Botany for Arborists: Energy and Trees

Total Page:16

File Type:pdf, Size:1020Kb

Botany for Arborists: Energy and Trees WESTERN A rborist Botany for arborists: Energy and trees Dr. Kevin T. Smith and Dr. A. James Downer Energy capture glucose. Glucose is converted into free-living soil microorganisms. This The sun bathes the earth in waves of other sugars, such as sucrose for transformed solar energy then be- radiated energy. The waves of radia- translocation throughout the plant. comes part of the soil matrix and the tion occur along the electromagnetic These sugars are collectively known living web of soil organisms. In this spectrum that includes microwaves, as photosynthate. Other plant parts way, trees energize the environment radio waves, visible light, and infra- such as young branches or cortical around them. Even in death, trees red heat. The visible portion of that cells just beneath the epidermis or are a source of energy. As trees shed spectrum is the rainbow formed by thin bark can also photosynthesize leaves, flowers, branches, and roots, sunlight passing through a prism. (Fig. 2). In regions with very short or when the stem itself dies or falls, Solar energy is increasingly used to growing seasons, such as subarctic the energy bound in the plant parts power our homes, offices, and busi- forests and arid deserts, stem and becomes an energy source for sapro- nesses. Trees and other green plants branch photosynthesis may provide phytic bacteria and fungi. As plant have been using solar energy for a significant share of total energy parts decompose, they provide food many millions of years. Plants use captured. as well as habitat for many inverte- that radiant energy to make and Photosynthate moves to the fur- brates and other animals. break chemical bonds that provide thest root tip and eventually the soil The cellular machinery that per- the energy needed for growth and immediately around the roots, feed- forms photosynthesis is in chlo- survival. Much of the solar radiation ing beneficial mycorrhizal fungi and roplasts — small green structures that reaches the earth’s atmosphere is reflected or diffused. Less than 0.1% is available for plants. Of the light that actually reaches the leaves, Photosynthesis is the pathway for about 1.5% is used to fuel plant growth. the capture of energy and the bulk Leaves capture solar energy in the process of photosynthesis that of the physical matter in trees and converts radiant energy into chemi- cal energy (Fig. 1). The end prod- other green plants. uct of photosynthesis is the sugar Figure 1. Closeup of the leaf surface of Acer saccharum Figure 2. Photosynthesis in bark furrows of Ceiba speciosa (sugar maple) (floss silk tree). Fall 2019 28 WESTERN A rborist within the photosynthetic paren- use of these compounds to grow, re- use their sugars for metabolism, but chyma cells that comprise much of produce, and survive. in the soil as leaves and woody de- the leaf volume. Parenchyma cells Photosynthesis is the pathway for bris are decomposed by the micro- are relatively small, thin-walled, the capture of energy and the bulk of bial community, releasing bound and roughly uniform in size. Many the physical matter in trees and oth- energy. Humus, the organic matter parenchyma cells in the living tis- er green plants. There are two parts, that remains in the soil following sues lack chloroplasts, and function with the first involving the capture decomposition, resists further deg- to store energy, produce hormones, of solar energy to split the chemical radation, and may persist in the soil and defend against pathogens, in- bonds of water (H2O) into hydrogen for long periods. Humus serves to sect pests, and mechanical damage. and oxygen, and to transfer that solar increase soil water-holding capacity Within the chloroplasts are high- energy into short-lived high energy and to store essential potassium, cal- ly ordered membrane structures that chemical compounds (Fig. 3). The cium, and magnesium. support various parts of the photo- second part uses those high energy The three dominant elements synthetic process. The collection of compounds to split carbon from at- (carbon, hydrogen, and oxygen), photosynthetic paren- comprising about 98% chyma within the leaf of a tree’s dry weight, is the mesophyll. The Carbon dioxide enter during photosyn- photosynthetic cells in Water thesis. Carbon, which the upper or palisade High Energy makes up about half mesophyll are tightly compounds of that weight, is ob- packed in an upright ATP, NADPH tained from the carbon orderly array and are dioxide in the atmo- primarily concerned Light-Dependent Light-Independent sphere. Almost half of with light interception. Energy capture Carbon fixation the remaining weight The cells in the lower is composed of oxygen spongy mesophyll layer and hydrogen, derived are much less ordered ADP+PI, NADP from water. Just as es- and contain open spac- sential for the living es between some of the Low Energy tree, but required in cells. They are primar- compounds much smaller amounts, ily concerned with gas are nitrogen (about Oxygen exchange. Sugar 1%) and the remaining dozen elements (col- Energy flow and ele- lectively about 1%). In Figure 3. Sketch of photosynthesis showing the two sets of reactions ment cycling a simplistic way, the (circles), the entry of solar energy (bolt), the uptake of water and Let’s take a closer look heat given off by the carbon dioxide, and the production of oxygen and sugar. at the flow of energy burning of leaves or and mineral elements wood demonstrates in trees as well as the living world. mospheric carbon dioxide (CO2) and the energy contained within those Of the 92 chemical elements that nat- to recombine the carbon with the plant parts. The residual ash after urally occur on earth, 16 are proven oxygen and with the hydrogen from complete combustion contains the to be essential for all flowering water to eventually form a molecule mineral elements that were not vola- plants, including trees. A few other of glucose sugar (C6H12O6). Energy is tilized by the heat of burning, most elements have been proposed, but stored in the chemical bonds, partic- of these derived from soil. are not yet accepted as essential by ularly the bonds that link carbon to the consensus of biological chemists. carbon. Oxygen released from H2O Metabolism and biosynthesis Advanced physics teaches us that during photosynthesis diffuses out The sugar from photosynthesis is ultimately, energy and matter are of the leaf into the atmosphere. Res- the ultimate feedstock for all the interconvertible. For living systems, piration is the collection of biochemi- structural and energy needs of it’s convenient to think of matter as cal pathways that release energy trees. Those needs are met through the physical arrangement of chemi- stored in those chemical bonds and metabolism, the chemical processes cal elements, and energy as the prop- cycles CO2 back to the atmosphere. that occur within living organ- erty to perform the work of moving Some carbon compounds are se- isms to sustain life. Traditionally, matter. For living systems, energy is questered for long periods in wood the term primary metabolism re- contained within the bonds of chem- and organic matter in soil. Respira- fers to processes of normal growth, ical compounds. Organisms make tion occurs not only in trees as they development, and reproduction. 29 Fall 2019 WESTERN A rborist Secondary metabolism refers to ad- with attached nitrogen. Enzymes are lenges, energy is diverted from nor- ditional chemical pathways with catalysts that help make and break mal growth processes and applied specific functions including tree chemical bonds and transport ions to produce plant hormones (natural defense. Both primary and second- and other materials across mem- growth regulators), phenols (such as ary metabolism are essential for tree branes. Much of the nitrogen in trees tannins) and terpenes (the primary survival. The metabolic shifts result is contained in enzymes. The precise constituents of pine resin). Phenols from “turning on” or “upregulating” structure of enzymes are determined are most abundant in broad-leaved portions of the genetic program to by the genetic program, contained trees while conifers rely primarily change the amounts and specific en- within living cells. The instructions on terpenes. Both groups, though, zymes produced. Metabolism con- of the genetic code are recorded in produce these two classes of com- structs all parts of the tree through chains of nucleic acids. They, too, are pounds. When tree energy reserves biosynthesis. The major products of comprised of a sugar backbone en- are low, production of secondary biosynthesis are carbohydrates, pro- riched with phosphorous and nitro- metabolites for induced tree defense teins, lipids, and nucleic acids. gen. may be sluggish or non-existent, The transformations of sugar Another group of metabolites increasing the vulnerability of the for structural growth and energy derived from sugar are lipids. Lip- tree to pests, pathogens, and abiotic needs all involve chemical catalysts ids include fats and are generally stress. known as enzymes. Enzymes often insoluble in water. Lipids perform require small amounts of mineral important gatekeeper roles in cell Evergreen and deciduous solar elements such as phosphorous and membranes and cell walls. Lipids collectors magnesium as cofactors. Through are involved in both normal growth Leaves are collectively referred to as enzymatic activity, photosynthate is and induced tree defense through foliage. Conifers and many tropical converted into other simple sugars the formation of waterproofing lay- trees are typically evergreen and re- and more complex carbohydrates. ers (suberization) in bark, leaves, tain their foliage throughout the year. Carbohydrates include simple sug- stems, and roots. Broadleaved trees, with some excep- ars (monosaccharides such as glu- In mature trees, the bulk of the tions, have deciduous foliage which cose and fructose), disaccharides dry weight is composed of wood.
Recommended publications
  • Tree Planting Guide
    City of Bellingham Tree Planting Guide This guide provides you with resources for planting trees in the city. Using the right tree in the right place, and maintaining it correctly will provide healthy, beautiful trees whose benefits can be enjoyed by the community for many years. Why plant trees? ....................... page 1 Get a Street Tree Permit First.... page 2 Check the Site & Choose the Right Tree……........ page 3 Plant it Right………………...……page 4 Four trees are removed for every one planted in most American cities. Help it Grow ……...……………… pg 5 & 6 A single large average tree absorbs 26 pounds of CO2 per year. Resources………………………… pg 6 Each vehicle spews out approximately 100 pounds of CO2 per year. Why Plant Trees? Trees in an urban area increase quality of life by: Air quality and cleansing - A typical person uses 386 lb. of oxygen per year. A healthy 32 ft. tall ash tree can produce about 260 lb. of oxygen annually. Two of these trees would supply the oxygen needs of a person each year! Improved water quality - The canopy of a street tree intercepts rain, reducing the amount of water that will fall on pavement and then be removed by a storm water system. Heating & Cooling Costs - A mature tree canopy reduces air temperatures by about 5 to 10° F, influencing the internal temperatures of nearby buildings. Trees divert wind in the winter and increase winter-time temperatures. Increased home sales prices - When homes with equivalent features are evaluated, a 6% increase to the value is associated with nearby trees. Soil Stabilization - Tree roots stabilize soil, helping to minimize erosion.
    [Show full text]
  • Current U.S. Forest Data and Maps
    CURRENT U.S. FOREST DATA AND MAPS Forest age FIA MapMaker CURRENT U.S. Forest ownership TPO Data FOREST DATA Timber harvest AND MAPS Urban influence Forest covertypes Top 10 species Return to FIA Home Return to FIA Home NEXT Productive unreserved forest area CURRENT U.S. FOREST DATA (timberland) in the U.S. by region and AND MAPS stand age class, 2002 Return 120 Forests in the 100 South, where timber production West is highest, have 80 s the lowest average age. 60 Northern forests, predominantly Million acreMillion South hardwoods, are 40 of slightly older in average age and 20 Western forests have the largest North concentration of 0 older stands. 1-19 20-39 40-59 60-79 80-99 100- 120- 140- 160- 200- 240- 280- 320- 400+ 119 139 159 199 240 279 319 399 Stand-age Class (years) Return to FIA Home Source: National Report on Forest Resources NEXT CURRENT U.S. FOREST DATA Forest ownership AND MAPS Return Eastern forests are predominantly private and western forests are predominantly public. Industrial forests are concentrated in Maine, the Lake States, the lower South and Pacific Northwest regions. Source: National Report on Forest Resources Return to FIA Home NEXT CURRENT U.S. Timber harvest by county FOREST DATA AND MAPS Return Timber harvests are concentrated in Maine, the Lake States, the lower South and Pacific Northwest regions. The South is the largest timber producing region in the country accounting for nearly 62% of all U.S. timber harvest. Source: National Report on Forest Resources Return to FIA Home NEXT CURRENT U.S.
    [Show full text]
  • Taxonomy of Cultivated Potatoes (Solanum Section
    Botanical Journal of the Linnean Society, 2011, 165, 107–155. With 5 figures Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae)boj_1107 107..155 ANNA OVCHINNIKOVA1, EKATERINA KRYLOVA1, TATJANA GAVRILENKO1, TAMARA SMEKALOVA1, MIKHAIL ZHUK1, SANDRA KNAPP2 and DAVID M. SPOONER3* 1N. I. Vavilov Institute of Plant Industry, Bolshaya Morskaya Street, 42–44, St Petersburg, 190000, Russia 2Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK 3USDA-ARS, Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison WI 53706-1590, USA Received 4 May 2010; accepted for publication 2 November 2010 Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of a variety of disease, environmental and agronomic constraints. A series of national and international genebanks collect, characterize and distribute germplasm to stimulate and aid potato improvement. A knowledge of potato taxonomy and evolution guides collecting efforts, genebank operations and breeding. Past taxonomic treatments of wild and cultivated potato have differed tremendously among authors with regard to both the number of species recognized and the hypotheses of their interrelationships. In total, there are 494 epithets for wild and 626 epithets for cultivated taxa, including names not validly published. Recent classifications, however, recognize only about 100 wild species and four cultivated species. This paper compiles, for the first time, the epithets associated with all taxa of cultivated potato (many of which have appeared only in the Russian literature), places them in synonymy and provides lectotype designations for all names validly published where possible.
    [Show full text]
  • What Does Optimization Theory Actually Predict About Crown Profiles Of
    bs_bs_banner Plant, Cell and Environment (2013) 36, 1547–1563 doi: 10.1111/pce.12091 What does optimization theory actually predict about crown profiles of photosynthetic capacity when models incorporate greater realism? THOMAS N. BUCKLEY1, ALESSANDRO CESCATTI2 & GRAHAM D. FARQUHAR3 1Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA, 2European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy and 3Research School of Biology, The Australian National University, Canberra, Australia ABSTRACT Amthor 1994). This assumption is popular for two reasons: firstly, it is widely perceived to be identical to optimal N Measured profiles of photosynthetic capacity in plant crowns allocation and, therefore, consistent with natural selection typically do not match those of average irradiance: the ratio (Field 1983a; Hirose & Werger 1987; Sands 1995), and sec- of capacity to irradiance decreases as irradiance increases. ondly, if leaf absorptance is invariant among leaves and if the This differs from optimal profiles inferred from simple time-averaged and instantaneous profiles of irradiance are models. To determine whether this could be explained by equivalent, it renders models of leaf photosynthesis scale- omission of physiological or physical details from such invariant, and therefore applicable at crown scales (Farquhar models, we performed a series of thought experiments using 1989). Most data indeed show that photosynthetic capacity is a new model that included more realism than previous positively correlated with local irradiance within crowns. models. We used ray-tracing to simulate irradiance for 8000 However, the correlation is not linear; instead, it seems to leaves in a horizontally uniform canopy. For a subsample of saturate at high light, such that the photosynthetic capacity 500 leaves, we simultaneously optimized both nitrogen allo- per unit of incident irradiance declines up through the crown cation (among pools representing carboxylation, electron (e.g.
    [Show full text]
  • Wood from Midwestern Trees Purdue EXTENSION
    PURDUE EXTENSION FNR-270 Daniel L. Cassens Professor, Wood Products Eva Haviarova Assistant Professor, Wood Science Sally Weeks Dendrology Laboratory Manager Department of Forestry and Natural Resources Purdue University Indiana and the Midwestern land, but the remaining areas soon states are home to a diverse array reforested themselves with young of tree species. In total there are stands of trees, many of which have approximately 100 native tree been harvested and replaced by yet species and 150 shrub species. another generation of trees. This Indiana is a long state, and because continuous process testifies to the of that, species composition changes renewability of the wood resource significantly from north to south. and the ecosystem associated with it. A number of species such as bald Today, the wood manufacturing cypress (Taxodium distichum), cherry sector ranks first among all bark, and overcup oak (Quercus agricultural commodities in terms pagoda and Q. lyrata) respectively are of economic impact. Indiana forests native only to the Ohio Valley region provide jobs to nearly 50,000 and areas further south; whereas, individuals and add about $2.75 northern Indiana has several species billion dollars to the state’s economy. such as tamarack (Larix laricina), There are not as many lumber quaking aspen (Populus tremuloides), categories as there are species of and jack pine (Pinus banksiana) that trees. Once trees from the same are more commonly associated with genus, or taxon, such as ash, white the upper Great Lake states. oak, or red oak are processed into In urban environments, native lumber, there is no way to separate species provide shade and diversity the woods of individual species.
    [Show full text]
  • Diabetes Exchange List
    THE DIABETIC EXCHANGE LIST (EXCHANGE DIET) The Exchange Lists are the basis of a meal planning system designed by a committee of the American Diabetes Association and the American Dietetic Association. The Exchange Lists The reason for dividing food into six different groups is that foods vary in their carbohydrate, protein, fat, and calorie content. Each exchange list contains foods that are alike; each food choice on a list contains about the same amount of carbohydrate, protein, fat, and calories as the other choices on that list. The following chart shows the amounts of nutrients in one serving from each exchange list. As you read the exchange lists, you will notice that one choice is often a larger amount of food than another choice from the same list. Because foods are so different, each food is measured or weighed so that the amounts of carbohydrate, protein, fat, and calories are the same in each choice. The Diabetic Exchange List Carbohydrate (grams) Protein (grams) Fat (grams) Calories I. Starch/Bread 15 3 trace 80 II. Meat Very Lean - 7 0-1 35 Lean - 7 3 55 Medium-Fat - 7 5 75 High-Fat - 7 8 100 III. Vegetable 5 2 - 25 IV. Fruit 15 - - 60 V. Milk Skim 12 8 0-3 90 Low-fat 12 8 5 120 Whole 12 8 8 150 VI. Fat - - 5 45 You will notice symbols on some foods in the exchange groups. 1. Foods that are high in fiber (three grams or more per normal serving) have the symbol *. 2. Foods that are high in sodium (400 milligrams or more of sodium per normal serving) have the symbol #.
    [Show full text]
  • El Jardín Botánico Arturo E. Ragonese (JBAER): Miradas a Través Del Tiempo, Realidad Y Prospectiva
    El Jardín Botánico Arturo E. Ragonese (JBAER): miradas a través del tiempo, realidad y prospectiva 2016 712.253:58 Molina, Ana María M72 El Jardín Botánico Arturo E. Ragonese (JBAER) : miradas a través del tiempo, realidad y prospectiva / Ana María Molina. – Buenos Aires : Ediciones INTA. 2016 318 p. : il., fotos ISBN Nº 978-987-521-738-6 i- Título JARDINES BOTANICOS – COLECCIÓN DE PLANTAS – HISTORIA – CULTIVOS INTA - DD Los contenidos de este libro son investigaciones realizadas hasta el 2013 El Jardín Botánico Arturo E. Ragonese (JBAER): miradas a través del tiempo, realidad y prospectiva Ana María Molina Foto de tapa: Avenida de los Robles, Jardín Botánico Arturo E. Ragonese (JBAER). Autor: Gabriel Colonna. Instituto de Recursos Biológicos (IRB) Centro de Investigación de Recursos Naturales (CIRN) Centro Nacional de Investigaciones Agropecuarias (CNIA) Instituto Nacional de Tecnología Agropecuaria (INTA) De Los Reseros y Nicolás Repetto (ex De Las Cabañas) s.n. (1686) Hurlingham, Buenos Aires, Argentina Teléfono: (5411) 4621-1309 www.inta.gob.ar/botanicoragonese, [email protected] A la memoria de mis padres quienes despertaron mi amor por la naturaleza, a mis hermanos con quienes compartí y disfruté la libertad del campo. Un gran reconocimiento a mi esposo, hijos, nietos y amigos, que supieron de mis alegrías, logros y también de mis tristezas. Bienvenidos Altísimo, omnipotente, buen Señor, tuyas son las alabanzas, la gloria y el honor y toda bendición. A ti solo, Altísimo, corresponden, y ningún hombre es digno de hacer de ti mención. Loado seas, mi Señor, con todas tus criaturas, especialmente el señor hermano sol, el cual es día, y por el cual nos alumbras.
    [Show full text]
  • Crown Area Equations for 13 Species of Trees and Shrubs in Northern California and Southwestern Oregon
    United States Department of Crown Area Equations for 13 Agriculture Forest Service Pacific Southwest Species of Trees and Shrubs in Research Station Research Paper Northern California and PSW-RP-227-Web 1996 Southwestern Oregon Fabian C.C. Uzoh Martin W. Ritchie Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: PO Box 245, Berkeley CA US Department of Agriculture 94701-0245 510 559-6300 http://www.pswfs.gov July 1996 Abstract: Uzoh, Fabian C.C.; Ritchie, Martin W. 1996. Crown area equations for 13 species of trees and shrubs in northern California and southwestern Oregon. Res. Paper PSW-RP-227-Web. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 13 p. The equations presented predict crown area for 13 species of trees and shrubs which may be found growing in competition with commercial conifers during early stages of stand development. The equations express crown area as a function of basal area and height. Parameters were estimated for each species individually using weighted nonlinear least square regression. Retrieval terms: growth and yield, simulators Authors Fabian C.C. Uzoh and Martin W. Ritchie are Research Forester and Research Statistician, respectively, in the Station’s Conifer Silviculture Research unit, 2400 Washington Avenue, Redding, CA 96001. Acknowledgments The data used in this analysis were provided by Dr. Robert J. Laacke of Pacific Southwest Research Station, 2400 Washington Avenue, Redding, CA 96001. Crown Area Equations for 13 Species of Trees and Shrubs in Northern California and Southwestern Oregon Fabian C.C. Uzoh Martin W. Ritchie Pacific Southwest Contents Research Station USDA Forest Service Research Paper In Brief .....................................................................................................................
    [Show full text]
  • Tree Identification Guide
    2048 OPAL guide to deciduous trees_Invertebrates 592 x 210 copy 17/04/2015 18:39 Page 1 Tree Rowan Elder Beech Whitebeam Cherry Willow Identification Guide Sorbus aucuparia Sambucus nigra Fagus sylvatica Sorbus aria Prunus species Salix species This guide can be used for the OPAL Tree Health Survey and OPAL Air Survey Oak Ash Quercus species Fraxinus excelsior Maple Hawthorn Hornbeam Crab apple Birch Poplar Acer species Crataegus monogyna Carpinus betulus Malus sylvatica Betula species Populus species Horse chestnut Sycamore Aesculus hippocastanum Acer pseudoplatanus London Plane Sweet chestnut Hazel Lime Elm Alder Platanus x acerifolia Castanea sativa Corylus avellana Tilia species Ulmus species Alnus species 2048 OPAL guide to deciduous trees_Invertebrates 592 x 210 copy 17/04/2015 18:39 Page 1 Tree Rowan Elder Beech Whitebeam Cherry Willow Identification Guide Sorbus aucuparia Sambucus nigra Fagus sylvatica Sorbus aria Prunus species Salix species This guide can be used for the OPAL Tree Health Survey and OPAL Air Survey Oak Ash Quercus species Fraxinus excelsior Maple Hawthorn Hornbeam Crab apple Birch Poplar Acer species Crataegus montana Carpinus betulus Malus sylvatica Betula species Populus species Horse chestnut Sycamore Aesculus hippocastanum Acer pseudoplatanus London Plane Sweet chestnut Hazel Lime Elm Alder Platanus x acerifolia Castanea sativa Corylus avellana Tilia species Ulmus species Alnus species 2048 OPAL guide to deciduous trees_Invertebrates 592 x 210 copy 17/04/2015 18:39 Page 2 ‹ ‹ Start here Is the leaf at least
    [Show full text]
  • Homeowner's Tree Planting Guide
    Check out this thorough and useful “how to plant your trees” resource: www.arborday.org/trees/planting/ 1. Choose the Right Place 1. Mulch Look in all directions and account for the future development of Mulch can improve soil structure, increase organic matter & soil your tree. This includes identifying your tree species and allowing biology, reduce soil proper space for mature growth of your tree. compaction & • Account for realistic spacing amongst other vegetation erosion, and • Avoid planting near power lines or too close to structures conserve moisture Trees can only benefit future generations if they are given the levels within the soil. opportunity to sustainably develop and mature. Choosing the Cover the area right tree in the right place ensures there is a productive future around the tree with for your new planting as well as avoiding an undesirable future approximately 2- removal. 4inches of mulch. Avoid letting the 2. Remove Container/ Basket mulch rub against the Root mass is fragile so take concern to handle it gently trunk. Create a water • Carefully slide tree out of the container or cut wire holding swell above basket (if B&B) the root ball. • Straighten out and prune any girdling roots/ root mats • Dig out to trunk flare if necessary 2. Water Nursery grown trees often have circling roots. It is important to New trees are like babies- they need extra help and extra mitigate this problem during the planting phase. Roots are the attention during their early years. So, water your tree anchor, storage and nutrient providers of the tree. thoroughly after planting! Provide extra water within the first few weeks of establishment.
    [Show full text]
  • Strawberry Plant Structure and Growth Habit E
    Strawberry Plant Structure and Growth Habit E. Barclay Poling Professor Emeritus, NC State University Campus Box 7609, Raleigh NC 27695-7609 Introduction The strawberry plant has a short thickened stem (called a “crown”) which has a growing point at the upper end and which forms roots at its base (Fig. 1). New leaves and flower clusters emerge from “fleshy buds” in the crown in the early spring. From a cultural viewpoint, it is desirable in our region to have the formation of 1-2 “side stems” called branch crowns form during the late fall (Fig. 2). Each branch crown will add to the yield of the main crown by producing its own “flower cluster” or what is technically called an inflorescence. Branch crowns and main crowns are structurally identical, and an inflorescence develops at the terminal growing point of each crown (Fig. 3). Crown growth and development occur when temperatures are above 50o F (mainly in the month of October). Average daily temperatures in November below this temperature will slow branch crown formation and floral development. Row covers may be a good option in November for Camarosa to help stimulate further reproductive development. A well-balanced Camarosa strawberry plant will form 3-5 branch crowns by the time fruiting season begins in the spring. There is excellent potential for a 2 + lb crop per plant (> 15 tons per acre) when you can see the formation of 1-2 side crowns in addition to the main crown (center) in late fall/early winter (Fig. 7). In Chandler and Camarosa it is critical not to plant too early in the fall and run the risk of having too many crowns form (try to avoid the development of more than 6 crowns per plant).
    [Show full text]
  • Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List
    Arizona Department of Water Resources Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Phoenix Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Phoenix AMA list was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn. Jeff Sargent, City of Peoria Mary Irish, Garden writer Mark Schalliol, ADOT Matt Johnson, U of A Desert Legum Christy Ten Eyck, Ten Eyck Landscape Architects Jeff Lee, City of Mesa Gordon Wahl, ADWR Kirti Mathura, Desert Botanical Garden Karen Young, Town of Gilbert Cover Photo: Blooming Teddy bear cholla (Cylindropuntia bigelovii) at Organ Pipe Cactus National Monutment.
    [Show full text]