Descriptions and Notes on the Genus Paradossenus in the Neotropical Region (Araneae, Trechaleidae)

Total Page:16

File Type:pdf, Size:1020Kb

Descriptions and Notes on the Genus Paradossenus in the Neotropical Region (Araneae, Trechaleidae) 2000. The Journal of Arachnology 28:7±15 DESCRIPTIONS AND NOTES ON THE GENUS PARADOSSENUS IN THE NEOTROPICAL REGION (ARANEAE, TRECHALEIDAE) Antonio D. Brescovit1; Josue Raizer2 and Maria EugeÃnia C. Amaral2: 1Lab. ArtroÂpodes PecËonhentos, Instituto Butantan, Av. Vital Brasil, 1500, CEP 05503-900, SaÄo Paulo, SP, Brazil; and 2Depto de Biologia, Centro de CieÃncias BioloÂgicas e de SauÂde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil, C. Postal 549, CEP 79070-900. ABSTRACT. Three Brazilian species of the genus Paradossenus F.O. Pickard-Cambridge 1903 are included in this paper: Paradossenus minimus (Mello-LeitaÄo 1940), whose holotype was located and is here redescribed; Paradossenus corumba new species is described from Mato Grosso do Sul, Brazil and preliminary data on its biology are presented. Morphological data and new records of P. longipes (Tac- zanowski 1874) are included. Keywords: Paradossenus, Trachaleidae, Araneae, Neotropical region The genus Paradossenus F.O. Pickard- new species is common in the study area, en- Cambridge 1903 was revised by Sierwald abling preliminary observations on its biolo- (1993) and includes three neotropical species: gy. P. longipes (Taczanowski), P. pulcher Sier- METHODS wald 1993 and P. caricoi Sierwald 1993. In the same paper, she synonymized the mono- The material examined belongs to the fol- typic genus Xingusiella (type species X. min- lowing collections: IBSP, Instituto Butantan, ima), described by Mello-LeitaÄo (1940) based SaÄo Paulo (A.D. Brescovit); MCN, Museu de on the illustration of the epigynum and char- CieÃncias Naturais, FundacËaÄo ZoobotaÃnica do acters presented in Mello-LeitaÄo's description. Rio Grande do Sul, Porto Alegre (E.H. Buck- up); MCTP, Museu de CieÃncia e Tecnologia, The author also suggested that ``P. minimus PontifõÂcia Universidade CatoÂlica do Rio might be a fourth valid species in the genus Grande do Sul, Porto Alegre (A.A. Lise); Paradossenus'' (Sierwald 1993). MNRJ, Museu Nacional do Rio de Janeiro, Recently the holotype of Xingusiella mini- Rio de Janeiro (A. Kury); ZUFMS, ColecËaÄo ma was found in the MNRJ collection, mixed ZooloÂgica de RefereÃncia da UFMS, Univer- with other material of the family Pisauridae. sidade Federal de Mato Grosso do Sul, Campo The examination of this specimen con®rms Grande (L.O.I. Souza). Sierwald's supposition that the specimen be- The description format follows Brescovit & longs to this genus, and the species is here HoÈfer (1994) and the terminology used for the redescribed. While examining other Brazilian internal structures of the genitalia follows collections more P. longipes material was Sierwald (1993, 1996). All measurements are found, and its geographical distribution is here in millimeters. The epigyna were cleared in extended to include southern Brazil and north- clove oil to study internal structures. Data on ern Argentina specimens. A new species, P. aquatic plant association, web type and prey corumba, much smaller than P. minimus, was capture strategies of Paradossenus corumba collected by the second author (JR) in the pro- were obtained through ®eld observations of ject ``Biodiversidade da Fauna Associada a 61 individuals, where 35 were studied by an Macro®tas AquaÂticas'', which was being de- animal focal method (sensu Lehner 1979; total veloped in southern Pantanal ¯oodplain, Co- of 175 minutes of observations divided in 35 rumbaÂ, Mato Grosso do Sul, Brazil and was sessions of ®ve minutes each). These data organized by the third author (MEA). This were collected in temporary ponds in the 7 8 THE JOURNAL OF ARACHNOLOGY southern Pantanal ¯oodplain (between lateral lobes and middle ®eld with a median 198229±198339S and 578029±578039W) from depression (Figs. 3, 14). July 1994±April 1997. Description.ÐMale: (holotype). Colora- tion: carapace orange with grayish border and Paradossenus F.O. Pickard-Cambridge with brown median dorsal band. Chelicerae Paradossenus F.O. Pickard-Cambridge 1903: 155, yellow. Endites, labium and sternum yellow (type species by original designation, Parados- to white. Legs orange with brown longitudinal senus nigricans F.O. Pickard-Cambridge [5 Do- lomedes longipes Taczanowski 1874]). Sierwald bands in all articles. Abdomen orange-brown, 1993: 55. dorsally with grayish transversal bands and Xingusiella Mello-LeitaÄo 1940: 23, (type species by three pairs of longitudinal white spots. Ven- original designation, X. minima Mello-LeitaÄo. trally shiny white. Total length 2.65. Carapace First synonymized by Sierwald 1993: 55. Carico 1.30 long, 1.20 wide. Clypeus 0.10. Eye di- 1993: 231. ameters and interdistances: AME 0.10, ALE Diagnosis.ÐParadossenus can be distin- 0.08, PME 0.11, PLE 0.12; AME-AME 0.05, guished from other trechaleids by at least four AME-ALE contiguous, PME-PME 0.08, characters, three of which are presumably syn- PME-PLE 0.13, ALE-PLE 0.18. MOQ length apomorphies: male chelicerae with distinct 0.22, anterior width 0.21, posterior width elongated groove leading to the base of fang 0.31. Chelicerae with elongated groove, deep, on the anterior surface of paturon (Figs. 6, 19; next to base of fang on the anterior surface Sierwald 1993, ®g. 11), leg I extremely long, (Figs. 6, 11) and 3 promarginal teeth being the and presence of a distal tegular projection, not median largest and 3 retromarginal denticles pierced by the duct, in the male palp (Figs. 1, (Fig. 12). Labium 0.20 long, 0.17 wide. Ster- 17, 19; Sierwald 1990, ®g. 35; 1993, ®g. 12). num 0.75 long, 0.67 wide. Abdomen 1.40 An additional character would be the presence long. Leg measurements: I -femur 2.40; pa- of slightly to moderately-recurved posterior tella 0.70; tibia 2.40; metatarsus 2.40; tarsus eye row (Sierwald 1990, ®gs. 29, 30). The 1.00; total 8.90. II -2.00; 0.60; 1.90; 1.90; presence of four cheliceral teeth on the retro- 0.80; 7.30. III -1.30; 0.40; 0.90; 1.00; 0.35; margin, a character used as diagnostic by Sier- 3.95. IV -2.10; 0.50; 1.65; 2.10; 0.70; 7.05. wald (1990), was inconsistent. The species in- Leg spination: tibia I-II v2-2-0; III-IV v2-2-2. cluded in this work had a retromargin with Legs with plumose setae (Fig. 15). Bothrium three teeth (Fig. 12). of trichobothria with semicircular rim pre- senting longitudinal and slender striations Paradossenus corumba Brescovit & Raizer (Fig. 13). Palp: retrolateral tibial apophysis new species subtriangular, very slender at tip; retrolateral Figs. 1±6; 11±17; 23 ventral projection accentuated and globose Types.ÐMale holotype from CorumbaÂ, (Figs. 1, 16); cymbium with retrolateral basal Mato Grosso do Sul, Brazil, 1994, J. Raizer projection (Figs. 2, 16); tegulum with sperm col., deposited in IBSP 6901; 1? &1/ par- ducts forming two loops; conductor incon- atypes with same data of holotype, deposited spicuous; median apophysis with two branch- in IBSP 6902 and 6903; 1/ & 4 immatures es, one median rounded and the other distal from Passo do Lontra, Abobral Pantanal sub- bi®d (Figs. 1, 17). region, CorumbaÂ, Mato Grosso do Sul, Brazil, Female: (IBSP 6904). Coloration as in male 27 November 1994, J. Raizer col., deposited except legs with more accentuated bands on in IBSP 6904. the articles and dorsum of abdomen darker. Etymology.ÐThe speci®c name is a noun Total length 2.30. Carapace 1.20 long, 1.10 in apposition taken from the type locality. wide. Clypeus 0.07 high. Eye diameters and Diagnosis.ÐThe male of Paradossenus interdistances: AME 0.10, ALE 0.05, PME corumba is distinguished from P. longipes 0.12, PLE 0.11; AME-AME 0.03, AME-ALE (Fig. 13; Sierwald 1990, ®gs. 34±36) by pres- 0.02, PME-PME 0.06, PME-PLE 0.12, ALE- ence of a retrolateral projection on the base of PLE 0.21. MOQ length 0.23, front width 0.18, the cymbium (Figs. 2, 16) and a median back width 0.26. Chelicerae not modi®ed, apophysis with a bi®d distal branch (Figs. 1, with 3 promarginal teeth, the second basal be- 17); the female of P. corumba differs from P. ing larger than others and 3 large retromar- minimus by the sclerotized internal border of ginal teeth. Labium 0.15 long, 0.20 wide. BRESCOVIT ET AL.ÐNEOTROPICAL PARADOSSENUS 9 Figures 1-6.ÐParadossenus corumba new species, male. 1, Left palp, ventral view; 2, Left palp, retrolateral view; 3, Epigynum in ventral view; 4, Epigynum in dorsal view; 5, Epigynum in dorsal view (variation from Porto Cercado, Mato Grosso do Sul); 6, Male chelicera, anterior surface. Abbreviations: cp, basal projection of cymbium; dtp, distal tegular projection; e, embolus; ll, lateral lobes; ma, median apophysis; mf, middle ®eld; st, subtegulum; t, tegulum. Scale bars 5 0.25 mm. Sternum 0.65 long, 0.60 wide. Abdomen 1.30 2.70; carapace 1.20±1.30; femur I 2.00±2.40. long. Leg measurements: I -femur 1.50; pa- Six females: total length 2.30±3.50; carapace tella 0.50; tibia 1.40; metatarsus 1.40; tarsus 1.20±1.50; femur I 1.50±2.10. The females 0.55; total 5.35. II -1.40; 0.50; 1.25; 1.20; from Porto Cercado are darker, and the head 0.50; 4.85. III -1.05; 0.30; 0.70; 0.80; 0.30; of true spermathecae can be very slender (Fig. 3.15. IV -1.50; 0.45; 1.05; 1.55; 0.50; 5.15. 5). Leg spination as in male. Epigynum: epigynal Natural history.ÐParadossenus corumba folds very narrow; middle ®eld short, not cov- was observed associated with nine aquatic ering the epigastric furrow, with an anterior plants: Eichhornia azurea (Sw.) Kunth and E. median depression; lateral lobes with narrow crassipes (Mart.) Solms-Laub.
Recommended publications
  • Toxins-67579-Rd 1 Proofed-Supplementary
    Supplementary Information Table S1. Reviewed entries of transcriptome data based on salivary and venom gland samples available for venomous arthropod species. Public database of NCBI (SRA archive, TSA archive, dbEST and GenBank) were screened for venom gland derived EST or NGS data transcripts. Operated search-terms were “salivary gland”, “venom gland”, “poison gland”, “venom”, “poison sack”. Database Study Sample Total Species name Systematic status Experiment Title Study Title Instrument Submitter source Accession Accession Size, Mb Crustacea The First Venomous Crustacean Revealed by Transcriptomics and Functional Xibalbanus (former Remipedia, 454 GS FLX SRX282054 454 Venom gland Transcriptome Speleonectes Morphology: Remipede Venom Glands Express a Unique Toxin Cocktail vReumont, NHM London SRP026153 SRR857228 639 Speleonectes ) tulumensis Speleonectidae Titanium Dominated by Enzymes and a Neurotoxin, MBE 2014, 31 (1) Hexapoda Diptera Total RNA isolated from Aedes aegypti salivary gland Normalized cDNA Instituto de Quimica - Aedes aegypti Culicidae dbEST Verjovski-Almeida,S., Eiglmeier,K., El-Dorry,H. etal, unpublished , 2005 Sanger dideoxy dbEST: 21107 Sequences library Universidade de Sao Paulo Centro de Investigacion Anopheles albimanus Culicidae dbEST Adult female Anopheles albimanus salivary gland cDNA library EST survey of the Anopheles albimanus transcriptome, 2007, unpublished Sanger dideoxy Sobre Enfermedades dbEST: 801 Sequences Infeccionsas, Mexico The salivary gland transcriptome of the neotropical malaria vector National Institute of Allergy Anopheles darlingii Culicidae dbEST Anopheles darlingi reveals accelerated evolution o genes relevant to BMC Genomics 10 (1): 57 2009 Sanger dideoxy dbEST: 2576 Sequences and Infectious Diseases hematophagyf An insight into the sialomes of Psorophora albipes, Anopheles dirus and An. Illumina HiSeq Anopheles dirus Culicidae SRX309996 Adult female Anopheles dirus salivary glands NIAID SRP026153 SRS448457 9453.44 freeborni 2000 An insight into the sialomes of Psorophora albipes, Anopheles dirus and An.
    [Show full text]
  • World of Webs Philip Ball Finds Himself Caught up in Artworks Woven by Thousands of South American Spiders
    ANIMAL BEHAVIOUR World of webs Philip Ball finds himself caught up in artworks woven by thousands of South American spiders. he famous warning never to work through interlacing, glittering web fibres, Saraceno has Tomás Saraceno’s 2016 with animals or children seems not harbours of nebulae and hybrid clusters of worked with many work Arachno Concert, to have reached Tomás Saraceno. galaxies appear, introducing microcosms of scientists and with Arachne (Nephila TThe Argentina-born, Berlin-based artist cooperation”. Visitors are encouraged to lie scientific insti- senegalensis), Cosmic embraces the unpredictability and scene- down and look up at this silken cosmos. tutions over the Dust (Porus Chondrite) stealing capacity of orb-weaving spiders. The N. clavipes installation, meanwhile, is years. He has held and the Breathing Thousands of the arachnids are his collabo- an elaborate symphony. The tiny meteoritic residencies at the Ensemble. rators in a forthcoming exhibition at the particles — sourced in cooperation with National Centre Buenos Aires Museum of Modern Art. the Berlin Museum for Natural History — for Space Studies in Paris and the Massa- Visitors will wander amid more than mingle with dust in the air to become part chusetts Institute of Technology’s Center for 190 square metres of webs woven by of the sonic landscape. Their movements are Art, Science and Technology in Cambridge. Parawixia bistriata, an orb-weaving spider tracked by video and magnified on a screen, In 2015, at the Centre for Contemporary native to several South American countries. while a custom-built algorithm translates Art of the Nanyang Technological Univer- A second space hosts an “arachno concert”.
    [Show full text]
  • Phylogeny of the Orb‐Weaving Spider
    Cladistics Cladistics (2019) 1–21 10.1111/cla.12382 Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea) Nikolaj Scharffa,b*, Jonathan A. Coddingtonb, Todd A. Blackledgec, Ingi Agnarssonb,d, Volker W. Framenaue,f,g, Tamas Szuts} a,h, Cheryl Y. Hayashii and Dimitar Dimitrova,j,k aCenter for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; bSmithsonian Institution, National Museum of Natural History, 10th and Constitution, NW Washington, DC 20560-0105, USA; cIntegrated Bioscience Program, Department of Biology, University of Akron, Akron, OH, USA; dDepartment of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086, USA; eDepartment of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia; fSchool of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia; gHarry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia; hDepartment of Ecology, University of Veterinary Medicine Budapest, H1077 Budapest, Hungary; iDivision of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA; jNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway; kDepartment of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway Accepted 11 March 2019 Abstract We present a new phylogeny of the spider family Araneidae based on five genes (28S, 18S, COI, H3 and 16S) for 158 taxa, identi- fied and mainly sequenced by us. This includes 25 outgroups and 133 araneid ingroups representing the subfamilies Zygiellinae Simon, 1929, Nephilinae Simon, 1894, and the typical araneids, here informally named the “ARA Clade”.
    [Show full text]
  • Biodiversity : Exploration, Exploitation, Conservation and Management – Vision and Mission”
    -2- “Biodiversity : Exploration, Exploitation, Conservation and Management – Vision and Mission” Proceedings of the UGC Sponsored National Seminar 19-20th November, 2016 Editor-in-Chief Dr. Sumana Saha Associate Editors Dr. Madhumita Manna, Dr. Jayati Ghosh, Dr. Sanjoy Podder, Dr. Enamul Haque Dr. Srikanta Guria, Sri Somaditya Dey Organised by Post Graduate Department of Zoology Barasat Government College Barasat, Kolkata – 700 124, India In Collaboration with The Zoological Society, Kolkata West Bengal Biodiversity Board -3- Citation S. Saha, M. Manna, J. Ghosh, S. Podder, E. Haque, S. Guria and S. Dey (Eds.). Biodiversity : Exploration, Exploitation, Conservation and Management - Vision and Mission. Proceedings of the UGC Sponsored National Seminar, Kolkata, India, 19-20th November, 2016. World Scientific News 71 (2017) 1-228 Reviewer Prof. Jerzy Borowski Department of Forest Protection and Ecology, SGGW, Warsaw, Poland Published On-line 03 May, 2017, WSN Volume 71 (2017), pp. 1-228 http://www.worldscientificnews.com/ Published By Dr. Tomasz Borowski Scientific Publishing House „DARWIN”, 22/12 Adama Mickiewicza Street, 78-520 Złocieniec, Poland ISBN 978-83-947896-2-6 ISSN 2392-2192 Technical Inputs Ruby Das All Rights Reserved No part/s of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. Cover Design Dr. Sumana Saha -4- Contents SECTION : I Page no. 1. Message ...................................................................................................................
    [Show full text]
  • Alkaloids – Secrets of Life
    ALKALOIDS – SECRETS OF LIFE ALKALOID CHEMISTRY, BIOLOGICAL SIGNIFICANCE, APPLICATIONS AND ECOLOGICAL ROLE This page intentionally left blank ALKALOIDS – SECRETS OF LIFE ALKALOID CHEMISTRY, BIOLOGICAL SIGNIFICANCE, APPLICATIONS AND ECOLOGICAL ROLE Tadeusz Aniszewski Associate Professor in Applied Botany Senior Lecturer Research and Teaching Laboratory of Applied Botany Faculty of Biosciences University of Joensuu Joensuu Finland Amsterdam • Boston • Heidelberg • London • New York • Oxford • Paris San Diego • San Francisco • Singapore • Sydney • Tokyo Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First edition 2007 Copyright © 2007 Elsevier B.V. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation
    [Show full text]
  • Effects of Spider Venom Toxin PWTX-I (6-Hydroxytrypargine) on the Central Nervous System of Rats
    Toxins 2011, 3, 142-162; doi:10.3390/toxins3020142 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Effects of Spider Venom Toxin PWTX-I (6-Hydroxytrypargine) on the Central Nervous System of Rats Lilian M. M. Cesar-Tognoli 1, Simone D. Salamoni 2, Andrea A. Tavares 2, Carol F. Elias 3, Jaderson C. Da Costa 2, Jackson C. Bittencourt 3 and Mario S. Palma 1,* 1 Laboratory of Structural Biology and Zoochemistry, Department of Biology, CEIS, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil; E-Mail: [email protected] 2 Laboratory of Neurosciences, Institute of Biomedical Research and Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS 90619-900, Brazil; E-Mails: [email protected] (S.D.S.); [email protected] (A.A.T.); [email protected] (J.C.D.C.) 3 Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP 05508-900, Brazil; E-Mails: [email protected] (C.F.E.); [email protected] (J.C.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.:+55-19-35264163; Fax: +55-19-35348523. Received: 18 January 2011; in revised form: 1 February 2011 / Accepted: 12 February 2011 / Published: 22 February 2011 Abstract: The 6-hydroxytrypargine (6-HT) is an alkaloidal toxin of the group of tetrahydro--carbolines (THC) isolated from the venom of the colonial spider Parawixia bistriata. These alkaloids are reversible inhibitors of the monoamine-oxidase enzyme (MAO), with hallucinogenic, tremorigenic and anxiolytic properties.
    [Show full text]
  • Araneidae): Some Adaptive Responses to Different Environments
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2005 Variation in Life History and Behavioral Traits in the Colonial Spider Parawixia bistriata (Araneidae): Some Adaptive Responses to Different Environments María Florencia Fernández Campón University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Demography, Population, and Ecology Commons Recommended Citation Fernández Campón, María Florencia, "Variation in Life History and Behavioral Traits in the Colonial Spider Parawixia bistriata (Araneidae): Some Adaptive Responses to Different Environments. " PhD diss., University of Tennessee, 2005. https://trace.tennessee.edu/utk_graddiss/1946 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by María Florencia Fernández Campón entitled "Variation in Life History and Behavioral Traits in the Colonial Spider Parawixia bistriata (Araneidae): Some Adaptive Responses to Different Environments." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for
    [Show full text]
  • Apeksha Khatiwada
    i ii Characterization of Allosteric Modulators of Glutamate Transporters: Selectivity and Potency Screening Implications for Drug Development and for Understanding Allosteric Modulation of Glutamate Transport APEKSHA KHATIWADA AUGUST 2018 A Dissertation Presented to Faculty of Drexel University College of Medicine In partial fulfilment of the Requirement for the Degree of Masters of Science in Drug Discovery and Development iii ACKNOWLEDGMENTS I would like to acknowledge everyone who believed in me and has been a constant motivator throughout my journey. Firstly, I would like to extend my sincere gratitude to my mentor, Dr. Andreia Mortensen for her guidance, support and encouragement towards my work. She has been so nice to me and taught all the laboratory techniques, helped me improved my presentation and critical thinking skills. I feel so fortunate to have this wonderful opportunity to do my master’s thesis under her supervision. This project would not have been possible without Dr. Joseph Salvino. All the synthetic analogs used for the project has been synthesized in medicinal chemistry lab under his supervision. I would also like to thank Dr. Wagner F. Santos (University of São Paulo, Brazil) for kindly providing us additional compound for my study. I would like express my heartfelt thanks to members of my thesis committee: Dr. Ole Mortensen, Dr. Joanne Mathiasen, and Dr. Joseph Salvino for their time and support. Every suggestions and feedbacks from them has been a tremendous tool towards making my work as best as possible. I would also like to thank Dr. Paul McGonigle and Dr. Joanne Mathiasen for making the Drug Discovery and Development program so interesting and for all the valuable feedbacks, interactions and words of encouragement.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Spider
    UNIVERSITY OF CALIFORNIA RIVERSIDE Spider Silk Adaptations: Sex-Specific Gene Expression and Aquatic Specializations A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Evolution, Ecology, and Organismal Biology by Sandra Magdony Correa-Garhwal March 2018 Dissertation Committee: Dr. Cheryl Hayashi, Co-Chairperson Dr. Mark Springer, Co-Chairperson Dr. John Gatesy Dr. Paul De Ley Copyright by Sandra Magdony Correa-Garhwal 2018 The Dissertation of Sandra Magdony Correa-Garhwal is approved: Committee Co-Chairperson Committee Co-Chairperson University of California, Riverside Acknowledgements I want to express my deepest gratitude to my advisor, Dr. Cheryl Hayashi, for her admirable guidance, patience, and knowledge. I feel very fortunate to have her as my advisor and could simply not wish for a better advisor. Thank you very much to my dissertation committee members Dr. John Gatesy, Dr. Mark Springer, and Dr. Paul De Ley, for their advice, critiques, and assistance. I thank my fellow lab mates. I specially thank the graduate student Cindy Dick, Post-Doctoral Associates Crystal Chaw, Thomas Clarke, and Matt Collin, and undergrads from the Hayashi lab who provided assistance with planning and executing experiments helping me move forward with my dissertation. Thanks to all the funding sources, Army Research Office, UC MEXUS, Dissertation Year Program Fellowship from the University of California, Riverside, Dr. Janet M. Boyce Memorial Endowed Fund for Women Majoring in the Sciences from UCR, and Lewis and Clark Fund for Exploration and Field Research from American Philosophical Society. I would also like to thank Angela Simpson, Cor Vink, and Bryce McQuillan for aiding in the collection of Desis marina.
    [Show full text]
  • Tarantulas of Australia: Phylogenetics and Venomics Renan Castro Santana Master of Biology and Animal Behaviour Bachelor of Biological Sciences
    Tarantulas of Australia: phylogenetics and venomics Renan Castro Santana Master of Biology and Animal Behaviour Bachelor of Biological Sciences A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 School of Biological Sciences Undescribed species from Bradshaw, Northern Territory Abstract Theraphosid spiders (tarantulas) are venomous arthropods found in most tropical and subtropical regions of the world. Most Australian tarantula species were described more than 100 years ago and there have been no taxonomic revisions. Seven species of theraphosids are described for Australia, pertaining to four genera. They have large geographic distributions and they exhibit little morphological variation. The current taxonomy is problematic, due to the lack of comprehensive revision. Like all organisms, tarantulas are impacted by numerous environmental factors. Their venoms contain numerous peptides and organic compounds, and reflect theraphosid niche diversity. Their venoms vary between species, populations, sex, age and even though to maturity. Tarantula venoms are complex cocktails of toxins with potential uses as pharmacological tools, drugs, and bioinsecticides. Although numerous toxins have been isolated from venoms of tarantulas from other parts of the globe, Australian tarantula venoms have been little studied. Using molecular methods, this thesis aims to document venom variation among populations and species of Australian tarantulas and to better describe their biogeography and phylogenetic relationships. The phylogenetic species delimitation approach used here predicts a species diversity two to six times higher than currently recognized. Species examined fall into four main clades and the geographic disposition of those clades in Australia seems to be related to precipitation and its seasonality.
    [Show full text]
  • Carboline Toxin from the Venom of the Spider Parawixia Bistriata by Lilian M
    796 Helvetica Chimica Acta ± Vol. 88 (2005) Structure Determination of Hydroxytrypargine: A New Tetrahydro-b- Carboline Toxin from the Venom of the Spider Parawixia bistriata by Lilian M. M. Cesar a), Claudio F. Tormenab), Mauricio R. Marquesa), Gil V. J. Silvab), Maria A. Mendesa), Roberto Rittner c), and Mario S. Palma a) a) Department of Biology, CEIS, Laboratory of Structural Biology and Zoochemistry, Institute of Biosciences, SaÄo Paulo State University (UNESP), Rio Claro, SP, 13506-900, Brazil (e-mail: [email protected]) b) Department of Chemistry, Faculdade de Filosofia CieÃncias e Letras da Universidade de SaÄo Paulo, FFCLRP-USP, Av. Bandeirantes, 3900, 14040-901 RibeiraÄo Preto, SP, Brazil c) Physical Organic Chemistry Laboratory, Chemistry Institute, State University of Campinas, Caixa Postal 6154, 13084-971 Campinas, SP, Brazil A new, highly active tetrahydro-b-carboline toxin from the spider Parawixia bistriata, the most-common species of social spider occurring in Brazil, was isolated. The new toxin was identified as 1,2,3,4-tetrahydro-6- hydroxy-b-carboline ( N-[3-(2,3,4,9-tetrahydro-6-hydroxy-1H-pyrido[3,4-b]indol-1-yl)propyl]guanidine; 3). This type of alkaloid, not common among spider toxins, was found to be the most-potent constituent of the spiders chemical weaponry to kill prey. When P. bistriata catch arthropods in their web, they apparently attack their prey in groups of many individuals injecting their venoms. In vivo toxicity assays with 3 demonstrated a potent lethal effect to honeybees, giving rise to clear neurotoxic effects (paralysis) before death. The compounds toxicity (LD50 value) was determined to be ca.
    [Show full text]
  • Centipede Venom: Recent Discoveries and Current State of Knowledge
    Toxins 2015, 7, 679-704; doi:10.3390/toxins7030679 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Centipede Venom: Recent Discoveries and Current State of Knowledge Eivind A. B. Undheim 1,*, Bryan G. Fry 2 and Glenn F. King 1 1 Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia; E-Mail: [email protected] 2 School of Biological Sciences, the University of Queensland, St Lucia, Queensland 4072, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-7-3346-2326. Academic Editor: Nicholas R. Casewell Received: 19 December 2014 / Accepted: 15 February 2015 / Published: 25 February 2015 Abstract: Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms.
    [Show full text]