that takes MatVec(A) back to tensor form is itself produces a third-order tensor [27], [28]. the fold command: Further, it has been shown in [29] that under this multiplica- `×m×n fold(MatVec(A)) = A: tion operation, R is a free module over a commutative ring with unity where the “scalars” are R1×1×n tuples. In With these two operations in hand, we introduce the t- addition, it has been shown in [29] and [30] that all linear product between two, third-order tensors [27], [28]: transformations on the space R`×m×n can be represented by multiplication by a third-order tensor. Thus, even though Definition 2. Let A 2 R`×p×n and B 2 Rp×m×n be two third `×m×n R`×m×n is not strictly a vector space, many of the familiar order tensors. Then the t-product A ∗ B 2 R is defined tools of matrix linear algebra can be applied in this new as context, including the basic building blocks for dynamical A ∗ B = fold (bcirc(A) · MatVec(B)) : systems and control of multilinear systems. For a more in depth discussion on this topic, the reader is referred to [29]. Note that the tensor t-product enables the multiplication First, we review the basic definitions from [28] and [27] of two third order tensors via mod-n circular convolution. and introduce some basic notation. It will be convenient to Moreover, in general, the t-product of two tensors will not `×m×n break a tensor A in R up into various slices and tubal commute, with the exception in which ` = p = m = 1, i.e., th elements, and to have an indexing on those. The i lateral when the tensors are tubal-scalars. As a matter of illustration, th slice will be denoted Ai whereas the j frontal slice will be Example 1 details the application of the t-product on two (j) denoted A . In terms of MATLAB indexing notation, this third order tensors. (j) means Ai ≡ A(:; i; :) while A ≡ A(:; :; j). th We use the notation aik to denote the i; k tube inA; that Example 1: Suppose A 2 R`×p×3 and B 2 Rp×m×3. th (j) is aik = A(i; k; :). The j entry in that tube is aik . Indeed, Then these tubes have special meaning for us in the present work, 02 A(1) A(3) A(2) 3 2 B(1) 31 as they will play a role similar to scalars in . Thus, we make R A ∗ B = fold @4 A(2) A(1) A(3) 5 4 B(2) 5A : the following definition: A(3) A(2) A(1) B(3) 1×1×n Definition 1. An element c 2 is called a tubal-scalar m×m×n R Definition 3.
Recommended publications
  • Problems in Abstract Algebra
    STUDENT MATHEMATICAL LIBRARY Volume 82 Problems in Abstract Algebra A. R. Wadsworth 10.1090/stml/082 STUDENT MATHEMATICAL LIBRARY Volume 82 Problems in Abstract Algebra A. R. Wadsworth American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell (Chair) Erica Flapan Serge Tabachnikov 2010 Mathematics Subject Classification. Primary 00A07, 12-01, 13-01, 15-01, 20-01. For additional information and updates on this book, visit www.ams.org/bookpages/stml-82 Library of Congress Cataloging-in-Publication Data Names: Wadsworth, Adrian R., 1947– Title: Problems in abstract algebra / A. R. Wadsworth. Description: Providence, Rhode Island: American Mathematical Society, [2017] | Series: Student mathematical library; volume 82 | Includes bibliographical references and index. Identifiers: LCCN 2016057500 | ISBN 9781470435837 (alk. paper) Subjects: LCSH: Algebra, Abstract – Textbooks. | AMS: General – General and miscellaneous specific topics – Problem books. msc | Field theory and polyno- mials – Instructional exposition (textbooks, tutorial papers, etc.). msc | Com- mutative algebra – Instructional exposition (textbooks, tutorial papers, etc.). msc | Linear and multilinear algebra; matrix theory – Instructional exposition (textbooks, tutorial papers, etc.). msc | Group theory and generalizations – Instructional exposition (textbooks, tutorial papers, etc.). msc Classification: LCC QA162 .W33 2017 | DDC 512/.02–dc23 LC record available at https://lccn.loc.gov/2016057500 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Circulant and Toeplitz Matrices in Compressed Sensing
    Circulant and Toeplitz Matrices in Compressed Sensing Holger Rauhut Hausdorff Center for Mathematics & Institute for Numerical Simulation University of Bonn Conference on Time-Frequency Strobl, June 15, 2009 Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Holger Rauhut Hausdorff Center for Mathematics & Institute for NumericalCirculant and Simulation Toeplitz University Matrices inof CompressedBonn Sensing Overview • Compressive Sensing (compressive sampling) • Partial Random Circulant and Toeplitz Matrices • Recovery result for `1-minimization • Numerical experiments • Proof sketch (Non-commutative Khintchine inequality) Holger Rauhut Circulant and Toeplitz Matrices 2 Recovery requires the solution of the underdetermined linear system Ax = y: Idea: Sparsity allows recovery of the correct x. Suitable matrices A allow the use of efficient algorithms. Compressive Sensing N Recover a large vector x 2 C from a small number of linear n×N measurements y = Ax with A 2 C a suitable measurement matrix. Usual assumption x is sparse, that is, kxk0 := j supp xj ≤ k where supp x = fj; xj 6= 0g. Interesting case k < n << N. Holger Rauhut Circulant and Toeplitz Matrices 3 Compressive Sensing N Recover a large vector x 2 C from a small number of linear n×N measurements y = Ax with A 2 C a suitable measurement matrix. Usual assumption x is sparse, that is, kxk0 := j supp xj ≤ k where supp x = fj; xj 6= 0g. Interesting case k < n << N. Recovery requires the solution of the underdetermined linear system Ax = y: Idea: Sparsity allows recovery of the correct x. Suitable matrices A allow the use of efficient algorithms. Holger Rauhut Circulant and Toeplitz Matrices 3 n×N For suitable matrices A 2 C , `0 recovers every k-sparse x provided n ≥ 2k.
    [Show full text]
  • Analytical Solution of the Symmetric Circulant Tridiagonal Linear System
    Rose-Hulman Institute of Technology Rose-Hulman Scholar Mathematical Sciences Technical Reports (MSTR) Mathematics 8-24-2014 Analytical Solution of the Symmetric Circulant Tridiagonal Linear System Sean A. Broughton Rose-Hulman Institute of Technology, [email protected] Jeffery J. Leader Rose-Hulman Institute of Technology, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr Part of the Numerical Analysis and Computation Commons Recommended Citation Broughton, Sean A. and Leader, Jeffery J., "Analytical Solution of the Symmetric Circulant Tridiagonal Linear System" (2014). Mathematical Sciences Technical Reports (MSTR). 103. https://scholar.rose-hulman.edu/math_mstr/103 This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact [email protected]. Analytical Solution of the Symmetric Circulant Tridiagonal Linear System S. Allen Broughton and Jeffery J. Leader Mathematical Sciences Technical Report Series MSTR 14-02 August 24, 2014 Department of Mathematics Rose-Hulman Institute of Technology http://www.rose-hulman.edu/math.aspx Fax (812)-877-8333 Phone (812)-877-8193 Analytical Solution of the Symmetric Circulant Tridiagonal Linear System S. Allen Broughton Rose-Hulman Institute of Technology Jeffery J. Leader Rose-Hulman Institute of Technology August 24, 2014 Abstract A circulant tridiagonal system is a special type of Toeplitz system that appears in a variety of problems in scientific computation. In this paper we give a formula for the inverse of a symmetric circulant tridiagonal matrix as a product of a circulant matrix and its transpose, and discuss the utility of this approach for solving the associated system.
    [Show full text]
  • Discovering Transforms: a Tutorial on Circulant Matrices, Circular Convolution, and the Discrete Fourier Transform
    DISCOVERING TRANSFORMS: A TUTORIAL ON CIRCULANT MATRICES, CIRCULAR CONVOLUTION, AND THE DISCRETE FOURIER TRANSFORM BASSAM BAMIEH∗ Key words. Discrete Fourier Transform, Circulant Matrix, Circular Convolution, Simultaneous Diagonalization of Matrices, Group Representations AMS subject classifications. 42-01,15-01, 42A85, 15A18, 15A27 Abstract. How could the Fourier and other transforms be naturally discovered if one didn't know how to postulate them? In the case of the Discrete Fourier Transform (DFT), we show how it arises naturally out of analysis of circulant matrices. In particular, the DFT can be derived as the change of basis that simultaneously diagonalizes all circulant matrices. In this way, the DFT arises naturally from a linear algebra question about a set of matrices. Rather than thinking of the DFT as a signal transform, it is more natural to think of it as a single change of basis that renders an entire set of mutually-commuting matrices into simple, diagonal forms. The DFT can then be \discovered" by solving the eigenvalue/eigenvector problem for a special element in that set. A brief outline is given of how this line of thinking can be generalized to families of linear operators, leading to the discovery of the other common Fourier-type transforms, as well as its connections with group representations theory. 1. Introduction. The Fourier transform in all its forms is ubiquitous. Its many useful properties are introduced early on in Mathematics, Science and Engineering curricula [1]. Typically, it is introduced as a transformation on functions or signals, and then its many useful properties are easily derived. Those properties are then shown to be remarkably effective in solving certain differential equations, or in an- alyzing the action of time-invariant linear dynamical systems, amongst many other uses.
    [Show full text]
  • Linear Algebra: Example Sheet 3 of 4
    Michaelmas Term 2020 Linear Algebra: Example Sheet 3 of 4 1. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices: 0 1 1 0 1 0 1 1 −1 1 0 1 1 −1 1 @ 0 3 −2 A ; @ 0 3 −2 A ; @ −1 3 −1 A : 0 1 0 0 1 0 −1 1 1 The second and third matrices commute; find a basis with respect to which they are both diagonal. 2. By considering the rank or minimal polynomial of a suitable matrix, find the eigenvalues of the n × n matrix A with each diagonal entry equal to λ and all other entries 1. Hence write down the determinant of A. 3. Let A be an n × n matrix all the entries of which are real. Show that the minimum polynomial of A, over the complex numbers, has real coefficients. 4. (i) Let V be a vector space, let π1; π2; : : : ; πk be endomorphisms of V such that idV = π1 + ··· + πk and πiπj = 0 for any i 6= j. Show that V = U1 ⊕ · · · ⊕ Uk, where Uj = Im(πj). (ii) Let α be an endomorphism of V satisfying the equation α3 = α. By finding suitable endomorphisms of V depending on α, use (i) to prove that V = V0 ⊕ V1 ⊕ V−1, where Vλ is the λ-eigenspace of α. (iii) Apply (i) to prove the Generalised Eigenspace Decomposition Theorem stated in lectures. [Hint: It may help to re-read the proof of the Diagonalisability Theorem given in lectures. You may use the fact that if p1(t); : : : ; pk(t) 2 C[t] are non-zero polynomials with no common factor, Euclid's algorithm implies that there exist polynomials q1(t); : : : ; qk(t) 2 C[t] such that p1(t)q1(t) + ::: + pk(t)qk(t) = 1.] 5.
    [Show full text]
  • Factoring Matrices Into the Product of Circulant and Diagonal Matrices
    FACTORING MATRICES INTO THE PRODUCT OF CIRCULANT AND DIAGONAL MATRICES MARKO HUHTANEN∗ AND ALLAN PERAM¨ AKI¨ y n×n Abstract. A generic matrix A 2 C is shown to be the product of circulant and diagonal matrices with the number of factors being 2n−1 at most. The demonstration is constructive, relying on first factoring matrix subspaces equivalent to polynomials in a permutation matrix over diagonal matrices into linear factors. For the linear factors, the sum of two scaled permutations is factored into the product of a circulant matrix and two diagonal matrices. Extending the monomial group, both low degree and sparse polynomials in a permutation matrix over diagonal matrices, together with their permutation equivalences, constitute a fundamental sparse matrix structure. Matrix analysis gets largely done polynomially, in terms of permutations only. Key words. circulant matrix, diagonal matrix, DFT, Fourier optics, sparsity structure, matrix factoring, polynomial factoring, multiplicative Fourier compression AMS subject classifications. 15A23, 65T50, 65F50, 12D05 1. Introduction. There exists an elegant result, motivated by applications in optical image processing, stating that any matrix A 2 Cn×n is the product of circu- lant and diagonal matrices [15, 18].1 In this paper it is shown that, generically, 2n − 1 factors suffice. (For various aspects of matrix factoring, see [13].) The demonstration is constructive, relying on first factoring matrix subspaces equivalent to polynomials in a permutation matrix over diagonal matrices into linear factors. This is achieved by solving structured systems of polynomial equations. Located on the borderline between commutative and noncommutative algebra, such subspaces are shown to constitute a fundamental sparse matrix structure of polynomial type extending, e.g., band matrices.
    [Show full text]
  • On the Asymptotic Equivalence of Circulant and Toeplitz Matrices Zhihui Zhu and Michael B
    1 On the Asymptotic Equivalence of Circulant and Toeplitz Matrices Zhihui Zhu and Michael B. Wakin Abstract—Any sequence of uniformly bounded N × N Her- Hermitian Toeplitz matrices fHN g by defining a function mitian Toeplitz matrices fHN g is asymptotically equivalent to a eh(f) 2 L2([0; 1]) with Fourier series2 certain sequence of N ×N circulant matrices fCN g derivedp from Z 1 the Toeplitz matrices in the sense that kHN − CN kF = o( N) −j2πkf as N ! 1. This implies that certain collective behaviors of the h[k] = eh(f)e df; k 2 Z; 0 eigenvalues of each Toeplitz matrix are reflected in those of the 1 X corresponding circulant matrix and supports the utilization of h(f) = h[k]ej2πkf ; f 2 [0; 1]: the computationally efficient fast Fourier transform (instead of e the Karhunen-Loeve` transform) in applications like coding and k=−∞ filtering. In this paper, we study the asymptotic performance of the individual eigenvalue estimates. We show that the asymptotic Usually eh(f) is referred to as the symbol or generating equivalence of the circulant and Toeplitz matrices implies the function for the N × N Toeplitz matrices fHN g. individual asymptotic convergence of the eigenvalues for certain Suppose eh 2 L1([0; 1]). Szego’s˝ theorem [1] states that types of Toeplitz matrices. We also show that these estimates N−1 asymptotically approximate the largest and smallest eigenvalues 1 X Z 1 lim #(λl(HN )) = #(eh(f))df; (1) for more general classes of Toeplitz matrices. N!1 N l=0 0 Keywords—Szego’s˝ theorem, Toeplitz matrices, circulant matri- ces, asymptotic equivalence, Fourier analysis, eigenvalue estimates where # is any function continuous on the range of eh.
    [Show full text]
  • Linear Circulant Matrices Over a Finite Field
    Available online at www.sciencedirect.com Applied J SCIENCE @DIRECT e Mathematics Letters ELSEVIER Applied Mathematics Letters 17 (2004) 1349-1355 www.elsevier.com/locate/aml Linear Circulant Matrices Over A Finite Field C. H. COOKE Department of Mathematics Old Dominion University Norfolk, VA 23529, U.S.A. (Received August 2003; revised and accepted April 200g) Abstract--Rings of polynomials RN = Zp[x]/x N - 1 which are isomorphic to Z N are studied, where p is prime and N is an integer. If I is an ideal in RN, the code/( whose vectors constitute the isomorphic image of I is a linear cyclic code. If I is a principle ideal and K contains only the trivial cycle {0} and one nontrivial cycle of maximal least period N, then the code words of K/{0} obtained by removing the zero vector can be arranged in an order which constitutes a linear circulant matrix, C. The distribution of the elements of C is such that it forms the cyclic core of a generalized Hadamard matrix over the additive group of Zp. A necessary condition that C = K/{0} be linear circulant is that for each row vector v of C, the periodic infinite sequence a(v) produced by cycling the elements of v be period invariant under an arbitrary permutation of the elements of the first period. The necessary and sufficient condition that C be linear circulant is that the dual ideal generated by the parity check polynomial h(x) of K be maximal (a nontriviM, prime ideal of RN), with N = pk _ 1 and k = deg (h(x)).
    [Show full text]
  • Block Circulant Matrices and the Spectra of Multivariate Stationary
    Spec. Matrices 2021; 9:36–51 Research Article Open Access Special Issue: Combinatorial Matrices Marianna Bolla*, Tamás Szabados, Máté Baranyi, and Fatma Abdelkhalek Block circulant matrices and the spectra of multivariate stationary sequences https://doi.org/10.1515/spma-2020-0121 Received October 30, 2020; accepted December 16, 2020 Abstract: Given a weakly stationary, multivariate time series with absolutely summable autocovariances, asymptotic relation is proved between the eigenvalues of the block Toeplitz matrix of the rst n autocovari- ances and the union of spectra of the spectral density matrices at the n Fourier frequencies, as n ! ∞. For the proof, eigenvalues and eigenvectors of block circulant matrices are used. The proved theorem has impor- tant consequences as for the analogies between the time and frequency domain calculations. In particular, the complex principal components are used for low-rank approximation of the process; whereas, the block Cholesky decomposition of the block Toeplitz matrix gives rise to dimension reduction within the innovation subspaces. The results are illustrated on a nancial time series. Keywords: weakly stationary time series, autocovariance and spectral density matrix, nite Fourier trans- form, complex principal components, block Cholesky decomposition MSC: 42B05, 62M15, 65F30 1 Introduction 2 Let fXtg be a weakly stationary, real-valued time series (t 2 Z). Assume that E(Xt) = 0, c(0) = E(Xt ) > 0, and the sequence of autocovariances c(h), (h = 1, 2, ... ) is absolutely summable; obviously, c(h) = c(−h). n Then it is known that the Toeplitz matrix Cn = [c(i − j)]i,j=1, that is the covariance matrix of the random T T vector (X1, ..
    [Show full text]
  • LNCS 8632, Pp
    A Fast Sparse Block Circulant Matrix Vector Product Eloy Romero, Andr´es Tom´as, Antonio Soriano, and Ignacio Blanquer Instituto de Instrumentaci´on para Imagen Molecular (I3M), Centro Mixto CSIC – Universitat Polit`ecnica de Val`encia–CIEMAT, Camino de Vera s/n, 46022 Valencia, Spain {elroal,antodo,asoriano}@i3m.upv.es, [email protected] Abstract. In the context of computed tomography (CT), iterative im- age reconstruction techniques are gaining attention because high-quality images are becoming computationally feasible. They involve the solution of large systems of equations, whose cost is dominated by the sparse ma- trix vector product (SpMV). Our work considers the case of the sparse matrices being block circulant, which arises when taking advantage of the rotational symmetry in the tomographic system. Besides the straight- forward storage saving, we exploit the circulant structure to rewrite the poor-performance SpMVs into a high-performance product between sparse and dense matrices. This paper describes the implementations developed for multi-core CPUs and GPUs, and presents experimental results with typical CT matrices. The presented approach is up to ten times faster than without exploiting the circulant structure. Keywords: Circulant matrix, sparse matrix, matrix vector product, GPU, multi-core, computed tomography. 1 Introduction Iterative approaches to image reconstruction have cut down the radiation dose delivered to the patient in computed tomography (CT) explorations [5], because they are less sensitive to noisy acquisitions than filtered backprojection (FBP). Iterative methods consider the reconstruction problem as a system of linear equations y = Ax. The probability matrix A constitutes a mathematical model of the tomographic system that links the reconstructed attenuation map x with the estimation of the measurement y.
    [Show full text]
  • Circulant-Matrices
    Circulant-Matrices September 7, 2017 In [1]: using PyPlot, Interact 1 Circulant Matrices In this lecture, I want to introduce you to a new type of matrix: circulant matrices. Like Hermitian matrices, they have orthonormal eigenvectors, but unlike Hermitian matrices we know exactly what their eigenvectors are! Moreover, their eigenvectors are closely related to the famous Fourier transform and Fourier series. Even more importantly, it turns out that circulant matrices and the eigenvectors lend themselves to incredibly efficient algorithms called FFTs, that play a central role in much of computational science and engineering. Consider a system of n identical masses m connected by springs k, sliding around a circle without friction. d2~s Similar to lecture 26, the vector ~s of displacements satifies m dt2 = −kA~s, where A is the n × n matrix: 0 2 −1 −11 B−1 2 −1 C B C B −1 2 −1 C B C B .. .. .. C A = B . C B C B −1 2 −1 C B C @ −1 2 −1A −1 −1 2 (This matrix is real-symmetric and, less obviously, positive semidefinite. So, it should have orthogonal eigenvectors and real eigenvalues λ ≥ 0.) For example, if n = 7: In [2]:A=[2-10000-1 -12-10000 0-12-1000 00-12-100 000-12-10 0000-12-1 -10000-12] https://github.com/stevengj/1806-spring17/raw/master/lectures/cyclic-springs.png Figure 1: a ring of springs 1 Out[2]:7 ×7 ArrayfInt64,2g: 2 -1 0 0 0 0 -1 -1 2 -1 0 0 0 0 0 -1 2 -1 0 0 0 0 0 -1 2 -1 0 0 0 0 0 -1 2 -1 0 0 0 0 0 -1 2 -1 -1 0 0 0 0 -1 2 This matrix has a very special pattern: every row is the same as the previous row, just shifted to the right by 1 (wrapping around \cyclically" at the edges).
    [Show full text]
  • Differential Equations and Linear Algebra
    Index A beat, 128 absolute stability, 188 bell-shaped curve, 16, 189, 458 absolute value, 83, 86 Bernoulli equation, 61 acceleration, 73, 478 Bessel function, 364, 460, 478 accuracy, 183, 185, 190, 191 better notation, 113, 124, 125 Adams method, 191, 192 big picture, 298, 301, 304, 397 addition formula, 87 Black-Scholes, 457 add exponents, 9 block matrix, 230, 236, 418 adjacency matrix, 316, 318, 425 block multiplication, 225, 226 boundaryconditions, 417, 403, 409, 429, 457 Airy’s equation, 130 boundary value problem, 403, 457, 470 albedo, 49 box, 175 amplitude, 75, 82, 111 box function, 404, 437, 443, 469, 478, 488 amplitude response, 34, 77 Brauer, 179 antisymmetric, 244, 321, 349, 406 applied mathematics, 314, 421, 487 C arrows, 155, 316 capacitance, 119 associative law, 219 carbon, 46 attractor, 169, 180 carrying capacity, 53, 55, 61 augmented matrix, 230, 257, 271, 278 Castillo-Chavez, 179 autocorrelation, 480 catalyst, 179 autonomous, 57, 71, 156, 157, 159 Cayley-Hamilton theorem, 345 average, 434, 438 cell phone, 44, 175 center, 160, 162, 173 B centered difference, 6, 189 back substitution, 212, 262 chain rule, 3, 4, 365, 368 backslash, 220 change of variables, 362 backward difference, 6, 12, 245, 413 chaos, 154, 180 backward Euler, 187, 188 characteristic equation, 90, 103, 108, 163 bad news, 326 chebfun, 402 balance equation, 48, 118, 314, 424 chemical engineering, 457 balance of forces, 118 chess matrix, 309 bank, 12, 40, 485 Cholesky factorization, 400 bar, 403, 405, 409, 455, 457 circulant matrix, 204, 448, 486, 488 basis,
    [Show full text]