Safety Solution for the Powerlifting Squat Improving the Safety for Lifters and Spotters in Competition
Total Page:16
File Type:pdf, Size:1020Kb
Safety solution for the powerlifting squat Improving the safety for lifters and spotters in competition Magnus Wikström Industrial Design Engineering, master's level (60 credits) 2020 Luleå University of Technology Department of Business Administration, Technology and Social Sciences SAFETY SOLUTION FOR THE POWERLIFTING SQUAT Improving the safety for lifters and spotters in competition Magnus Wikström 2020 Supervisors: Björn Welde, Karin Sjöö Åkeblom, Lars Eklöf Reviewer: Tobias Persson Examiner: Åsa Wikberg Nilsson ACKNOWLEDGEMENTS I want to thank Eleiko Group and Sigma Industry for the opportunity to do this project as my master thesis. Combining my love for powerlifting with my interest in engineering resulted in my dream master thesis project becoming reality. It has been very educative, having a collaboration between an employer and a consultant firm in the project. Getting a glint into the field of exercise equipment development, as well as the world of engineering consultant. I want to thank Björn Welde from Eleiko for the supervision of this project and Karin Sjöö Åkeblom from Sigma for the coaching and guidance. I also want to thank all the people devoting their time for interviews, data collection, idea generation, and proof reading. Lastly, I want to thank friends and family for the support outside the project. It would not have been possible without you. Luleå, June 2020 Magnus Wikström ABSTRACT In powerlifting the athletes compete to lift as much The result is a feasible conceptual solution that, with weight as possible in the squat, bench press and deadlift, minimal changes on use improve the safety for lifters and pushing their bodies to extreme levels of strength. When spotters. The concept accomplishes this with mechanical lifting heavy weights, safety becomes an important barriers in the form of straps. The straps are mounted concern, especially where the lifters can get injured by to steel beams that attaches to the uprights of the rack the barbell if a lift is unsuccessful. Today in the squat, the and reaches over the athlete, enclosing the barbell. The only safety mechanism available are the spotters, a team concept also includes a pair of extension legs, which of officials who surround the lifter during competition. attaches to the base of the rack, increasing the size of the This product development project aims to improve the footprint and provide additional stability. The solution safety of lifters and spotters in competition. is made to be retrofitted to already existing combo racks made by Eleiko. Key features of the concepts are the This project followed the CDIO process model, going straps passively adjust in height when adjusting the through the four phases of conceive, design, implement, height of the rack and the straps accommodate lifters with and operate. Using literature review, interviews, different grip widths when the rack is in the folded in observations, ergonomic analysis, fault tree analysis gave position. insights and information, which then were comprised into a Product Design Specification. The design phase Keywords: Industrial Design Engineering, User included idea generation using creative sessions, resulting Experience, Ergonomics, Product Development, Safety, a lot of ideas on how the problems could be solved. In the Powerlifting, Squat subsequent phases the ideas were developed using CAD, evaluated using FEM and usability testes, and narrowed down using the PDS. SAMMANFATTNING I styrkelyft tävlar atleter i att lyfta så mycket vikt som Resultatet av projektet är en konceptuell produktlösning, möjligt i delgrenarna, knäböj, bänkpress och marklyft. som med minimal påverkan på lyftare och klovare Det göra att lyftarna pressar sina kroppar till extrema ökar säkerheten i knäböj. Konceptet åstadkommer nivåer av styrka. När tunga vikter ska lyftas är säkerheten det med nylonremmar som agerar mekaniska alltid en angelägenhet, speciellt med tanke på följderna barriärer för skivstången. Remmarna sitter fast i en av klämmas under en skivstång. I dagsläget finns det en stålbalk som sträcker sig över lyftaren och monteras säkerhetsmekanism för knäböj på en styrkelyftstävling. i stolparna på racket. Konceptet innehåller också Klovarna, de funktionärer som omringar lyftaren på ett par förlängningsben som fästs i basen av det podiet har i uppgift att fånga vikten och hjälpa lyftaren befintliga racket. De förbättrar stabiliteten för racket tillbaka i racken om något går fel. Misslyckas dem med genom att utöka fotavtrycket. Konceptet är tänkt att sin uppgift kan det ge ödesdigra konsekvenser. Målet eftermonteras på befintliga styrkelyftsställningar från med det här produktutvecklingsprojektet är att lösa det Eleiko. Nyckelfunktioner för konceptet är den passiva problemet och följaktligen att förbättra säkerheten för höjdjusteringen, höjden på remmarna justeras automatiskt både lyftare och klovare på tävling. när höjden på ställningen ställs in för lyftare av olika längd. Konceptet tillåter även att lyftare att knäböja med Projektet har använt processmodellen CDIO, en brett grepp om stången och infällt rack obehindrat då linjär process som består av fyra steg, conceive, remmarna inte kommer i vägen för armarna. design, implement och operate. Under conceive-fasen undersöktes problemet noggrannare. Med stöd av Nyckelord: Teknisk Design, Användarupplevelse, resultaten från litteraturstudier, intervjuer, observationer, Ergonomi, Produktutveckling, Säkerhet, Styrkelyft, ergonomisk analys och felträdsanalys upprättades Knäböj en designspecifikation. Efter det genererades idéer i kreativa sessioner, vilket resulterade i ett brett spektrum av idéer och möjliga lösningar. I följande faser utvecklades idéerna till koncept med hjälp av CAD. De tidiga koncepten utvärderades sedan med FEM och användartester och skalades ner till ett slutgiltigt koncept med designspecifikationen som utgångspunkt. TABLE OF CONTENTS 1. Introduction 1 4.6 Operate 26 1.1 Background 1 4.6.1 Product usability testing 26 1.2 Stakeholders 2 4.6.2 Material testing - FEM 27 1.2.1 Primary stakeholders 2 4.6.2 Detail design – finalization and visualization 27 1.2.2 Secondary stakeholders 2 4.7 Method Discussion 28 1.3 Objectives and Aims 2 1.4 Research questions 2 5. Results 29 1.5 Scope 3 5.1 Process 29 1.6 Thesis outline 3 5.2 Results from Conceive 29 5.2.1 Movement space calculations 29 2. Context Immersion 4 5.2.2 Interviews 30 2.1 Current state 4 5.2.3 Observation 31 2.1.1 Current situation 4 5.2.4 Fault Tree Analysis 33 2.1.2 Rules and Regulations 7 5.2.5 OWAS 34 2.1.3 Eleiko Group 8 5.2.6 Brand DNA Analysis 35 2.1.4 Base of the project 9 5.2.7 User Need Assessment 36 2.2 Benchmarking 11 5.2.8 Product Design Specification 37 5.3 Results from Design 38 3. Theoretical framework 13 5.3.1 Creative sessions 38 3.1 Industrial Design Engineering 13 5.3.2 Seven early concepts 39 3.2 Product development opportunities 14 5.3.3 Early concept selection 41 3.3 User experience and Usability 14 5.4 Results from Implement 42 3.3.1 User experience 14 5.4.1 Prototyping 42 3.3.2 Usability 14 5.4.2 Three concepts 43 3.4 Safety 15 5.4.3 Concept selection 44 3.4.1 Mechanical hazards 15 5.5 Results from Operate 46 3.5 Fitting the human 16 5.5.1 Product Usability Testing 46 3.5.1 Ergonomics 16 5.5.2 Material testing 47 3.5.2 Human factors 16 5.6 Final Result 48 4. Methods and implementation 18 6. Discussion 54 4.1 Process 18 6.1 Positioning the result 54 4.2 Project planning 19 6.1.1 Industrial Design Engineering 54 4.3 Conceive 19 6.1.2 Product Opportunity 54 4.3.1 Literature review 19 6.1.3 User Experience and Usability 54 4.3.2 Interviews 19 6.1.4 Safety 55 4.3.3 Observations 20 6.1.5 Fitting the human 55 4.3.4 Fault tree analysis (FTA) 20 6.2 Relevance 55 4.3.5 Benchmarking 21 6.3 Sustainability 56 4.3.6 Brand DNA analysis 21 6.4 Reflections about project 56 4.3.7 OWAS 21 6.5 Recommendations for further development 57 4.3.8 User Need Assessment 22 4.3.9 Product Design Specification (PDS) 22 7. Conclusions 59 4.4 Design 23 4.4.1 Brainstorming 23 8. References 61 4.4.2 Method 635 23 4.4.3 Braindrawing 23 4.4.4 Idea Clustering 23 4.4.5 Creative Sessions 23 4.4.6 Sketch Prototyping 24 4.4.7 Dot Voting 25 4.5 Implement 25 4.5.1 Computer-aided Design 25 4.5.2 Mock-up 26 4.5.3 Criteria weighing matrix 26 4.5.4 Concept selection matrix 26 TABLE OF FIGURES Figure 1 Eleiko Group Figure 48 Magnus Wikström Figure 2 Eleiko Group Figure 49 Magnus Wikström Figure 3 Magnus Wikström Figure 50 Magnus Wikström Figure 4 Magnus Wikström Figure 51 Magnus Wikström Figure 5 Magnus Wikström Figure 52 Magnus Wikström Figure 6 Magnus Wikström Figure 53 Magnus Wikström Figure 7 Eleiko Group Figure 54 Magnus Wikström Figure 8 Magnus Wikström Figure 55 Magnus Wikström Figure 9 Magnus Wikström Figure 56 Magnus Wikström Figure 10 Magnus Wikström Figure 57 Magnus Wikström Figure 11 Magnus Wikström Figure 58 Magnus Wikström Figure 12 Magnus Wikström Figure 59 Magnus Wikström Figure 13 Magnus Wikström Figure 60 Magnus Wikström Figure 14 Magnus Wikström Figure 61 Magnus Wikström Figure 15 Magnus Wikström Figure 62 Magnus Wikström Figure 16 Magnus Wikström Figure 63 Magnus Wikström Figure 17 Magnus Wikström Figure 64 Magnus Wikström Figure 18 Eleiko Group Figure 65 Magnus Wikström Figure 19 Magnus Wikström Figure 66 Magnus Wikström Figure 20 Magnus Wikström Figure 67 Magnus Wikström Figure 21 Magnus Wikström Figure 68 Magnus Wikström Figure 22 Eleiko Group Figure 69 Magnus Wikström Figure 23 Magnus Wikström Figure 70 Magnus Wikström Figure 24 Magnus Wikström Figure 71 Magnus Wikström Figure 25 Magnus Wikström Figure 72 Magnus Wikström Figure 26 Magnus Wikström Figure 73 Eleiko Group Figure 27 Magnus Wikström Figure 74 Eleiko Group Figure 28 Magnus Wikström Figure 29 Eleiko Group Figure 30 Magnus Wikström Figure 31 Magnus Wikström APPENDIX Figure 32 Magnus Wikström 1.