Removal of Reproductive Suppression Reveals Latent Sex Differences In

Total Page:16

File Type:pdf, Size:1020Kb

Removal of Reproductive Suppression Reveals Latent Sex Differences In Swift-Gallant et al. Biology of Sex Differences (2015) 6:31 DOI 10.1186/s13293-015-0050-x RESEARCH Open Access Removal of reproductive suppression reveals latent sex differences in brain steroid hormone receptors in naked mole-rats, Heterocephalus glaber Ashlyn Swift-Gallant1, Kaiguo Mo1, Deane E. Peragine1, D. Ashley Monks1,2 and Melissa M. Holmes1,2,3* Abstract Background: Naked mole-rats are eusocial mammals, living in large colonies with a single breeding female and 1–3 breeding males. Breeders are socially dominant, and only the breeders exhibit traditional sex differences in circulating gonadal steroid hormones and reproductive behaviors. Non-reproductive subordinates also fail to show sex differences in overall body size, external genital morphology, and non-reproductive behaviors. However, subordinates can transition to breeding status if removed from their colony and housed with an opposite-sex conspecific, suggesting the presence of latent sex differences. Here, we assessed the expression of steroid hormone receptor and aromatase messenger RNA (mRNA) in the brains of males and females as they transitioned in social and reproductive status. Methods: We compared in-colony subordinates to opposite-sex subordinate pairs that were removed from their colony for either 1 day, 1 week, 1 month, or until they became breeders (i.e., produced a litter). Diencephalic tissue was collected and mRNA of androgen receptor (Ar), estrogen receptor alpha (Esr1), progesterone receptor (Pgr), and aromatase (Cyp19a1) was measured using qPCR. Testosterone, 17β-estradiol, and progesterone from serum were also measured. Results: As early as 1 week post-removal, males exhibited increased diencephalic Ar mRNA and circulating testosterone, whereas females had increased Cyp19a1 mRNA in the diencephalon. At 1 month post-removal, females exhibited increased 17β-estradiol and progesterone. The largest changes in steroid hormone receptors were observed in breeders. Breeding females had a threefold increase in Cyp19a1 and fivefold increases in Esr1 and Pgr, whereas breeding males had reduced Pgr and increased Ar. Conclusions: These data demonstrate that sex differences in circulating gonadal steroids and hypothalamic gene expression emerge weeks to months after subordinate animals are removed from reproductive suppression in their home colony. Keywords: Androgen receptor, Aromatase, Estradiol, Estrogen receptor, Eusocial, Naked mole-rat, Progesterone receptor, Reproductive suppression, Sex difference, Testosterone * Correspondence: [email protected] 1Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada 2Department of Cell and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada Full list of author information is available at the end of the article © 2015 Swift-Gallant et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Swift-Gallant et al. Biology of Sex Differences (2015) 6:31 Page 2 of 9 Background Collectively, these data reveal a complex interplay Sexual differentiation of the vertebrate brain and behav- between sex and social status in neuroendocrine func- ior is mediated in large part by gonadal steroid hor- tion in these highly social mammals. To investigate how mones acting in early development. In mammals, an apparent reduction or lack of neural sex differences sexually differentiated hormone production begins at the can be associated with typical sex differences in gonadal earliest stages of gonadal development and produces function seen in breeders, the present study evaluated marked sexual dimorphism in brain and genitals by early the time course of changes in gene expression of gonadal post-natal life (for review, see [1, 2]). steroid hormone receptors and aromatase in brain, as Naked mole-rats (Heterocephalus glaber) do not well as associated circulating hormones. Thus, we quan- appear to fit this framework of sexual differentiation: tified diencephalic levels of messenger RNA (mRNA) most individuals fail to show traditional sex differences expression of androgen receptor (Ar), estrogen receptor in neuroanatomy or behavior, although these features alpha (Esr1), progesterone receptor (Pgr), and aromatase vary based on reproductive and social status [3–6]. (Cyp19a1) and measured circulating T, 17β-estradiol Naked mole-rats are eusocial rodents, living in large (E2), and P, as animals transitioned from subordinate to colonies with a strict reproductive and social hierarchy: breeding status. We hypothesized that sex differences in a single female and 1–3 males reproduce and are socially steroid hormone receptors would be associated with the dominant, while others in the colony are subordinate differences in circulating gonadal steroids that emerge in and usually remain reproductively suppressed for the breeders, specifically predicting that females would show duration of their life [7–9]. The social status within a increases in Esr1 and Pgr while males would show colony is remarkably stable; however, subordinates can increases in Ar. achieve breeder status after loss of a breeder due to death or removal from the colony. In their natural envir- onment, subordinate naked mole-rats can—though rare- Methods ly—leave their natal colony to find an opposite sex Animals and housing partner and establish their own colony [10, 11]. In Sixty-two animals from 11 colonies were used in this ex- captivity, subordinates only undergo sexual maturation if periment. Opposite-sex pairs of animals were established they are separated from their colony [5, 12, 13] or if the either 1 day (24 h), 1 week (7 days), or 1 month (30 days) established breeders die or are removed [14, 15]. prior to tissue collection (6 pairs per time point). Regardless of the specific circumstances in which Breeders were animals that were paired until a litter was subordinates become breeders, they only perform sexual produced (n = 5 pairs) and were collected 30 days after behaviors and show mammalian typical sex differences birth of their first litter. In naked mole-rats, gestation is in gonadal steroid hormones as they transition to between 65 and 74 days long, and lactation ceases at breeding status. Subordinate females have lower urinary approximately 28 days post-partum [5, 23]. Taken with and plasma progesterone (P) levels as well as plasma the fact that none of the breeding females were pregnant luteinizing hormone (LH) concentrations compared to at the time of tissue collection, it seems unlikely that breeder females [16–18]. Within 3 days of separation their values reported below were affected by either preg- from their natal colony, subordinate females show nancy or lactation. Some animals were mis-sexed, result- increases in urinary P levels, and within 7 days, they ing in same-sex pairs. Same-sex pairs were excluded from develop a perforated vagina [16]. Similarly, male subor- analyses; therefore, the final numbers were five opposite- dinates have lower urinary testosterone (T) compared to sex pairs in the 1-day group, 1-week group, and breeder male breeders in the colony [14, 15, 19], and urinary T group and six opposite-sex pairs in the 1-month group. In levels and plasma LH increase when subordinate males addition, seven male and five female subordinate animals are removed from their colony [20]. were selected from the colonies immediately prior to Subordinates and breeders also differ in the neural tissue collection. structures associated with sexual behaviors. However, The colonies were housed in polycarbonate cages where sex differences in the nervous system are found in connected by tubing, as previously described [24]. most mammals, status differences are more prominent The paired animals were housed in single polycar- in the naked mole-rat. For example, breeders, regardless bonate cages (L 43 × W 22 × H 21 cm). All animals of sex, have larger regional volume in various reproduc- were kept on a 12:12-light/dark cycle at 28–30 °C tively relevant hypothalamic structures [4], as well as and had ad libitum access to a diet of sweet potato increased motoneuron soma size in Onuf’s nucleus [3]. and wet protein mash (Harlan Laboratories, Inc). All Furthermore, androgen receptor (AR) and oxytocin procedures were approved by the University Animal immunoreactivity are influenced by social status more Care Committee and adhered to institutional and than sex [6, 21, 22]. federal guidelines. Swift-Gallant et al. Biology of Sex Differences (2015) 6:31 Page 3 of 9 Tissue collection P was measured using an ELISA kit from Cayman The animals were weighed prior to being overdosed with Chemical (Cat. No. 582601) according to the manufac- Avertin (40 mg/100 g). The bloods were collected from turer’sprotocol.Theserumwasdiluted10×withan the trunk, and the brains were extracted. The brains assay buffer provided. The assay sensitivity is 10 pg/ were bisected at midline in the sagittal plane, frozen in mL, and the intra-assay coefficient of variance
Recommended publications
  • Colour Variation in Cichlid Fish
    Seminars in Cell & Developmental Biology 24 (2013) 516–528 Contents lists available at SciVerse ScienceDirect Seminars in Cell & Developmental Biology j ournal homepage: www.elsevier.com/locate/semcdb Review Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences a,∗ b,1 Martine E. Maan , Kristina M. Sefc a University of Groningen, Behavioural Biology, PO Box 11103, 9700 CC Groningen, The Netherlands b Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria a r a t b i c s t l e i n f o r a c t Article history: Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social Available online 9 May 2013 behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour Keywords: variation in this group and the selective pressures responsible for the observed variation. We specifically Cichlidae address the evidence for the hypothesis that divergence in colouration is associated with the evolution Natural selection of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models Pigmentation for understanding the role of animal communication in species divergence, we also identify taxonomic Polymorphism and methodological biases in the current research effort. We suggest that the integration of genomic Sexual selection Speciation approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity.
    [Show full text]
  • Olfactory Sensitivity to Steroid Glucuronates in Mozambique Tilapia
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 4203-4212 doi:10.1242/jeb.111518 RESEARCH ARTICLE Olfactory sensitivity to steroid glucuronates in Mozambique tilapia suggests two distinct and specific receptors for pheromone detection Tina Keller-Costa1,2, Adelino V. M. Canário1 and Peter C. Hubbard1,* ABSTRACT improve fertility to enhance reproductive success (Stacey, 2010; Cichlids offer an exciting opportunity to understand vertebrate Stacey and Sorensen, 2005). Pheromones may be composed of a speciation; chemical communication could be one of the drivers of single or multiple component(s) and are detected by olfactory African cichlid radiation. Chemical signals mediate key aspects in the receptors from which the signal is relayed to specific brain areas that lives of vertebrates and often are species specific. Dominant male integrate the information and trigger the appropriate behavioural Mozambique tilapia [Oreochromis mossambicus (Peters 1852)] and/or endocrine response. A simple and reliable method to study release a sex pheromone, 5β-pregnan-3α,17α,20β-triol 3-glucuronate olfactory sensitivity in freshwater fishes, and to explore whether and its 20α-epimer, via their urine. The objective of this study was to different odorants are detected by separate or shared receptors, is the assess the sensitivity, specificity and versatility of the olfactory system electro-olfactogram (EOG) (for general review see Scott and Scott- of O. mossambicus to other steroids and their conjugates using the Johnson, 2002). In EOG cross-adaption tests, the response amplitude electro-olfactogram. Oreochromis mossambicus was sensitive to to one test odorant is measured prior to adaptation and then again several 3-glucuronidated steroids, but did not respond to during adaptation to a second odorant.
    [Show full text]
  • Downloaded from NCBI Dbest [60]
    Renz et al. EvoDevo 2011, 2:1 http://www.evodevojournal.com/content/2/1/1 RESEARCH Open Access Ancestral and derived attributes of the dlx gene repertoire, cluster structure and expression patterns in an African cichlid fish Adina J Renz1, Helen M Gunter1,2, Jan MF Fischer1, Huan Qiu1,3, Axel Meyer1, Shigehiro Kuraku1* Abstract Background: Cichlid fishes have undergone rapid, expansive evolutionary radiations that are manifested in the diversification of their trophic morphologies, tooth patterning and coloration. Understanding the molecular mechanisms that underlie the cichlids’ unique patterns of evolution requires a thorough examination of genes that pattern the neural crest, from which these diverse phenotypes are derived. Among those genes, the homeobox- containing Dlx gene family is of particular interest since it is involved in the patterning of the brain, jaws and teeth. Results: In this study, we characterized the dlx genes of an African cichlid fish, Astatotilapia burtoni, to provide a baseline to later allow cross-species comparison within Cichlidae. We identified seven dlx paralogs (dlx1a, -2a, -4a, -3b, -4b, -5a and -6a), whose orthologies were validated with molecular phylogenetic trees. The intergenic regions of three dlx gene clusters (dlx1a-2a, dlx3b-4b, and dlx5a-6a) were amplified with long PCR. Intensive cross-species comparison revealed a number of conserved non-coding elements (CNEs) that are shared with other percomorph fishes. This analysis highlighted additional lineage-specific gains/losses of CNEs in different teleost fish lineages and a novel CNE that had previously not been identified. Our gene expression analyses revealed overlapping but distinct expression of dlx orthologs in the developing brain and pharyngeal arches.
    [Show full text]
  • Presentation
    Evolution in Darwin’s Dreampond: The genomic substrate for adaptive radiation in Lake Tanganyika cichlid fish Walter Salzburger Zoological Institute drawings: Julie Johnson drawings: !Charles R. Darwin’s (1809-1882) journey onboard of the HMS Beagle lasted from 27 December 1831 until 2 October 1836 Adaptive Radiation !Darwin’s specimens were classified as “an entirely new group” of 12 species by ornithologist John Gould (1804-1881) African Great Lakes taxonomic diversity at the species level L. Turkana 1 5 50 500 species 0 50 100 % endemics 4°N L. Tanganyika L. Tanganyika L. Albert 2°N L. Malawi L. Malawi L. Edward L. Victoria L. Victoria 0° L. Edward L. Edward L. Kivu L. Victoria 2°S L. Turkana L. Turkana L. Albert L. Albert 4°S L. Kivu L. Kivu L. Tanganyika 6°S taxonomic diversity at the genus level 10 20 30 40 50 genera 0 50 100 % endemics 8°S Rungwe L. Tanganyika L. Tanganyika Volcanic Field L. Malawi 10°S L. Malawi L. Victoria L. Victoria 12°S L. Malawi L. Edward L. Edward L. Turkana L. Turkana 14°S cichlid fish non-cichlid fish L. Albert L. Albert gastropods bivalves 28°E 30°E 32°E 34°E 36°E L. Kivu L. Kivu ostracods ••• W Salzburger, B Van Bockxlaer, AS Cohen (2017), AREES | AS Cohen & W Salzburger (2017) Scientific Drilling Cichlid Fishes Fotos: Angel M. Fitor Angel M. Fotos: !About every 20th fish species on our planet is the product of the ongoing explosive radiations of cichlids in the East African Great Lakes taxonomic~Diversity Victoria [~500 sp.] Tanganyika [250 sp.] Malawi [~1000 sp.] ••• ME Santos & W Salzburger (2012) Science ecological morphological~Diversity zooplanktivore insectivore piscivore algae scraper leaf eater fin biter eye biter mud digger scale eater ••• H Hofer & W Salzburger (2008) Biologie III ecological morphological~Diversity ••• W Salzburger (2009) Molecular Ecology astbur Astbur.:1-90001 Alignment 1 neobri 100% Neobri.
    [Show full text]
  • Reproductive State-Dependent Plasticity in the Visual System of an African Cichlid fish T ⁎ Julie M
    Hormones and Behavior 114 (2019) 104539 Contents lists available at ScienceDirect Hormones and Behavior journal homepage: www.elsevier.com/locate/yhbeh Reproductive state-dependent plasticity in the visual system of an African cichlid fish T ⁎ Julie M. Butlera, , Sarah M. Whitlowa, Loranzie S. Rogersb, Rosalyn L. Putlandb, Allen F. Mensingerb, Karen P. Maruskaa a Department of Biological Sciences, Louisiana State University, USA b Biology Department, University of Minnesota at Duluth, USA ARTICLE INFO ABSTRACT Keywords: Visual communication is used widely across the animal kingdom to convey crucial information about an animals' Astatotilapia burtoni identity, reproductive status, and sex. Although it is well-demonstrated that auditory and olfactory sensitivity Behavior can change with reproductive state, fewer studies have tested for plasticity in the visual system, a surprising Communication detail since courtship and mate choice behaviors in many species are largely dependent on visual signals. Here, Electroretinogram we tested for reproductive state-dependent plasticity in the eye of the cichlid fish Astatotilapia burtoni using Mate choice behavioral, gene expression, neural activation, and electrophysiology techniques. Males court ovulated females Neural activation Ovulation more intensely than gravid females, and ovulated females were more responsive to male courtship behaviors pS6 than gravid females. Using electroretinography to measure visual sensitivity in dark-adapted fish, we revealed Teleost that gravid, reproductively-ready females have increased visual sensitivity at wavelengths associated with male courtship coloration compared to non-gravid females. After ovulation was hormonally induced, female's spectral sensitivity further increased compared to pre-injection measurements. This increased sensitivity after hormone injection was absent in non-gravid females and in males, suggesting an ovulation-triggered increase in visual sensitivity.
    [Show full text]
  • The Evolution of Infanticide by Females in Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/405688; this version posted September 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The evolution of infanticide by females in mammals Dieter Lukas1,2* & Elise Huchard1,3 1) Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ Cambridge, U. K. 2) Department of Human Behaviour, Ecology, and Culture, MPI for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany 3) Institut des Sciences de L'Evolution de Montpellier, UMR 5554, CNRS, Université de Montpellier, Montpellier, France *) Author for correspondence: [email protected] ORCID: Dieter Lukas: 0000-0002-7141-3545; Elise Huchard: 0000-0002-6944-449X Keywords: social competition; sexual selection; phylogenetic comparison; sociality; kinship Abstract In most mammalian species, females regularly interact with kin, and it may thus be difficult to understand the evolution of some aggressive and harmful competitive behaviour among females, such as infanticide. Here, we investigate the evolutionary determinants of infanticide by females by combining a quantitative analysis of the taxonomic distribution of infanticide with a qualitative synthesis of the circumstances of infanticidal attacks in published reports. Our results show that female infanticide is widespread across mammals and varies in relation to social organization and life-history, being more frequent where females breed in group and invest much energy into reproduction. Specifically, female infanticide occurs where the proximity of conspecific offspring directly threatens the killer’s reproductive success by limiting access to critical resources for her dependent progeny, including food, shelters, care or a social position.
    [Show full text]
  • Is It All Good in the Hood? Astatotilapia Burtoni Aggression Levels in Complex and Simple Environments Compared! Nick Morales Patrick Shan Reed College Bio342
    Is It All Good In The Hood? Astatotilapia burtoni aggression levels in complex and simple environments compared! Nick Morales Patrick Shan Reed College Bio342 Do environmental constraints afect aggressiveness in species such as Astatotilapia burtoni? Astatotilapia burtoni • species of African cichlids • natively to Burundi, Rwanda, Tanzania, and Zambia • Males are known for their relatively bright coloration and territorial behavior Figure 1. Two male Astatotilapia burtoni cichlids face of over territorial boundries. Hypothesis: aggression negatively correlates with amount of environmental constraints like lack of shelter Assembling The Kingdom of Atlantis: • Two sets of two tanks • Each set has a simple and complex tank • Simple contains 3 pottery shards while complex contains 25 pottery shards • Seven fish per tank: 5 male, 2 female • Each tank assessed with a combination of scan and 1/0 sampling to record a number of diferent behaviors over a ten minute period • Labels • Tank A: Complex (25 shards) • Tank B: Simple (3 shards) • Tank C: Simple (3 shards) • Tank D: Complex (25 shards) Figure 2. Fish tank with debris and cichlids Results: Aggression in Astatotilapia burtoni seemingly corresponds with environmental constraints Amount of Aggressive Behaviors 60 50 • Low number of habitats 40 seems to correspond 30 Tank A with higher aggression 20 Tank B • High numbers of Tank C 10 Tank D habitats seem to 0 correspond with lower Numberof Occurrences aggression Date of Observations Figure 3: Te Number of Aggressive Behaviors Performed by A. burtoni during Sample Periods. Aggressive actions were considered as either chasing another fish or darting at another fish. In addition darting at the glass of the tank was also considered aggressive behavior as it was believed to correspond with a fish mistaking its own reflection for another individual.
    [Show full text]
  • A BAC Library of the East African Haplochromine Cichlid Fish
    JOURNAL OF EXPERIMENTAL ZOOLOGY (MOL DEV EVOL) 306B:35–44 (2006) A BAC Library of the East African Haplochromine Cichlid Fish Astatotilapia burtoni MICHAEL LANG1y, TSUTOMU MIYAKE2, INGO BRAASCH1, DEBORAH TINNEMORE2, NICOL SIEGEL1, WALTER SALZBURGER1, 2Ã 1Ã CHRIS T. AMEMIYA , AND AXEL MEYER 1Lehrstuhl fu¨r Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany 2Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 ABSTRACT A BAC library was constructed from Astatotilapia burtoni, a haplochromine cichlid that is found in Lake Tanganyika, East Africa, and its surrounding rivers. The library was generated from genomic DNA of blood cells and comprises 96,768 individual clones. Its median insert size is 150 kb and the coverage is expected to represent about 14 genome equivalents. The coverage evaluation was based on genome size estimates that were obtained by flow cytometry. In addition, hybridization screens with five probes largely corroborate the above coverage estimate, although the number of clones ranged from 5 to 22 authenticated clones per single copy probe. The BAC library described here is expected to be useful to the scientific community interested in cichlid genomics as an important resource to gain new insights into the rapid evolution of the great species diversity of haplochromine cichlid fishes. J. Exp. Zool. (Mol. Dev. Evol.) 306B:35– 44, 2006. r 2005 Wiley-Liss, Inc. The species flocks of cichlid fishes of the East rivers, swamp and marsh areas (Meyer et al., ’91; African Great Lakes Victoria, Tanganyika and Salzburger et al., 2002a, 2005; Verheyen et al., Malawi are extraordinary examples for explosive 2003).
    [Show full text]
  • Did Hypertrophied Lips Evolve Once Or Repeatedly in Lake Malawi Cichlid Fishes?
    UCLA UCLA Previously Published Works Title Phylogenomics of a putatively convergent novelty: did hypertrophied lips evolve once or repeatedly in Lake Malawi cichlid fishes? Permalink https://escholarship.org/uc/item/9k27g6qm Journal BMC evolutionary biology, 18(1) ISSN 1471-2148 Authors Darrin Hulsey, C Zheng, Jimmy Holzman, Roi et al. Publication Date 2018-11-29 DOI 10.1186/s12862-018-1296-9 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Darrin Hulsey et al. BMC Evolutionary Biology (2018) 18:179 https://doi.org/10.1186/s12862-018-1296-9 RESEARCH ARTICLE Open Access Phylogenomics of a putatively convergent novelty: did hypertrophied lips evolve once or repeatedly in Lake Malawi cichlid fishes? C. Darrin Hulsey1* , Jimmy Zheng2, Roi Holzman3, Michael E. Alfaro2, Melisa Olave1 and Axel Meyer1 Abstract Background: Phylogenies provide critical information about convergence during adaptive radiation. To test whether there have been multiple origins of a distinctive trophic phenotype in one of the most rapidly radiating groups known, we used ultra-conserved elements (UCEs) to examine the evolutionary affinities of Lake Malawi cichlids lineages exhibiting greatly hypertrophied lips. Results: The hypertrophied lip cichlids Cheilochromis euchilus, Eclectochromis ornatus, Placidochromis “Mbenji fatlip”, and Placidochromis milomo areallnestedwithinthenon-mbunacladeofMalawi cichlids based on both concatenated sequence and single nucleotide polymorphism (SNP) inferred phylogenies. Lichnochromis acuticeps that exhibits slightly hypertrophied lips also appears to have evolutionary affinities to this group. However, Chilotilapia rhoadesii that lacks hypertrophied lips was recovered as nested within the species Cheilochromis euchilus. Species tree reconstructions and analyses of introgression provided largely ambiguous patterns of Malawi cichlid evolution.
    [Show full text]
  • Cytogenetics of Gymnogeophagus Setequedas (Cichlidae: Geophaginae), with Comments on Its Geographical Distribution
    Neotropical Ichthyology, 15(2): e160035, 2017 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20160035 Published online: 26 June 2017 (ISSN 1982-0224) Copyright © 2017 Sociedade Brasileira de Ictiologia Printed: 30 June 2017 (ISSN 1679-6225) Cytogenetics of Gymnogeophagus setequedas (Cichlidae: Geophaginae), with comments on its geographical distribution Leonardo M. Paiz1, Lucas Baumgärtner2, Weferson J. da Graça1,3, Vladimir P. Margarido1,2 and Carla S. Pavanelli1,3 We provide cytogenetic data for the threatened species Gymnogeophagus setequedas, and the first record of that species collected in the Iguaçu River, within the Iguaçu National Park’s area of environmental preservation, which is an unexpected occurrence for that species. We verified a diploid number of 2n = 48 chromosomes (4sm + 24st + 20a) and the presence of heterochromatin in centromeric and pericentromeric regions, which are conserved characters in the Geophagini. The multiple nucleolar organizer regions observed in G. setequedas are considered to be apomorphic characters in the Geophagini, whereas the simple 5S rDNA cistrons located interstitially on the long arm of subtelocentric chromosomes represent a plesiomorphic character. Because G. setequedas is a threatened species that occurs in lotic waters, we recommend the maintenance of undammed environments within its known area of distribution. Keywords: Chromosomes, Conservation, Iguaçu River, Karyotype, Paraná River. Fornecemos dados citogenéticos para a espécie ameaçada Gymnogeophagus setequedas, e o primeiro registro da espécie coletado no rio Iguaçu, na área de preservação ambiental do Parque Nacional do Iguaçu, a qual é uma área de ocorrência inesperada para esta espécie. Verificamos em G. setequedas 2n = 48 cromossomos (4sm + 24st + 20a) e heterocromatina presente nas regiões centroméricas e pericentroméricas, as quais indicam caracteres conservados em Geophagini.
    [Show full text]
  • Astatotilapia Burtoni Sex Differences in a Novel Object Recognition
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.234658; this version posted October 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Equal performance but distinct behaviors: Astatotilapia burtoni sex differences in 2 a novel object recognition task and spatial maze 3 4 Kelly J. Wallace1 & Hans A. Hofmann1 5 1Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA 6 Article Type: Research Article 7 8 Kelly J. Wallace ORCID: 0000-0002-2361-1213 9 Hans A. Hofmann ORCID: 0000-0002-3335-330X 10 11 Author for correspondence: Kelly J. Wallace 12 [email protected] 13 University of Texas at Austin, Department of Integrative Biology 14 1 University Station C0990 15 Austin, Texas 78712 16 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.234658; this version posted October 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 17 Highlights 18 - To ask if sexual dimorphism in cognition is reduced in a species where both 19 sexes navigate highly fluctuating social environments, we assessed performance 20 and behavior of the cichlid fish Astatotilapia burtoni in a novel object recognition 21 task and a spatial maze.
    [Show full text]
  • Hormonal Regulation of Prostaglandin F2α Receptor Expression: Identifying Mechanisms of Female Reproductive Behavior in a Cichlid Fish
    Hormonal Regulation of Prostaglandin F2α Receptor Expression: Identifying Mechanisms of Female Reproductive Behavior in a Cichlid Fish Anusha Kumar May 2014 HORMONAL REGULATION OF PROSTAGLANDIN F2α RECEPTOR EXPRESSION: IDENTIFYING MECHANISMS OF FEMALE REPRODUCTIVE BEHAVIOR IN A CICHLID FISH An Honors Thesis Submitted to the Department of Biology in partial fulfillment of the Honors Program STANFORD UNIVERSITY by Anusha Kumar May 2014 ! 2 Acknowledgements I would like to thank my postdoctoral mentor Scott Juntti for guiding me through the experimental design process, for overseeing my use of molecular biology techniques, and for providing invaluable suggestions as I analyzed my data. I also thank postdoctoral fellow Mariana Jimenez for helping me develop the ovariectomy procedure I make extensive use of in this study. Special thanks to my PI Russell Fernald, for providing me continuing support and a friendly lab environment to conduct my research. I will treasure the memories from these four, stellar years, Fernald Lab. Also, many thanks to all my readers, Scott Juntti and Professors Russ Fernald and Craig H. Heller, who helped me edit and revise this document. Finally, this project would not have been possible with out the generous funding provided by the UAR Major Grant, for the 2013-2014 year. ! 4 Table of Contents ABSTRACT............................................................................................................7! INTRODUCTION..................................................................................................8!
    [Show full text]