C1-Esterase Inhibitor

Total Page:16

File Type:pdf, Size:1020Kb

C1-Esterase Inhibitor & Throm gy b o o l e o t m Journal of Hematology & a b o m Karnaukhova, J Hematol Thromb Dis 2013, 1:3 l e i c H D f DOI: 10.4172/2329-8790.1000113 o i s l e a Thromboembolic Diseases ISSN: 2329-8790 a n s r e u s o J Review Article Open Access C1-Esterase Inhibitor: Biological Activities and Therapeutic Applications Elena Karnaukhova* Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, 20892 USA Abstract Human C1-esterase inhibitor (C1-INH) is a unique anti-inflammatory multifunctional plasma protein best known for its key role in regulation of the classical complement pathway, contact activation system and intrinsic pathway of coagulation. By sequence homology and mechanism of protease inhibition it belongs to the serine proteinase inhibi- tor (serpin) superfamily. However, in addition to its inhibitory capacities for several proteases, it also exhibits a broad spectrum of non-inhibitory biological activities. C1-INH plays a key role in the regulation of vascular permeability, best demonstrated in hereditary angioedema (HAE) which is triggered by the deficiency of functional C1-INH in plasma. Since 1963, when the link between HAE and C1-INH was first identified, considerable progress has been made in the investigation of C1-INH structure and biological activities, understanding its therapeutic potential, and in the research and development of C1-INH-based therapies for the treatment of HAE and several other clinical conditions. However, augmentation therapy with C1-INH concentrates for patients with HAE is currently the only approved therapeutic ap- plication of C1-INH. This manuscript provides an overview of the structure and functions of human C1-INH, its role in HAE, summarizes published data available for recently approved C1-INH therapeutic products, and considers possible use of C1-INH for other applications. Keywords: C1-esterase inhibitor; C1-inhibitor deficiency; Hereditary C1-INH Structure and Functions angioedema Abundance of C1-INH Abbreviations: BK: Bradykinin; B2R: B2-receptor; C1- Human C1-INH is a positive acute-phase plasma glycoprotein with INH: C1-esterase inhibitor; FXIIa: activated factor XII; GAG: normal concentration in healthy subjects ~ 240 µg/mL (~3 µM), but Glycosaminoglycan; HAE: Hereditary Angioedema; HMWK: High its level may increase by 2-2.5 times during inflammation [8,9]. Some Molecular Weight Kininogen; IV: Intravenous; MASP-1 and MASP- characteristics of human C1-INH are summarized in Table 1. Low 2: Mannan-Binding Lectin-Associated Serine Proteases; pd: Plasma- plasma content of C1-INH or its dysfunction result in the activation Derived; RCL: Reactive Center Loop; rhC1-INH: Recombinant Human of both complement and contact plasma cascades, and may affect C1-INH; SC: Subcutaneous other systems as well (vide infra) [10-12]. Decrease in C1-INH plasma Introduction content to levels lower than 55 µg/mL (~25% of normal) was shown to induce spontaneous activation of C1 [13]. Human C1-INH is an important anti-inflammatory plasma protein with a wide range of inhibitory and non-inhibitory biological Biosynthesis and mutations activities. By sequence homology, structure of its C-terminal domain, C1-INH is synthesized and secreted primarily by hepatocytes, but and mechanism of protease inhibition, it belongs to the serpin is also produced by monocytes, fibroblasts, macrophages, microglial superfamily, the largest class of plasma protease inhibitors, which cells, endothelial cells, and some other cells [14-18]. Biosynthesis of C1- also includes antithrombin, α -proteinase inhibitor, plasminogen 1 INH can be stimulated by cytokines, particularly by interferon-γ [19,20]. activator inhibitor, and many other structurally similar proteins that regulate diverse physiological systems [1,2]. Best known for regulating Human C1-INH is encoded by the SERPING1 gene (17 kb) on the complement cascade system, C1-INH also plays a key role in the chromosome 11 (11q12→q13.1) comprised of eight exons and seven regulation of the contact (kallikrein-kinin) amplification cascade, and introns [21-23]. A vast variety of large and small mutations identified participates in the regulation of the coagulation and fibrinolytic systems in C1-INH for patients with HAE results from three types of alterations [3-5]. Since 1963, when Donaldson and Evans linked the symptoms in the gene: (i) deletions or duplications due to high content of Alu of hereditary angioedema (HAE, called hereditary angioneurotic repeat sequences in the introns that causes ~20% of genetic defects edema at that time) to the absence of serum C1-INH, it has been the in HAE [23,24]; (ii) mutations in the codon for Arg444 of the reactive subject of multidisciplinary research [6,7]. Over the past fifty years, our center loop (RCL) which results in dysfunctional C1-INH [25]; and (iii) knowledge about C1-INH structure and its biological functions, the cause(s) of its deficiency, and its role in HAE and other conditions has been significantly advanced. The majority of research still focuses on *Corresponding author: Elena Karnaukhova, PhD, Division of Hematology, the mechanisms and efficient treatments of C1-INH-dependent types Center for Biologics Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, National Institutes of Health Building 29, Bethesda, of HAE; however, the physiological and pharmacological activities Maryland 20892, USA, Tel: 301-402-4635; Fax: 301-402-2780; E-mail: of C1-INH are much broader. During the last five years, several C1- [email protected] INH products have been licensed in the US and EU for the treatment Received February 06, 2013; Accepted May 13, 2013; Published May 15, 2013 C1-INH-deficient patients with HAE that dramatically improved the therapeutic options in the battle with this rare disease. Due to C1-INH Citation: Karnaukhova E (2013) C1-Esterase Inhibitor: Biological Activities and Therapeutic Applications. J Hematol Thromb Dis 1: 113. doi: 10.4172/2329- involvement in a variety of physiological processes, its therapeutic 8790.1000113 potential for the treatment of other conditions has also been recognized, yet remains unexplored. This review considers the biochemistry of C1- Copyright: © 2013 Karnaukhova E. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted INH, its biological activities, and recent advances in its therapeutic use, distribution, and reproduction in any medium, provided the original author and development. source are credited. J Hematol Thromb Dis ISSN: 2329-8790 JHTD, an open access journal Volume 1 • Issue 3 • 1000113 Citation: Karnaukhova E (2013) C1-Esterase Inhibitor: Biological Activities and Therapeutic Applications. J Hematol Thromb Dis 1: 113. doi: 10.4172/2329-8790.1000113 Page 2 of 7 a large number of single codon mutations over the length of the gene and (2) three N- and at least seven O-linked carbohydrates have been [12,26-28]. All this characterizes C1-INH deficiency as an extremely determined for N-terminal domain [35]. The protein integrity is heterogeneous disease. It is of interest that some mutations in the maintained by connection of the domains with two disulfide bridges SERPING1 gene are associated with the development of age-related formed by Cys101 and Cys108 of the N-terminal domain and Cys406 and macular degeneration [29,30]. Cys183 of C-terminal domain [31]. Although the functional role of the exceptionally long and heavily glycosylated N-terminal domain is still Structural characterization unclear, it may be essential for the protein’s conformational stability, Human C1-INH is a single-chain polypeptide (478 amino acid recognition, affinity to endotoxins and selectins, and clearance. The residues) which forms two domains: (a) C-terminal domain (365 intrinsic heterogeneity of the carbohydrate moiety greatly contributes amino acids), which is a typical serpin; and (b) N-terminal domain to the heterogeneity of the whole C1-INH. This may be one of the (113 amino acids), the role of which is not clearly elucidated, but which reasons why obtaining a crystal structure of native glycosylated C1- seems to be important for protein integrity and stabilization of the INH remains elusive. serpin domain [31] and for interactions with lipopolysaccharides [32]. To date, the only published crystal structure that is available for C1-INH is a heavily glycosylated protein with more than 26% C1-INH has been performed by Beinrohr and co-workers for the (w/w) of carbohydrates. Whereas the calculated molecular weight non-glycosylated serpin domain of recombinant C1-INH, which of the polypeptide part is 52,869 Da [21], the molecular weight of crystallized in its latent form [36]. The crystal structure of the serpin the whole protein is ~76 kDa (by neutron scattering [33]). Using domain features nine α-helices, three β-sheets, and a mobile RCL mass spectrometric analysis we detected it as an ~74 kDa protein exposed for interaction with target serine proteases, features typical (the author’s data); however, it is often referred to as an ~105 kDa for serpins (Figure 1). The alignment of the C1-INH serpin domain glycoprotein as observed by electrophoretic mobility on SDS-PAGE structure with those of antithrombin III and α1-proteinase inhibitor [33,34]. Carbohydrates are very unevenly distributed over the C1-INH illustrates the overall remarkable structural similarity between serpins molecule: (1) three N-attached glycans belong to the serpin domain, [37]. The major difference revealed by Beinrohr et al. for this C1-INH attached to asparagine residues Asn216, Asn231, and Asn330, which is serpin structure is that the C-terminal P’ part of the RCL shows as the new seventh strand of thus-extended β-sheet A, while in other known similar to the glycosylation of archetypal serpin α1-proteinase inhibitor; latent serpin structures it is just a flexible loop [36]. Similar to α1-proteinase inhibitor, C1-INH serpin domain is intrinsically folded into a metastable structure, which is not the most thermodynamically stable form, but is essential for inhibitory function.
Recommended publications
  • Regulation of the Complement System by Pentraxins
    REVIEW published: 02 August 2019 doi: 10.3389/fimmu.2019.01750 Regulation of the Complement System by Pentraxins Karita Haapasalo 1 and Seppo Meri 1,2,3* 1 Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland, 2 HUSLAB, Helsinki University Hospital, Helsinki, Finland, 3 Department of Biomedical Sciences, Humanitas University, Milan, Italy The functions of pentraxins, like C-reactive protein (CRP), serum amyloid protein P (SAP) and pentraxin-3 (PTX3), are to coordinate spatially and temporally targeted clearance of injured tissue components, to protect against infections and to regulate related inflammation together with the complement system. For this, pentraxins have a dual relationship with the complement system. Initially, after a focused binding to their targets, e.g., exposed phospholipids or cholesterol in the injured tissue area, or microbial components, the pentraxins activate complement by binding its first component C1q. However, the emerging inflammation needs to be limited to the target area. Therefore, pentraxins inhibit complement at the C3b stage to prevent excessive damage. The complement inhibitory functions of pentraxins are based on their ability to interact with complement inhibitors C4bp or factor H (FH). C4bp binds to SAP, while FH binds to Edited by: both CRP and PTX3. FH promotes opsonophagocytosis through inactivation of C3b to Barbara Bottazzi, Milan University, Italy iC3b, and inhibits AP activity thus preventing formation of the C5a anaphylatoxin and the Reviewed by: complement membrane attack complex (MAC). Monitoring CRP levels gives important Livija Deban, clinical information about the extent of tissue damage and severity of infections. CRP is a Prokarium, United Kingdom valuable marker for distinguishing bacterial infections from viral infections.
    [Show full text]
  • Nephrology Clinical Laboratory Research Compendium
    Nephrology Clinical Laboratory Research Compendium The Nephrology Clinical Laboratory at Cincinnati Children’s Hospital Medical Center has expanded its clinical testing menu to now offer testing on a research basis. The CAP and CLIA certified laboratory operates under Good Clinical Laboratory Practice principles to ensure testing can be used to support findings of clinical trials. CONTACT US Our state of the art laboratory offers a broad testing menu to support research and pharmaceutical projects. We have the capability to perform traditional For more information on research or ELISA’S, multiplexing using the MSD Meso discovery, luminex magnetic bead clinical testing, please contact us at: assays, nephelometry and clinical chemistry. Phone: 513-636-4530 [email protected] The Nephrology Clinical Laboratory Research Compendium offers clinical chemistry, therapeutic drug monitoring, immunology, complement quantitation, www.cincinnatichildrens.org function and activation, specialty proteins and testing for various forms of thrombotic microangiopathies. COMPLEMENT SPECIALTY TESTING Autoantibody Testing Complement Components • Factor H Autoantibody (Quantitative) • C3 Nephritic Factor • C1 inhibitor (quantitative) • Factor B Autoantibody • C1q • C2 Functional Testing • C3 • CH50 • C4 • Alternative Pathway Functional Assay • C5 • MBL Pathway Functional Assay • C6 • C1 inhibitor Functional Assay • C7 • C8 Complement Activation Fragments • C9 • Complement Bb • Factor B • Complement Ba • Factor H • C3a • Factor I • C3c • Properdin • C3d
    [Show full text]
  • Plasminogen Activator Inhibitor Type-1
    PLASMINOGEN ACTIVATOR INHIBITOR TYPE-1: structure-function studies and its use as a reference for intramolecular distance measurements by Peter Hägglöf Department of Medical Biochemistry and Biophysics Umeå University, Sweden Umeå 2004 1 Copyright 2003 Peter Hägglöf Printed in Sweden by VMC-KBC New Series No. 869; ISSN 0346-6612; ISBN 91-7305-571 2 TABLE OF CONTENTS ABBREVIATIONS 4 ABSTRACT 5 PREFACE 6 INTRODUCTION 7 1. General overview 7 2. Serine proteases 8 2.1 Plasmin 9 2.2 Urokinase-type plasminogen activator (uPA) 9 2.3 Tissue-type plasminogen activator (tPA) 10 3. Serpin structure 10 3.1 Introduction 11 3.2 Active form 11 3.3 Cleaved form 12 3.4 Latent form 12 4. The inhibitory mechanism of serpins 12 5. PAI-1 13 5.1 Expression 13 5.2 Inhibitory activity 13 5.3 Cofactors 14 5.3.1 heparin 14 5.3.2 vitronectin 14 5.4 Structural instability of PAI-1 14 5.5 Regulation of cell migration 15 5.6 Diseases related to PAI-1 15 6. Structure determination of proteins by fluorescence spectroscopy 15 6.1 Basic concept of fluorescence 16 6.2 Fluorescence lifetime 16 6.3 Fluorescence anisotropy 17 6.4 Energy transfer 17 6.5 Fluorescent probes 17 6.5.1 Intrinsic fluorophores 18 6.5.2 Extrinsic fluorophores 18 6.6 Donor-acceptor energy transfer (DAET) 18 6.7 Donor-Donor Energy Migration DDEM 19 6.8 Quenching of BODIPY dimmers 19 7. Summary of the present study 19 7.1 The use of site-directed fluorophore labeling and donor-donor energy migration to investigate solution structure and dynamics in proteins (Paper I) 19 7.2 Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology.
    [Show full text]
  • Human Alpha 2 Antiplasmin (Total) ELISA Kit (ARG81079)
    Product datasheet [email protected] ARG81079 Package: 96 wells Human alpha 2 Antiplasmin (total) ELISA Kit Store at: 4°C Summary Product Description ARG81079 alpha 2 Human Antiplasmin (total) ELISA Kit is an Enzyme Immunoassay kit for the quantification of Human Antiplasmin (total) in plasma. Tested Reactivity Hu Tested Application ELISA Target Name alpha 2 Antiplasmin Conjugation HRP Conjugation Note TMB substrate is used for color development at 450 nm. Sensitivity 0.028 ng/ml Sample Type Plasma Standard Range 0.1 - 100 ng/ml Alternate Names Alpha-2-AP; Serpin F2; Alpha-2-PI; Alpha-2-antiplasmin; Alpha-2-plasmin inhibitor; AAP; API; PLI; A2AP; ALPHA-2-P Properties Form 96 well Storage instruction Store the kit at 2-8°C. Keep microplate wells sealed in a dry bag with desiccants. Do not expose test reagents to heat, sun or strong light during storage and usage. Please refer to the product user manual for detail temperatures of the components. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Database links GeneID: 5345 Human Swiss-port # P08697 Human Gene Symbol SERPINF2 Gene Full Name serpin family F member 2 Background This gene encodes a member of the serpin family of serine protease inhibitors. The protein is a major inhibitor of plasmin, which degrades fibrin and various other proteins. Consequently, the proper function of this gene has a major role in regulating the blood clotting pathway. Mutations in this gene result in alpha-2-plasmin inhibitor deficiency, which is characterized by severe hemorrhagic diathesis. Multiple transcript variants encoding different isoforms have been found for this gene.
    [Show full text]
  • The Plasmin–Antiplasmin System: Structural and Functional Aspects
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Cell. Mol. Life Sci. (2011) 68:785–801 DOI 10.1007/s00018-010-0566-5 Cellular and Molecular Life Sciences REVIEW The plasmin–antiplasmin system: structural and functional aspects Johann Schaller • Simon S. Gerber Received: 13 April 2010 / Revised: 3 September 2010 / Accepted: 12 October 2010 / Published online: 7 December 2010 Ó Springer Basel AG 2010 Abstract The plasmin–antiplasmin system plays a key Plasminogen activator inhibitors Á a2-Macroglobulin Á role in blood coagulation and fibrinolysis. Plasmin and Multidomain serine proteases a2-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into solu- Abbreviations ble fragments. However, besides plasmin(ogen) and A2PI a2-Antiplasmin, a2-Plasmin inhibitor a2-antiplasmin the system contains a series of specific CHO Carbohydrate activators and inhibitors. The main physiological activators EGF-like Epidermal growth factor-like of plasminogen are tissue-type plasminogen activator, FN1 Fibronectin type I which is mainly involved in the dissolution of the fibrin K Kringle polymers by plasmin, and urokinase-type plasminogen LBS Lysine binding site activator, which is primarily responsible for the generation LMW Low molecular weight of plasmin activity in the intercellular space. Both activa- a2M a2-Macroglobulin tors are multidomain serine proteases. Besides the main NTP N-terminal peptide of Pgn physiological inhibitor a2-antiplasmin, the plasmin–anti- PAI-1, -2 Plasminogen activator inhibitor 1, 2 plasmin system is also regulated by the general protease Pgn Plasminogen inhibitor a2-macroglobulin, a member of the protease Plm Plasmin inhibitor I39 family.
    [Show full text]
  • O) 2 Platelets Mediated by Properdin and C3(H Complement Activation on Stimulated Identification of a Novel Mode Of
    Identification of a Novel Mode of Complement Activation on Stimulated Platelets Mediated by Properdin and C3(H2 O) This information is current as of October 1, 2021. Gurpanna Saggu, Claudio Cortes, Heather N. Emch, Galia Ramirez, Randall G. Worth and Viviana P. Ferreira J Immunol 2013; 190:6457-6467; Prepublished online 15 May 2013; doi: 10.4049/jimmunol.1300610 Downloaded from http://www.jimmunol.org/content/190/12/6457 Supplementary http://www.jimmunol.org/content/suppl/2013/05/17/jimmunol.130061 Material 0.DC1 http://www.jimmunol.org/ References This article cites 72 articles, 37 of which you can access for free at: http://www.jimmunol.org/content/190/12/6457.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 1, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of a Novel Mode of Complement Activation on Stimulated Platelets Mediated by Properdin and C3(H2O) Gurpanna Saggu,*,1 Claudio Cortes,*,†,1 Heather N.
    [Show full text]
  • Antiplasmin the Main Plasmin Inhibitor in Blood Plasma
    1 From Department of Surgical Sciences, Division of Clinical Chemistry and Blood Coagu- lation, Karolinska University Hospital, Karolinska Institutet, S-171 76 Stockholm, Sweden ANTIPLASMIN THE MAIN PLASMIN INHIBITOR IN BLOOD PLASMA Studies on Structure-Function Relationships Haiyao Wang Stockholm 2005 2 ABSTRACT ANTIPLASMIN THE MAIN PLASMIN INHIBITOR IN BLOOD PLASMA Studies on Structure-Function Relationships Haiyao Wang Department of Surgical Sciences, Division of Clinical Chemistry and Blood Coagulation, Karo- linska University Hospital, Karolinska Institute, S-171 76 Stockholm, Sweden Antiplasmin is an important regulator of the fibrinolytic system. It inactivates plasmin very rapidly. The reaction between plasmin and antiplasmin occurs in several steps: first a lysine- binding site in plasmin interacts with a complementary site in antiplasmin. Then, an interac- tion occurs between the substrate-binding pocket in the plasmin active site and the scissile peptide bond in the RCL of antiplasmin. Subsequently, peptide bond cleavage occurs and a stable acyl-enzyme complex is formed. It has been accepted that the COOH-terminal lysine residue in antiplasmin is responsible for its interaction with the plasmin lysine-binding sites. In order to identify these structures, we constructed single-site mutants of charged amino ac- ids in the COOH-terminal portion of antiplasmin. We found that modification of the COOH- terminal residue, Lys452, did not change the activity or the kinetic properties significantly, suggesting that Lys452 is not involved in the lysine-binding site mediated interaction between plasmin and antiplasmin. On the other hand, modification of Lys436 to Glu decreased the reaction rate significantly, suggesting this residue to have a key function in this interaction.
    [Show full text]
  • Overexpression of Plasminogen Activator Inhibitor Type 2 in Basal Keratinocytes Enhances Papilloma Formation in Transgenic Mice1
    [CANCER RESEARCH 61, 970–976, February 1, 2001] Overexpression of Plasminogen Activator Inhibitor Type 2 in Basal Keratinocytes Enhances Papilloma Formation in Transgenic Mice1 Hong-Ming Zhou, Isabelle Bolon, Anthony Nichols,2 Annelise Wohlwend, and Jean-Dominique Vassalli3 Department of Morphology, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland ABSTRACT PAI-1 is expressed more broadly than PAI-2, and its role in modu- lating extracellular proteolysis has been demonstrated by ablation (2) The serpin plasminogen activator inhibitor (PAI) type 2 is expressed in or overexpression (3) of the PAI-1 gene. Although PAI-2 can inhibit differentiated epidermal keratinocytes. To explore its role in this tissue, extracellular uPA and tPA (the two-chain form; Ref. 4), it may have we studied the impact of PAI-2 overexpression on epidermal differentia- tion and skin carcinogenesis. A mouse PAI-2-encoding transgene was additional intracellular functions: it is found in both a secreted and an targeted to basal epidermis and hair follicles under the control of the intracellular cytosolic form, both of which result from translation of bovine keratin type 5 gene promoter. Two mouse lines were established, the same mRNA; and their antiprotease activity is similar (5–7). Hints one of which strongly expressed the transgene and produced elevated regarding the possible functions of intracellular PAI-2 have come levels of PAI-2 in the epidermis. Although it had no manifest impact on from the observations that induction of endogenous PAI-2 or
    [Show full text]
  • Proteomic Alterations of HDL in Youth with Type 1 Diabetes and Their Associations with Glycemic Control: a Case-Control Study Evgenia Gourgari Georgetown University
    University of Kentucky UKnowledge Saha Cardiovascular Research Center Faculty Cardiovascular Research Publications 3-28-2019 Proteomic Alterations of HDL in Youth with Type 1 Diabetes and their Associations with Glycemic Control: A Case-Control Study Evgenia Gourgari Georgetown University Junfeng Ma Georgetown University Martin P. Playford National Heart, Lung and Blood Institute Nehal N. Mehta National Heart, Lung and Blood Institute Radoslav Goldman Georgetown University See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/cvrc_facpub Part of the Cardiology Commons, and the Circulatory and Respiratory Physiology Commons Repository Citation Gourgari, Evgenia; Ma, Junfeng; Playford, Martin P.; Mehta, Nehal N.; Goldman, Radoslav; Remaley, Alan T.; and Gordon, Scott M., "Proteomic Alterations of HDL in Youth with Type 1 Diabetes and their Associations with Glycemic Control: A Case-Control Study" (2019). Saha Cardiovascular Research Center Faculty Publications. 40. https://uknowledge.uky.edu/cvrc_facpub/40 This Article is brought to you for free and open access by the Cardiovascular Research at UKnowledge. It has been accepted for inclusion in Saha Cardiovascular Research Center Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Evgenia Gourgari, Junfeng Ma, Martin P. Playford, Nehal N. Mehta, Radoslav Goldman, Alan T. Remaley, and Scott M. Gordon Proteomic Alterations of HDL in Youth with Type 1 Diabetes and their Associations with Glycemic Control: A Case-Control Study Notes/Citation Information Published in Cardiovascular Diabetology, v.
    [Show full text]
  • Genome Wide Identification and Comparative Analysis of the Serpin
    plants Article Genome Wide Identification and Comparative Analysis of the Serpin Gene Family in Brachypodium and Barley Shazia Rehman 1,2,3,* , Bodil Jørgensen 3, Ejaz Aziz 4, Riffat Batool 5, Samar Naseer 6 and Søren K. Rasmussen 3,* 1 Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46200, Pakistan 2 Department of Botany, Govt. Gordon College Rawalpindi, Rawalpindi 46000, Pakistan 3 Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; [email protected] 4 Department of Botany, Government Degree College Khanpur, Haripur 22650, Pakistan; [email protected] 5 University Institute of Biochemistry and Biotechnology, PMAS, Arid Agriculture University, Rawalpindi, Rawalpindi 46300, Pakistan; riff[email protected] 6 Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; [email protected] * Correspondence: [email protected] (S.R.); [email protected] (S.K.R.) Received: 3 October 2020; Accepted: 15 October 2020; Published: 26 October 2020 Abstract: Serpins (serine protease inhibitors) constitute one of the largest and most widely distributed superfamilies of protease inhibitors and have been identified in nearly all organisms. To gain significant insights, a comprehensive in silico analysis of the serpin gene family was carried out in the model plant for temperate grasses Brachypodium distachyon and barley Hordeum vulgare using bioinformatic tools at the genome level for the first time. We identified a total of 27 BdSRPs and 25 HvSRP genes in Brachypodium and barley, respectively, showing an unexpectedly high gene number in these model plants. Gene structure, conserved motifs and phylogenetic comparisons of serpin genes supported the role of duplication events in the expansion and evolution of serpin gene family.
    [Show full text]
  • Hemolytic Uremic Syndrome: a Factor H Mutation (E1172stop) Causes Defective Complement Control at the Surface of Endothelial Cells
    Hemolytic Uremic Syndrome: A Factor H Mutation (E1172Stop) Causes Defective Complement Control at the Surface of Endothelial Cells Stefan Heinen,* Miha´ly Jo´zsi,* Andrea Hartmann,* Marina Noris,† Giuseppe Remuzzi,† Christine Skerka,* and Peter F. Zipfel*‡ *Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, and ‡Faculty of Biology, Friedrich Schiller University, Jena, Germany; and †Mario Negri Institute for Pharmacological Research Villa Camozzi, Ranica, Bergamo, Italy Defective complement regulation results in hemolytic uremic syndrome (HUS), a disease that is characterized by microangi- opathy, thrombocytopenia, and acute renal failure and that causes endothelial cell damage. For characterization of how defective complement regulation relates to the pathophysiology, the role of the complement regulator factor H and also of a mutant factor H protein was studied on the surface of human umbilical vein endothelial cells. The mutant 145-kD factor H protein was purified to homogeneity, from plasma of a patient with HUS, who is heterozygous for a factor H gene mutation G3587T, which introduces a stop codon at position 1172. Functional analyses show that the lack of the most C-terminal domain short consensus repeats 20 severely affected recognition functions (i.e., binding to heparin, C3b, C3d, and the surface of endothelial cells). Wild-type factor H as well as the mutant protein formed dimers in solution as shown by cross-linking studies and mass spectroscopy. When assayed in fluid phase, the complement regulatory activity of the mutant protein was normal and comparable to wild-type factor H. However, on the surface of endothelial cells, the mutant factor H protein showed severely reduced regulatory activities and lacked protective functions.
    [Show full text]
  • Coagulation Factor XII Genetic Variation, Ex Vivo Thrombin Generation, and Stroke Risk in the Elderly: Results from the Cardiovascular Health Study
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Thromb Manuscript Author Haemost. Author Manuscript Author manuscript; available in PMC 2016 October 01. Published in final edited form as: J Thromb Haemost. 2015 October ; 13(10): 1867–1877. doi:10.1111/jth.13111. Coagulation factor XII genetic variation, ex vivo thrombin generation, and stroke risk in the elderly: results from the Cardiovascular Health Study N. C. Olson*, S. Butenas†, L. A. Lange‡, E. M. Lange‡,§, M. Cushman*,¶, N. S. Jenny*, J. Walston**, J. C. Souto††, J. M. Soria‡‡, G. Chauhan§§,¶¶, S. Debette§§,¶¶,***,†††, W.T. Longstreth‡‡‡,§§§, S. Seshadri†††, A.P. Reiner§§§, and R. P. Tracy*,† *Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT †Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT ¶Department of Medicine, University of Vermont College of Medicine, Burlington, VT ‡Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC §Department of Biostatistics, University of North Carolina School of Medicine, Chapel Hill, NC **Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD ††Department of Haematology, Institute of Biomedical Research, (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ‡‡Unit of Genomic of Complex Diseases, Institute of Biomedical Research, (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain §§INSERM U897, University of Bordeaux, Bordeaux, France ¶¶University of Bordeaux, Bordeaux, France ***Bordeaux University Hospital, Bordeaux, France †††Department of Neurology, Boston University School of Medicine, Boston, MA ‡‡‡Department of Neurology, University of Washington, Seattle, WA §§§Department of Epidemiology, University of Washington, Seattle, WA Correspondence: Russell P.
    [Show full text]