Geologic Map of the Magic Reservoir East Quadrangle, Blaine and Camas Counties, Idaho

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of the Magic Reservoir East Quadrangle, Blaine and Camas Counties, Idaho IDAHO GEOLOGICAL SURVEY DIGITAL WEB MAP 82 MOSCOW-BOISE-POCATELLO KAUFFMAN AND OTHBERG GEOLOGIC MAP OF THE MAGIC RESERVOIR EAST QUADRANGLE, Disclaimer: This Digital Web Map is an informal report and may be BLAINE AND CAMAS COUNTIES, IDAHO revised and formally published at a later time. Its content and format may not conform to agency standards. John D. Kauffman and Kurt L. Othberg 2007 CORRELATION OF MAP UNITS Qags Pdm Qags Qag2 Qam Qag 2 Unconsolidated Sedimentary and Mass Movement Deposits Volcanic Rocks Kap Qags Qag3 Artificial Basaltic Silicic Intrusive Sedimentary Alluvial Deposits Mass Movement Deposits Deposits Rocks Rocks Rocks Rocks Qam m Holocene Qam Qas Qaf Qt Qags Qag Qls Qag 2 Kgdh Qags Qaf Qag 3 ? ? Qas Kgdh QUATERNARY Qsfb Pleistocene Qags Qmb Qag2 Qam ? Qwrb QTac CENOZOIC Qas Tsma Kap Qags Kgdh Pliocene Trbt Twbr Qags Tcbb TERTIARY Qag2 Tpt Miocene Eocene Qam Tcv Qam Kap Qaf CRETACEOUS MESOZOIC Qaf Kgdh Pdm PERMIAN PALEOZOIC Qag 3 Qam m Kgdh INTRODUCTION from about 30 feet near Ditto Hill to at least 70 feet at Sheep Bridge where INTRUSIVE ROCKS Qaf the base is not exposed. Thickening is probably due to irregularities in the The geologic map of the Magic Reservoir East quadrangle depicts rock units preflow topography. Stream drainage is moderately well developed. Basalt Kap Aplite dikes (Cretaceous?)Fine-grained, light-colored granitic dikes cutting Qag 3? exposed at the surface or underlying thin surficial cover of soil and colluvium. surface covered by silt and clay (loess?) 2-4 feet thick and includes a well- Kgdh unit. More abundant than shown, based on presence of fragments in m Thicker surficial deposits are also depicted where they mask or modify the developed soil caliche (duripan). Variations in soil characteristics and the overburden. Qag 3? underlying rock units or form significant mappable units. The map is the vegetation form a patterned ground visible on aerial photographs. Qas Hornblende-biotite granodiorite (Cretaceous)Gray, medium- to coarse-grained, result of field work conducted in 2006 by the authors. Mapping by previous Kgdh Formerly divided into upper and lower units by Schmidt (1961), and equigranular to porphyritic hornblende-biotite granodiorite. Biotite is in Qag workers, noted below, was field checked and incorporated where appropriate. Qam 2 Struhsacker and others (1982) report three flows. However, we could find distinct books up to 4 mm across. Plagioclase displays oscillatory zoning Qam Soils information is from Johnson (1991, 2002). Kgdh Tcv no conclusive evidence of separate flows, although there do appear to be (An20-An40). Sphene unusually ambundant, perhaps as much as 1 percent m Previous work in the area includes that of Malde and others (1963), Schmidt several internal vesicular zones in the outcrop at Sheep Bridge. An 40Ar/39Ar locally. Equivalent to Kgdk unit of Worl and others (1991), who indicate it is a potassium-rich intrusive, having high K O content for a given SiO m m (1961), Leeman (1982), Struhsacker and others (1982), and Honjo (1986). date on the flow just west of Ditto Hill (Schmidt's upper flow) resulted in a 2 2 m content relative to other intrusives to the northwest. Also notable for the 02P020 Qas Malde and others conducted regional reconnaissance mapping, which plateau age of 1.54 ± 0.13 Ma and an inverse isochron age of 1.48 ± 0.22 relative abundance of gold-bearing quartz veins (Lewis, 1989; Worl and Qwrb Qag included the Magic Reservoir area, and established a regional stratigraphy. Ma (Idaho Geological Survey, unpublished data). For the flow at Sheep 3 m Qaf 40 39 Schmidt mapped the Bellevue area and provided a more detailed stratiagraphy Bridge (Schmidt's lower flow), an Ar/ Ar date resulted a plateau age of Lewis, 2001). Map unit includes locally derived thin gravel and sand in Qas Tpt 1.17 ± 0.21 Ma and an inverse isochron age of 1.06 ± 0.19 Ma (Idaho terrace remnants (Qsmr and Qsw of Schmidt, 1961). Qam m and description of units, although his main focus was on Quaternary units Qag Qam Qam 06JK752 Geological Survey, unpublished data). Chemical composition of samples 3 Qam and stream diversions by basalt flows. Leeman, using Schmidt's stratigraphic Tcv units, proposed a Magic Reservoir eruptive center to account for much of from the upper unit near Ditto Hill and the lowerunit at Sheep Bridge SEDIMENTARY ROCKS is indistinguishable (samples 02RB106 and 02P020; Table 1). Qag Qam Qag the volcanism in the area. Struhsacker and others worked in the northwestern 3 Tcv Dollarhide Formation, Middle Member (Lower Permian)Light-colored Qwrb 75 Qag3 part of the Magic Reservoir area and slightly modified Schmidt's stratigraphy, Pdm Andesite of Square Mountain (Pliocene)Fine-grained andesitic unit with calcareous sandstone, siliceous sandstone, sandy limestone, silty argillite, Qam 35 but concentrated on the rhyolitic units and provided little new mapping. Tsma plagioclase phenocrysts and locally common quartz and plagioclase and minor conglomerate. Kgdh Honjo essentially used the stratigraphic sequence of these previous workers. Qag3 Qls xenocrysts; also a few granitic or rhyolitic xenoliths. Forms capping unit on Our observations of several stratigraphic units in the Magic Reservoir East Clay Bank Hills east of Magic City where it is in unconformable, probably Qwrb and adjacent quadrangles do not support the stratigraphic interpretations of Qag Qaf Tpt erosional, contact with basalt of Clay Bank Hills or granitic rock of Kgdh Kgdh Tpt these previous workers. The discrepancies are noted and discussed below unit. Maximum thickness is about 100 feet. Thin erosional remnants extend SYMBOLS Qaf in the Description of Map Units. After Schmidts investigations, the extent south to just north of Rattlesnake Butte. Remanent magnetic polarity Qt Qags of field mapping by these subsequent workers may have been inadequate inconclusive, but probably reverse; both normal and reverse readings were Contact: Line showing the approximate boundary between one to identify the stratigraphic problems we observed. In addition, varying use obtained in the field. Commonly has curving, platy jointed zone 5-10 feet map unit and another. Qaf of the terms Moonstone Rhyolite, rhyolite of Magic Reservoir, and Qls Tcv thick below a stocky, crudely columnar top. The top weathers into large 02RB106 Tpt rhyolite ash-flow tuffs of Magic Reservoir for in some instances equivalent 15 subrounded blocks as much as 3 to 6 feet in diameter. One analyzed sample Tpt Tpt units and in other cases different units has confused the stratigraphic picture. Fault: Approximately located; dashed where inferred; dotted where 5 8 (sample 06JK712; Table ) plots in the upper part of the andesite field on the 18 Therefore we avoid using these terms. Instead, we use local geographic 18 total alkali-silica diagram of Le Maitre (1984). Chemical composition of our concealed; bar and ball on downthrown side; arrow indicates features or rock types for naming most units, noting correlation to the previous sample is very similar to those for the Square Mountain ferrolatite reported bearing and plunge of slickenside lineation on fault plane. units. Our mapping does not entirely resolve the stratigraphic questions, but in Honjo (1986) and Honjo and Leeman (1987), which also plot in the upper it provides additional information and alternatives that should be considered Quartz vein; dip shown by arrow. andesite field. and evaluated in future research and geologic mapping. Qwrb Qaf 3 Qaf Previously mapped as part of the Square Mountain basalt by Schmidt (1961) Tsma Strike and dip of basalt flow or volcanic layer. DESCRIPTION OF MAP UNITS who placed it stratigraphically below the basalt of Clay Bank Hills (Schmidt's Qaf Qas Clay Bank basalt). Struhsacker and others (1982) placed the Square Mountain Strike and dip of flow foliation. Kgdh ARTIFICIAL DEPOSITS basalt above their older rhyolite and below their Tuff 1 of Magic Reservoir 25 Tpt (equivalent to Schmidt's Poison Creek tuff), which they dated at 5.64 Ma. Tsma Made ground (Holocene)Artificial fills composed of excavated, transported, Tcv 5 m Honjo (1986), following Schmidt's (1961) and Struhsacker and others (1982) Kgdh and emplaced construction materials typically derived locally. Primarily stratigraphic sequence, also placed this unit below the basalt of Clay Bank Zone of lithophysal cavities. Tpt 10 includes highway fills and the fill portion of Magic Dam. Hills and below the Poison Creek tuff. However, we have found it capping and probably filling irregularities on the basalt of Clay Bank Hills and also Estimated strike and dip of basalt flow or volcanic layer. Kgdh Kgdh capping the Poison Creek tuff. On the basis of our preliminary field work Tsma Tpt SEDIMENTARY AND Tpt Tcv in the Magic Reservoir West quadrangle, we believe there is an older Tcv MASS MOVEMENT DEPOSITS xenolithic and xenocrystic unit stratigraphically lower than the basalt of 06JK717 Clay Bank Hills and above the older rhyolite of Magic Reservoir unit of Sample location and number. Kgdh Alluvial Deposits Struhsaker and others (1982) that resembles the Square Mountain unit. 06JK701 Schmidt (1961) places the Square Mountain basalt stratigraphically above Tsma 06JK712 Qam Alluvium of the Big Wood River (Holocene)Moderate- to well-sorted gray the rhyolite on Moonstone Mountain and Honjo and others (1986) report sandy pebble and cobble gravel with few boulders; stratified with gravelly Tpt an age of ~3.0-3.4 Ma for rhyolite at Moonstone Mountain. As noted below, coarse sand. Gravel clasts subrounded to rounded Paleozoic sedimentary Qls we obtained an age for the basalt of Clay Bank Hills of ~4.0 Ma. Therefore, REFERENCES Tcbb and metamorphic rocks, Cretaceous granitic rocks, and Eocene felsites. our stratigraphic position of the andesite unit above the basalt of Clay Bank 02P019 Thickness more than 10 feet. Hills is in accord with the reported ages.
Recommended publications
  • Idaho Water Supply Outlook Report April 1, 2018
    Natural Resources Conservation Service Idaho Water Supply Outlook Report April 1, 2018 April 1, 2018 Idaho Snow Survey Summary The West is different than the Midwest and East because approximately 75% of our annual precipitation falls as snow in the West during our non-growing season, this is why we measure the western mountain snowpack. Snow gradually melts in the spring and early summer feeding streams that fill rivers and reservoirs. The April 1 snow survey is the most important survey because this is typically when the seasonal snowpack reaches its peak snow water equivalent. These first of month surveys provide a more comprehensive inventory of the mountain snowpack and includes information from over 120 SNOTEL sites in our region and over 100 manually measured snow courses. These snow courses are measured timely at the end of the month by more than 40 trained snow surveyors (Thank you!). Continue reading the Water Supply Outlook Report to find out if we have reached normal peak snow water equivalent amounts, and how snow and water supply outlooks vary across Idaho this year. Water Supply Outlook Report Federal - State – Private Cooperative Snow Surveys For more water supply and resource management information: Contact: Your local county Natural Resources Conservation Service Office Internet Web Address: http://www.id.nrcs.usda.gov/snow/ Natural Resources Conservation Service Snow Surveys 9173 West Barnes Drive, Suite C Boise, Idaho 83709-1574 (208) 378-5700 ext. 5 To join a free email subscription list contact us by email at: [email protected] How forecasts are made Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring.
    [Show full text]
  • Evaluation of Streamflow Records in Big Wood River Basin, Idaho
    GEOLOGICAL SURVEY CIRCULAR 192 , EVALUATION OF STREAMFLOW RECORDS IN BIG WOOD RIVER BASIN, IDAHO By R. P. Jones UNITED STATES DEPARTMENT OF THE INTERIOR. Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director GEOLOGICAL SURVEY CIRCULAR .129 EVALUATION OF STREAMFLOW RECORDS IN BIG WOOD RIVER BASIN, IDAHO ByR P.Jones Washington, D. C., 1962 Free on application to the Geological Survey, Washington 26, D. C. CONTENTS Page Page Abstract................................. 1 Syllabus of gaging-station records--Cont. Introduction............................. 1 Gaging-station records--Continued. Purpose and Scope ••••••••••.• . • • • . • . • • 1 Big Wood River--Continued. Acknowledgments........................ 1 Big Wood River above North Gooding Physical features of the basin........... 2 Canal, near Shoshone .....•••..•••. 33 Utilization of water in the basin........ 3 Big Wood River below North Gooding Water resources data for Big Wood River Canal, near Shoshone •..•...••.••.• 35 basin in Idaho. • . • . • • • . 5 Big Wood River near Shoshone .••...•.• 36 Streamflow records. • . • • • • • . • • . 5 Big Wood River above Thorn Creek, Storage reservoirs. • . • . • . • • • . ·5 near Gooding...................... 37 Adequacy of data •...•..•..••......•.... 12 Big Wood (Malade) River at Gooding Syllabus of gaging-station records •••.... 15 (Toponis). • . • • . • . • . • . • . • 38 Explanation of data.................... 15 Dry Creek near Blanche ...•..•....•. 39 Gaging-station records ........••....... 16 Little Wood River: Big Wood River
    [Show full text]
  • Open File #625 1962 62-0120 Prepared Partly in Cooperation With
    UNITED STATES DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY QUATERNARY GEOLOGY OF THE BELLEVUE AREA IN BLAINE AND CAMAS COUNTIES, IDAHO by Dwight Lyman Schmidt Open File #625 1962 62-0120 Prepared partly in cooperation with the U. S. Atomic Energy Commission This report is preliminary and has not been edited for conformity with U.S. Geological Survey standards. Some of the nomenclature used in this report does not conform with that in use by the Survey. QOATKRHARY OBOLOOY OF THE BELU5VOE AREA IV BIAIHE AHD GAMAS COOTTEBS, IDAHO by Didjht L. Sehsddt ABSTRACT The Bellevue area covers about 350 square miles of a foothill belt between the Rocky Mountains to the north and the Snake River Plains to the south* Complexly deforaed inpure ouartzites and llBestones of the Mlssissippian Mllllgen and Pennsylvanian*Pendan Wood River fbraations vere intruded by large bodies of quartz diorlte and granodiorite along regional structures trending northwesterly; the intrusions are part of the Cretaceous Idaho batholith* Xrosional rennants of the Ghallis vol- canies, doodnantly latitie to andesitie in composition and early(r) to Kiddle Tertiary in age* rest unconfbraably on the older rocks* A sequence of Pliocene rhyolitic ash flow and basaltic lava flows uneonfbrsably overlies the Coallis and older rocks and is in turn unconfbraably overlain by oliviaa basalt of late Pliocene or early Quaternary age* The sain Talleys of the area, partly erosional and partly structural in origin, are underlain by late Quaternary olirLne basalt flows (Snake River basalt)
    [Show full text]
  • An Assessment of NRCS Seasonal Streamflow Forecast Performance in Idaho
    An assessment of NRCS seasonal streamflow forecast performance in Idaho Christina Andry A report prepared in partial fulfillment of the requirements for the degree of Master of Science Earth and Space Sciences: Applied Geosciences University of Washington March 2018 Project mentor: Danny Tappa, USDA NRCS Snow Survey Reading committee: Juliet Crider Nicoleta Cristea MESSAGe Technical Report Number: 062 Executive Summary This report summarizes recent NRCS seasonal streamflow forecast performance in Idaho. Considering only April 1st forecasts for the April-July period, I first attempted to quantify forecast performance from a users’ perspective, using three simple statistical parameters: (1) the standard error derived from each forecast equation, (2) the percent error of the median forecast in relation to the observed flow, and (3) a count of how frequently the observed streamflow volume fell outside the forecasted range of values. Regional differences in these forecast error metrics were apparent, with points in northern basins showing lower standard errors and percent errors but higher out-of-range counts, and points in southern basins showing higher standard errors and percent errors and generally lower out-of-range counts. The high out-of-range counts across the state in certain years can be attributed to extreme spring weather events that could not be predicted using the current statistical forecast techniques. Future weather remains the largest source of uncertainty in seasonal streamflow forecasts. I then used the Nash-Sutcliffe skill score (NS), which accounts for the annual variability of observed streamflow and allows for direct comparison of forecast skill between basins with highly-variable streamflow and basins with more annual consistency in streamflow volumes.
    [Show full text]
  • 23. BIG WOOD RIVER DRAINAGE A. Overview the Wood River Basin
    23. BIG WOOD RIVER DRAINAGE A. Overview The Wood River basin has a drainage area of over 2,990 square miles. Major drainages in the Wood River system are the Big Wood and Little Wood rivers. At its lower end, the Big Wood River is also known as Malad River. Flows from the Wood River drainage are controlled for irrigation and flood control by four major reservoirs: Magic, Little Wood River, Fish Creek and Mormon. Approximately 144,000 acres are irrigated from reservoir storage and other diversions. Hydroelectric power facilities are currently in operation at Magic Dam, Little Wood River Dam, the confluence of the Big Wood and Little Wood rivers, the Little Wood near Shoshone, Malad River upstream of the Malad George State Park, and the Malad River dams. This drainage contains the most productive trout streams, lake and reservoir habitat in south central Idaho. Nearly all the major rivers, streams, lakes, reservoirs and ponds are suitable for trout. Rainbow trout are the most important game fish species in the drainage, but the lower Little Wood River and Silver Creek support excellent brown trout populations, and portions of the drainage sustain high populations of brook trout. Brown trout have established wild populations in the Big Wood River in the section from the backwaters of Magic Reservoir to about Stanton Crossing, and significant and steadily increasing numbers of brown trout are now found in the reservoir. The trout fisheries in the reservoirs are largely dependent on annual plantings of hatchery fish, although Magic and Little Wood River reservoirs do contain some wild trout.
    [Show full text]
  • IDAHO WATER SUPPLY OUTLOOK REPORT February 1, 2021
    Natural Resources Conservation Service Idaho Water Supply Outlook Report February 1, 2021 This is how we protect others and ourselves while sampling snow. Mores Creek Summit Snow Course and SNOTEL is a frequently visited site due to its proximity to Boise, ID. Photo taken by Mark Robertson, January 29, 2021 During January, drier and warmer than normal conditions persisted for the majority of Idaho, delaying significant snowpack (and future water supply) increases across the state. We started the water year with the hope of a strong La Niña pattern bringing us an abundance of snow but are still waiting... However, we have a ‘reservoir half-full’ attitude and are optimistic there’s plenty of winter left to make up the below normal conditions. On the bright side, the Panhandle, Weiser, Payette, Boise, Wood and Lost basins received near to above normal precipitation in January. This field photo at the Mores Creek Snow Course in the Boise River Basin, one of eighty snow courses measured this month across the Idaho network, shows the near normal snowpack and the not so normal action of wearing masks in the field. Like everyone, we’ve adapted to the COVID-19 pandemic and although there’s been a few curveballs, our team and cooperators have risen to the challenge. Throughout the winter, 50 to 115 snow courses are manually measured each month as we carry out the NRCS mission to provide valuable water supply information to water users and forecast hydrologists. IDAHO WATER SUPPLY OUTLOOK REPORT February 1, 2021 Overview and winter outlook Across all basins, the snowpack continues to increase slowly during water year 2021 (WY21).
    [Show full text]
  • Idaho Fishing 2019–2021 Seasons & Rules
    Idaho Fishing 2019–2021 Seasons & Rules 1st Edition 2019 Free Fishing Day June 8, 2019 • June 13, 2020 • June 12, 2021 idfg.idaho.gov Craig Mountain Preserving and Sustaining Idaho’s Wildlife Heritage For over 25 years, we’ve worked to preserve and sustain Idaho’s wildlife heritage. Help us to leave a legacy for future generations, give a gift today! • Habitat Restoration • Wildlife Conservation • Public Access and Education For more information visit IFWF.org or call (208) 334-2648 YOU CAN HELP PREVENT THE SPREAD OF NOXIOUS WEEDS IN IDAHO! 1. Cleaning boats, trailers and watercraft after leaving a water body 2. Pumping the bilge of your boat before entering a water body 3. Cleaning boating and fishing gear from any plant material 4. Reporting infestations to your County Weed Superintendent CALL 1-844-WEEDSNO WWW.IDAHOWEEDAWARENESS.COM DIRECTOR MOORE’S OPEN LETTER TO THE HUNTERS, ANGLERS AND TRAPPERS OF IDAHO y 6-year-old grandson caught his first steelhead last year. It was a wild fish and he had Mto release it. We had quite a discussion of why Grandpa got to keep the fish that I had caught earlier, but he had to release his. In spite of my explanation about wild fish vs. hatchery-raised fish, he was confused. Although ultimately, he understood this, when his dad caught a wild steelhead and he had to release it, as well. Both of my grandsons insisted on taking a picture of us with my fish. These moments in the field with our families and friends are the most precious of memories that I hope to continue to have for several decades as a mentor of anglers and hunters, demonstrating “how to harvest” and more importantly how to responsibly interact with wildlife.
    [Show full text]
  • 2007-2012 Idaho Fish and Game Fisheries Management Plan
    Fisheries Management Plan 2007 - 2012 IDAHO DEPARTMENT OF FISH AND GAME Partial funding for this publication through Federal Aid in Sport Fish Restoration Program as an educational service. TABLE OF CONTENTS Page INTRODUCTION ...............................................................................................................1 HOW TO USE THIS DOCUMENT.....................................................................................1 PART 1 - STATEWIDE MANAGEMENT ...........................................................................1 The Compass, Our Strategic Plan ........................................................................12 Our Mission .........................................................................................................12 Our Vision ............................................................................................................13 PUBLIC SERVICE ...................................................................................13 SCIENCE .................................................................................................13 SUSTAINABILITY ....................................................................................13 ECOSYSTEM MANAGEMENT ...............................................................13 CREDIBILITY ..........................................................................................13 Goals, Objectives and Desired Outcomes ..........................................................14 Statewide Fisheries Management Principles ......................................................14
    [Show full text]
  • Blaine County Multi -Jurisdiction All Hazard
    Blaine County Multi-Jurisdiction All Hazard Mitigation Plan Draft August 13, 2009 22000099 BBLLAAIINNEE CCOOUUNNTTYY MMUULLTTI I--JJUURRIISSDDIICCTTIIOONN AALLLL HHAAZZAARRDD MMIITTIIGGAATTIIOONN PPLLAANN SSEEPPTTEEMMBBEERR 11,,, 22000099 Blaine County Multi-Jurisdiction All Hazard Mitigation Plan September 1, 2009 Preface The Blaine County All Hazard Mitigation Plan was developed in early spring through late summer of 2008. It contains information relative to the hazards and vulnerabilities facing Blaine County. The jurisdictions participating in this Plan include Blaine County and the Cities of Sun Valley, Ketchum, Hailey, Bellevue, and Carey, St. Luke’s Wood River Medical Center, and Friedman Memorial Airport in Hailey. This Plan is designed to interface with the State of Idaho Multi-Hazard Mitigation Plan published in November, 2007. 1 Blaine County Multi-Jurisdiction All Hazard Mitigation Plan September 1, 2009 This Page Intentionally Blank 2 Blaine County Multi-Jurisdiction All Hazard Mitigation Plan September 1, 2009 3 Blaine County Multi-Jurisdiction All Hazard Mitigation Plan September 1, 2009 This Page Intentionally Blank 4 Blaine County Multi-Jurisdiction All Hazard Mitigation Plan September 1, 2009 5 Blaine County Multi-Jurisdiction All Hazard Mitigation Plan September 1, 2009 This Page Intentionally Blank 6 Blaine County Multi-Jurisdiction All Hazard Mitigation Plan September 1, 2009 Notice of Acceptance and Participation In the Blaine County Multi-Jurisdiction All Hazard Mitigation Plan This Page Intentionally Blank 7 Blaine
    [Show full text]
  • Wood River Basin IDWR Observations and Conclusions 2021
    Wood River Basin Hydrologic and Hydrogeologic Relationships Prepared for the BWRGWMA Advisory Committee IDWR Observations March 17, 2021 Snow Water Equivalent (SWE) 1) Snowmelt runoff is the primary source of water for irrigation and other purposes in the Big Wood River basin. Based on snowpack measurements made by the U.S. Department of Agriculture Natural Resource Conservation Service (NRCS), the snow water equivalent (SWE) on March 15, 2021 for the Big Wood River basin was 78% of the median for the period 1981 to 2010. Surface Water Supply Index (SWSI) 2) The Surface Water Supply Index (SWSI) is a predictive indicator of surface water availability in a basin compared to historic supply. The NRCS computes the SWSI by summing the two major sources of surface water supply for irrigation; streamflow from runoff and reservoir storage. According to the NRCS website, “SWSI uses non-exceedance probabilities to normalize the magnitude of annual water supply variability between basins. The non- exceedance values are then rescaled to range from +4.1 (extremely wet) to -4.1 (extremely dry). A SWSI value of 0.0 indicates a median water supply as compared to historic occurrences.” Magic Reservoir Water Supply 3) At the beginning of each month, the NRCS publishes a SWSI for many of the irrigated basins in the western United States including the Big Wood River basin below Magic Reservoir. On March 1, 2021, the Big Wood SWSI for the most probable case (50% exceedance) was -2.2, which is in the bottom one-third of values for the period 1991 to 2020.
    [Show full text]
  • Profile Surveys in Snake River Basin, Idaho
    Digitized by the Internet Archive in 2011 with funding from The Library of Congress http://www.archive.org/details/profilesurveysin05mars DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SUHVEY GEORGE OTIS SMITH, Director Watek-Supply Paper 347 PROFILE SURVEYS IN SNAKE RIVER BASIN, IDAHO PREPARED TINDER THE DIRECTION 01" R. B. MARSHALL, Chief Geographer WASHINGTON GOVERNMENT PRINTING OFFICE 1914 f^gmgttf^ ' DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SUKVEY GEORGE OTIS SMITH, DIRECTOR Water -Supply Paper 347 PROFILE SURVEYS IN SNAKE RIVER BASIN, IDAHO \^' PREPARED UNDER THE DIRECTION OF R. B. MARSHALL, Chief Geographer WASHINGTON GOVERNMENT PRINTING OFFICE 191-1 K CONTENTS. Page. General features of Snake River basin 5 Gaging stations 7 Publications 12 ILLUSTRATIONS. Plate I. AS, Plan and profile of Snake River from Enterprise to Minidoka, Idaho At end of volume. II. A-L, Plan and profile of Salmon River from Salmon to Riggins and Little Salmon River from Riggins to Meadows, Idaho. At end of volume. III. A-F, Plan and profile of Salmon River from Riggins to Snake River, Idaho At end of volume. 3 PROFILE SURVEYS IN SMKE RIYER BASIN, IDAHO. Prepared under the direction of R, B. Marshall, Chief Geographer. GBNEBAL FEATTJUES OF SNAKE EIVER BASIKT. Snake River, the largest tributary of the Columbia, rises among the high peaks of the Rocky Mountains in Yellowstone National Park, heading in the divide from which streams flow northward and eastward into the Missomi, southward to the Colorado and the lakes of the Great Basin, and westward to the Columbia. From the head- water region, including Shoshone, Lewis, and Heart lakes, in Yellow- stone National Park, the river flows southward, broadening into Jackson Lake (4 miles wide and 18 miles long) and passing through Jackson Valley (8 miles wide and 40 miles long), beyond which, near the Idaho-Yv'^yoming line, it enters a long canyon.
    [Show full text]
  • Index to Idaho Snow Data Sites and Forecast Points
    INDEX TO IDAHO SNOW DATA SITES AND FORECAST POINTS Snow Data Sites Snow Data Sites - Continued Snow Data Sites - Continued Forecast Points SITE SITE SITE SITE NAME SITE NO. ELEV. LAT. LONG. SEC. TWP. RANGE CONFIG. BASIN SITE NAME SITE NO. ELEV LAT. LONG SEC. TWP. RANGE CONFIG. BASIN SITE NAME SITE NO. ELEV. LAT. LONG. SEC. TWP. RANGE CONFIG. BASIN NUMBER FORECAST POINT ELEV. SITE_NO LAT. LONG. BASIN . o o IDAHO ROLAND SUMMIT 15B05 5120 47o24’ 115o39’ 26 47N 6E SC ST. JOE OREGON CANYON AM 18G11 6950 42 07’ 118 02’ 8 40S 40E AM OWYHEE 1 AMERICAN FALLS RESERVOIR inflow 4356 13076500 42o46’06” 112o52’42” UPPER SNAKE RIVER o o o 42o05’ 118 41’ 34E AM o o o o 13 26E SC SALMON SAGE CREEK SADDLE 16B06 4080 47 52’ 116 35’ 10 52N 2W SC HAYDEN PUEBLO SUMMIT AM 18G09 6800 14 40S DONNER UND BLITZEN 2 BEAR RIVER above reservoir near Woodruff 6360 10020500 41 31’25” 111 02’50” BEAR RIVER ABOVE GILMORE 13E19 8240 44 27’ 113 18’ 13N o o o 45o00’ 117 09’ 45E SNOTEL o o o o 35 6E SC ST. JOE SANDPOINT EXP STATION 16A11 2100 48 17’ 116 34’ 15 32N 2W SC PEND OREILLE SCHNEIDER MEADOWS 17D08S 5400 35 06S PINE 3 BEAR RIVER below Stewart Dam 5950 10046501 42 15’00” 111 17’00” BEAR RIVER ABOVE ROLAND 15B07 4350 47 23’ 115 40’ 47N o o o 45o33’ 117 34’ 42E AM o o o o 28 43E SC BLACKFOOT SAVAGE PASS 14C04S 6170 46 28’ 114 38’ 18 36N 15E SNOTEL LOCHSA STANDLY AM 17D11 7400 21 02S WALLOWA 4 BEAR RIVER near UT-WY stateline 6200 10026500 41 48’02” 111 04’20” BEAR RIVER ALLEN RANCH 11G35 6470 42 47’ 111 26’ 7S o o o TAYLOR GREEN 17D07S 5740 45o04’ 117 33’ 3 06S 42E SNOTEL
    [Show full text]