Download Author Version (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Download Author Version (PDF) Nanoscale Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/nanoscale Page 1 of 41 Nanoscale Nanoscale REVIEW High Energetic Compositions Based on Functionalized Carbon Nanomaterials Received 00th November 2015, Qi-Long Yana, Michael Gozin†a, Feng-Qi Zhaob, Adva Cohena, Si-Ping Pangc Accepted 00th January 2016 DOI: 10.1039/x0xx00000x In recent years, research in the field of carbon nanomaterials (CNMs), such as fullerenes, expanded graphite (EG), carbon nanotubes (CNTs), graphene, and graphene oxide (GO), have been widely used in energy storages, electronics, catalysts, www.rsc.org/ biomaterials, as well as medical applications. Regarding energy storage, one of the most important research directions is the development of CNMs as carriers of energetic components by coating or encapsulation, thus forming safer advanced nanostructures with better performances. Meanwhile, some of the CNMs can also be functionalized to become energetic additives. This review article covers updated preparation methods for the aforementioned CNMs, with a more specific orientation towards the use of these nanomaterials in energetic compositions. Besides, the effects of these functionalized CNMs on thermal decomposition, ignition, combustion and reactivity properties of energetic compositions are significant, which are further discussed with more details. It has been shown that the use of functionalized CNMs in energetic compositions would greatly improve their combustion performances, thermal stability and sensitivity. In particular, the functionalized Fullerene, CNTs and GO are the most appropriate candidate components in nanothermites, solid propellants and gas generators, due to their superior catalytic properties as well as facile preparation methods. Manuscript Introduction nanomaterials (CNMs) have been developed as carriers of EMs, combining to form advanced structures with higher performances. Energetic materials (EMs) are a class of material with high Some of them, as coating or encapsulating materials, is also very amount of stored chemical energy that can be released in a fast 5 effective in improving the safety of energetic systems . way, and the typical classes of EMs include explosives, pyrotechnics It’s well known that solid carbon materials (SCMs) can be and propellants. Gunpowder (GP), invented in ancient China, is found in different forms of bulk phases (e.g. Diamonds) as well as considered as the first EMs in human history. It is a mixture of 6 more molecular forms (e.g. fullerenes) . In fact, CNMs has a unique sulfur, charcoal, and potassium nitrate (saltpeter). Charcoal as form place in nanoscience owing to their exceptional electrical, thermal, of carbon together with sulfur are fuels, while the saltpeter is an Accepted chemical and mechanical properties. They have found application in oxidizer1,2. Due to promising heat and gas generation properties, GP diverse areas as composite materials, energy storage and has been widely used as firearm propellant and pyrotechnic conversion, sensors, drug delivery, field emission devices and composition. As a primitive energetic composition, the GP is no nanoscale electronic components, due to strong adsorption longer widely in use and replaced by more advanced energetic capacity, chemical stability, high mechanical strength as well as easy systems both in civil and military applications, which are still under 7 modification . Currently, several kinds of SCMs could be used in the fast development. In past decades, researchers are seeking safer field of EMs, which can be divided into two groups. One group is energetic materials with better performance, which implies four nano-powdered carbon, such as carbon black (CB) and aspects: high energetic, insensitive, nontoxic, and environmental 3 nanodiamond, where the latter can be used as a reducing agent in friendly . In newly developed propellants and explosives, the 8 energetic compositions . Another one is CNMs with rich pore carbon-rich materials are thereby gradually replaced by high Nanoscale structure and large surface area, including fullerenes, expanded nitrogen materials (HNMs) with higher energy content and better graphite (EG), carbon nanotubes (CNTs), graphene, and graphene oxygen balance4. However, these HNMs are in most cases not safe oxide (GO). The application of these materials in the field of enough for practical applications. Recently, a variety of carbon 9 energetic compositions has been recently summarized . In order to further expand the scope of their applications in EMs, usually nano- sized carbon materials with large surface area could be a. Center for Nanoscience and Nanotechnology, Faculty of Exact Science, Tel Aviv functionalized with energetic groups, or coupled with binders, University, Tel Aviv 69978, Israel. b. Science and Technology on Combustion and Explosion Laboratory, Xi’an energetic compounds, metal fuels, combustion catalysts, etc. to Modern Chemistry Research Institute, Xi’an 710065, China. form novel advanced function nanostructures with better c. School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China. properties that could be used in propellants, explosives and 10 † Corresponding authors, M. Gozin, e-maill: [email protected], Tel: +972-3-640- pyrotechnics . In recent years, extensive research has been done 5878; Q.-L. Yan, e-mail: [email protected]. This journal is © The Royal Society of Chemistry 2016 Nanoscale, 2016, 00, 1-41 | 1 Nanoscale Page 2 of 41 REVIEW Nanoscale on preparation and application of carbon nanomaterials in EMs11, journals, this paper is trying to do an overview of preparation especially graphene, GO, CNTs and their composites as combustion methods of CNMs based EMs as well as their effects on catalysts or energetic components12,13. In addition, activated carbon performance and sensitivity of corresponding energetic fiber and graphite were also attempted in propellant manufacture compositions. and waste treatment. The relevant research topics include: design, synthesis, characterization and properties of carbon based Classification of Carbon Nanomaterials nanomaterials; potential usage of nano-sized carbon materials in Carbon is one of the most important natural elements, and it rocket propulsion; the catalytic effect and mechanisms of carbon has sp3, sp2, sp hybridizations of its orbitals. The molecular carbon based nano-sized catalysts on decomposition and combustion of atoms’ anisotropy sp2 may lead to anisotropy of some crystals of energetic materials; application and characterization of carbon these materials (Table 1). Therefore, carbon materials have widely 14 nanomaterials in purification of waste water in explosive industry . extended properties. In fact, more and more new carbon materials In the past decades, a large amount of papers has been continue to be discovered and artificially prepared. There is no published regarding preparations and applications of CNMs, based other element like carbon as a single element can form so diverse on which several review papers are available mainly in Chinese and completely different substances, in terms of structures and 8,12,15-18 literature . Experimental and theoretical data on new carbon properties, such as 3-D diamond crystal and graphite, 2-D graphite nanostructures using fullerenes, nanotubes as well monolithic sheets, 1-D CNTs and 0-D fullerene molecules. It has been diamond-like nanoparticles, nanofibers, various nanocomposites as discovered that carbon materials are mostly superior in their 15 starting materials are summarized in a Russian journal as well . hardness, optical properties, heat resistance, radiation Their atomic and electronic structures, the nature of chemical characteristics, chemical resistance, electrical insulation, electrical bonds and physicochemical properties are compared. The conductivity, surface and interface properties to many other applications of fullerene materials in catalytic reactions including materials. Carbon materials probably can cover the characteristics hydrogen transfer and hydrosilylation, pyrolysis of alkanes, H2-D2 of all substances on the planet, such as “the hardest to the softest”, 16 exchange, coupling and alkyl transfer reaction are reviewed . “insulator to semiconductor, further to a super conductor”, Recent advances on the application of graphene based catalysts in “insulation to great thermal conductivity”, “fully-light absorbing to Manuscript energetic materials are also introduced, revealing that they have completely transparent” and so on, so these
Recommended publications
  • Thermal Analysis and Stability of Boron/Potassium Nitrate
    applied sciences Article Thermal Analysis and Stability of Boron/Potassium ◦ Nitrate Pyrotechnic Composition at 180 C Chaozhen Li 1 , Nan Yan 1,*, Yaokun Ye 2, Zhixing Lv 3, Xiang He 1, Jinhong Huang 4 and Nan Zhang 4 1 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China 2 Beijing Space Vehicle General Design Department, China Academy of Space Technology, Beijing 100094, China 3 Safety Technology Research Institute of Ordnance Industry, Beijing 100053, China 4 R & D Center, Liaoning North Huafeng Special Chemistry Co. Ltd., Fushun 113003, China * Correspondence: [email protected]; Tel.: +86-010-6891-2537 Received: 4 August 2019; Accepted: 29 August 2019; Published: 3 September 2019 Featured Application: This research aims to obtain the decomposition process of boron/potassium nitrate pyrotechnic composition, and verify its high temperature stability to meet the charge requirements of the separation device such as the cutter for the lunar probe. Abstract: Aerospace missions require that pyrotechnic compositions are able to withstand 180 ◦C. Therefore, this paper studies the thermal stability and output performance of boron/potassium nitrate (abbreviated BPN) used in pyrotechnic devices. Firstly, differential scanning calorimetry (DSC) and thermogravimetric (TG) tests are used to analyze the thermal reaction process of KNO3, boron, and BPN to qualitatively judge their thermal stability. Then, apparent morphology analysis, component analysis, and the p-t curve test, which is the closed bomb test to measure the output power of the pyrotechnic composition, are carried out with BPN samples before and after the high-temperature test to verify BPN stability at 180 ◦C.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0068610 A1 Nickel (43) Pub
    US 2007.006861 OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0068610 A1 Nickel (43) Pub. Date: Mar. 29, 2007 (54) MICROCRYSTALLINE NITROCELLULOSE Publication Classification PYROTECHNIC COMPOSITIONS (51) Int. Cl. (76) Inventor: Russell R. Nickel, Columbus, MT (US) C06B 45/10 (2006.01) (52) U.S. Cl. ............................................................ 149/19.8 Correspondence Address: PSERIEDER, WOODRUFF & (57) ABSTRACT 12412 POWERSCOURT DRIVE SUTE 200 ST. LOUIS, MO 63131-3615 (US) A. pyrotechnic composition comprising microcrystalline nitrocellulose which is characterized as an ultra low-smoke (21) Appl. No.: 11/469,936 composition. The pyrotechnic composition includes at least one flame coloring agent, and may be produced with or (22) Filed: Sep. 5, 2006 without an optional oxidizing agent, with or without an optional metal powder, with or without an optional chlorine Related U.S. Application Data donor. Upon combustion, the pyrotechnic composition pro duces illuminating emissions having desired colors and (63) Continuation-in-part of application No. 11/058,677, luminosity characteristics with significantly reduced or toxic filed on Feb. 15, 2005. combustion products and Smoke. US 2007/006861.0 A1 Mar. 29, 2007 MCROCRYSTALLINE NITROCELLULOSE may include at least one compound selected from a group PYROTECHNIC COMPOSITIONS consisting of ammonium perchlorate, alkali metal perchlo rates, alkali metal chlorates, alkali metal nitrates and alka CROSS-REFERENCE TO RELATED line earth metal nitrates. Additional fuels may include car APPLICATIONS bon, titanium, titanium alloys, Zirconium, Zirconium alloys, 0001. The present application is a continuation-in-part of iron, alloys of iron, magnesium, alloys of magnesium, U.S. patent application Ser. No.
    [Show full text]
  • Pyrotechnic System Failures: Causes and Prevention
    NASA Technical Memorandum 1 0 0 6 3 3 - 4 '--? Pyrotechnic System Failures: Causes and Prevention :NASA-TH- 100633) PYROTECHNIC SYSTEM N88-26394 FAILURES: CAUSES AND PBEVENTION [NASA) 42 P CSCL 198 Unclas HI118 0151345 Laurence J. Bement June 1988 Nat~onalAeronaul~cs and Space Adm~nistrat~on Langley Research Center Hampton,Virginia 23665-5225 PREFACE This paper was motivated by an early 1986 expression of concern about recent problems and failures of flight pyrotechnic hardware by Norman R. Schulze, NASA Headquarters, then Office of the Chief Engineer, and now Office of Safety, Reliability, Maintainability and Quality Assurance. The Langley Research Center (LaRC) was requested to take the lead role in compiling an investigation about the extent of this problem and to explore the technical understanding of the field of pyrotechnic technology. The emphasis on this effort is substantiated by the overall assumption in the design community that pyrotechnics are simple, well-defined and thoroughly understood devices to which we routinely entrust mission-critical as well as safety-of-flight func- tions. The first action was a May 15, 1986, NASA/DOD survey from Langley entitled, "Solicitation of Interest in a Coordinated Pyrotechnic Technology Effort Among Centers." Two meetings followed, one on November 13 and 14, 1986, at the NASA Langley Research Center, and the other on April 29 and 30, 1987, at the NASA Johnson Space Center, with representatives from each NASA Center, the Air Force Space Division, and the Naval Surface Warfare Center. These representatives are now the nucleus of the NASA/DOD Aerospace Pyrotechnic Systems Steering Committee, whose objective is to provide the NASA and DOD with a policy and posture which will increase the safety, performance, quality and reliability of aerospace pyrotechnic systems.
    [Show full text]
  • United States P Patented July 18, 1972
    3,677,840 United States P Patented July 18, 1972 iodide of the invention is obtained in a highly active form 3,677,840 ideally suited for nucleating purposes. PYROTECHNICS COMPRISING OXDE OF SILVER The metathesis reaction proceeds substantially accord FOR WEATHERMODIFICATION USE ing to the following equation: Graham C. Shaw, Garland, and Russell Reed, Jr. Brigham City, Utah, assignors to Thiokol Chemical Corporation, Bristol, Pa. No Drawing. Filed Sept. 18, 1969, Ser. No. 859,165 In accordance with the invention, the pyrotechnic com int, C. C06d 3/00 o position comprises, by weight, the cured product produced U.S. C. 149-19 5 Claims by mixing and curing together from about 0.5% to about 10 20% of oxide of silver; from about 2% to about 45% of an alkali iodate present in about a stoichiometric amount ABSTRACT OF THE DISCLOSURE relative to the amount of oxide of silver present in the A pyrotechnic composition which upon combustion composition; from about 25% to about 75% of a solid in produces mixed silver halide nuclei for use in influencing organic oxidizer selected from the perchlorates and the weather comprises a composition made by curing a mix 5 nitrates of ammonium and of Group I-A and Group II-A ture comprising silver oxide, an alkali iodate, an alkali metals of the Periodic Table; and from about 10% to perchlorate and a curable oxygenated or fluorinated or about 20% of a curable, fluid polymer binder for pyro ganic liquid polymer binder. The composition burns technic compositions, especially a combined-halogen-rich smoothly to provide by metathesis a mixture of silver or combined-oxygen-rich polymer binder, preferably a halides as substantially the only solid or condensed phase 20 polyester-urethane terminated with amine or hydroxyl reaction products, and leaves substantially no residue.
    [Show full text]
  • Manganese As Fuel in Slow-Burning Pyrotechnic Time Delay Compositions
    Manganese as Fuel in Slow-Burning Pyrotechnic Time Delay Compositions 1 1 1∗ Darren Swanepoel , Olinto Del Fabbro and Walter W. Focke 1Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, South Africa 2 † Corrie Conradie 2Research and Technology, African Explosives Limited, PO Modderfontein, 1645, South Africa Abstract Manganese metal was evaluated as a fuel for slow-burning delay compositions press- filled in aluminium or compaction-rolled in lead tubes. Oxides of antimony, bismuth, copper, manganese and vanadium were considered as oxidants. Measured burn rates for binary mixtures varied between 5 and 22 mm/s but slower burning ternary and quaternary compositions were also found. The addition of fumed silica to the Mn/MnO2 system had little effect on the propagation rate but a low level addition of hollow glass sphere significantly reduced the burn rate. Mn – MnO2 mixtures showed reliable burning over a wide stoichiometric range. In this system the fuel and the oxidant share a common metal. They combine to form the more stable intermediate oxide (MnO) releasing considerable quantities of heat in the process. Keywords: Pyrotechnics, Time delay, Manganese, Antimony oxide, Fumed silica 1 Introduction Commercial detonator delay element assemblies comprise an ignition source, a small- diameter tube containing a compacted pyrotechnic composition and an ignition transfer system [1, 2]. The pyrotechnic composition is a mixture of an oxidising agent and a fuel capable of an exothermic redox reaction. Following ignition, a combustion wave travels down along the tube at a constant velocity. This ensures the transmission of the initiation impulse to the detonator in a precisely adjustable time interval.
    [Show full text]
  • Innovation Infosheet Thermite Torch Composition
    Innovation Infosheet Downloaded October 2, 2021 Thermite Torch Composition Track Code: CRANE-97179 Categories: - Chemistry and Chemical Analysis - NSWC Crane Keywords: - Chemistry and Chemical Analysis - Crane - Demolition - Law Enforcement - Military - Welding Naval Surface Warfare Center, Crane Division (NSWC Crane) has developed and patented a series of compositions for thermite pyrotechnics which offer enhanced material perforation, increased reaction temperatures, and decreased toxicity. Thermite is a pyrotechnic composition of a metal powder and a metal oxide. When ignited, thermite produces an exothermic reaction with extremely high temperatures. These compositions are composed of magnalium, copper oxide, molybdenum, and a binder material. These three patents represent the optimal combination of components to enhance material perforation, improved gas production, temperature stability, heat transfer, shelf life, and low toxicity. Advantages: - Enhanced material perforation - Improved gas production - Temperature stability - Heat transfer - Longer shelf life - Decreased toxicity Potential Applications: - Disaster Clean-up - Law Enforcement - Mining - Metal Cutting and Welding - Demolition Downloaded October 2, 2021 Page 1 / 2 People: - D'Arche, Steve (Project leader) - Melof, Brian - Swanson, Travis Intellectual Property: Application Date: (None) Type: CON-Patent Country of Filing: United States Patent Number: 7,998,291 Issue Date: August 16, 2011 Application Date: (None) Type: CON-Patent Country of Filing: United States Patent Number: 7,988,802 Issue Date: August 2, 2011 Application Date: (None) Type: Utility Patent Country of Filing: United States Patent Number: 7,632,365 Issue Date: December 15, 2009 Contact OTC: Purdue Office of Technology Commercialization The Convergence Center 101 Foundry Drive, Suite 2500 West Lafayette, IN 47906 Phone: (765) 588-3475 Fax: (765) 463-3486 Email: [email protected] Downloaded October 2, 2021 Page 2 / 2.
    [Show full text]
  • CHAPTER 5 Department of Agriculture
    CHAPTER 5 Department of Agriculture Statutory Authority: 1976 Code §§ 23-39-90, 39-9-70, 39-9-80, 39-9-160, 39-11-20, 39-21-40, 39-27-60, 39-29-80, 39-31-100, 39-33-1230, 39-37-120, 39-39-40, 39-39-160, 39-41-80, 39-41-150, 46-15-20, 46-15-30, 46-21-20, 46-23-50 and 46-27-60; Chapters 11 and 25 of Title 39; Chapters 17, 19 (Article 5), 23 and 41 of Title 46; and Chapter 11 (Article 5) of Title 47 ARTICLE 1 AGRICULTURAL COMMODITIES MARKETING ACT SUBARTICLE 1 SOYBEANS A. MARKETING ORDER NO. 1 FOR SOUTH CAROLINA SOYBEANS 5–1. Definition of Terms. Terms used in this Marketing Order shall be as defined in the Act with the following additions: a. ‘‘Act’’ means the South Carolina Agricultural Commodities Marketing Act of 1968 and as amended in 1970. b. ‘‘Affected area’’ and ‘‘production area’’ are synonymous and mean the entire area of South Carolina. c. ‘‘Board’’ means the South Carolina Soybean Board established pursuant to the provisions of § 46-17-190 and 5-2 of this Marketing Order. d. ‘‘Bushel,’’ ‘‘Unit,’’ and ‘‘Affected unit’’ are synonymous and mean and include one (1) standard U. S. bushel of 60 pounds by weight of soybeans. e. ‘‘Commission’’ means the Agriculture Commission of South Carolina. f. ‘‘District’’ means the geographical divisions of the area of soybean production established pursuant to the provisions of 5-2 of this Marketing Order. g. ‘‘First buyer’’ means the person to whom soybeans are sold by the affected producer of said soybeans.
    [Show full text]
  • Technologies
    technologies Review Towards Safer Primers: A Review Stefan Lundgaard 1,2,∗ , Soon Hock Ng 1,2 , Damien Cahill 3, Johan Dahlberg 3, Dong Ruan 1, Nerida Cole 1, Paul R. Stoddart 1 and Saulius Juodkazis 1,2 1 Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia; [email protected] (S.H.N.); [email protected] (D.R.); [email protected] (N.C.); [email protected] (P.R.S.); [email protected] (S.J.) 2 Melbourne Centre for Nanofabrication, ANFF, 151 Wellington Road, Clayton, Victoria 3168, Australia 3 DefendTex Pty Ltd., 46 Bessemer Drive, Dandenong South, Victoria 3175, Australia; [email protected] (D.C.); [email protected] (J.D.) * Correspondence: [email protected] Received: 14 August 2019; Accepted: 14 October 2019; Published: 17 October 2019 Abstract: Primers are used to reliably initiate a secondary explosive in a wide range of industrial and defence applications. However, established primer technologies pose both direct and indirect risks to health and safety. This review analyses a new generation of primer materials and ignition control mechanisms that have been developed to address these risks in firearms. Electrically or optically initiated metal, oxide and semiconductor-based devices show promise as alternatives for heavy metal percussive primers. The prospects for wider use of low-cost, safe, reliable and non-toxic primers are discussed in view of these developments. Keywords: primers; semiconductor bridges; thermites; energetic materials 1. Introduction The evolution of energetic material technology is important and is constantly progressing. Energetic materials typically fall into three categories: explosives that are designed to detonate, propellants that generally deflagrate, or pyrolants that can deflagrate or detonate [1–3].
    [Show full text]
  • APA STANDARD 87-1 Contents 1
    APA STANDARD 87-1 Contents 1. INTRODUCTION..............................................................................................1 2. DEFINITIONS.....................................................................................................1 3. REQUIREMENTS FOR CONSUMER FIREWORKS, NOVELTIES AND THEATRICAL PYROTECHNICS .....................................................................4 3.1 Types of Consumer Fireworks.......................................................................5 3.2 Types of Novelties .........................................................................................8 3.4 Other Devices ................................................................................................9 3.6 Specific Requirements for Consumer Fireworks...........................................10 3.7 Prohibited Chemicals and Components.........................................................12 3.8 Requirements for Theatrical Pyrotechnics ....................................................13 3.9 Approval ........................................................................................................13 3.10 Marking and Labeling..................................................................................14 4. REQUIREMENTS FOR DISPLAY FIREWORKS DEVICES ..........................14 4.1 Types of Display Fireworks Devices.............................................................14 4.2 Construction of Aerial Shells.........................................................................15 4.3 Approval
    [Show full text]
  • Study of Ice-Forming Properties of Zinc Oxide and Silver Iodide Nanoreagents
    Advances in Engineering Research, volume 177 International Symposium on Engineering and Earth Sciences (ISEES 2018) Study of Ice-Forming Properties of Zinc Oxide and Silver Iodide Nanoreagents Khuchunaev B.M. Kupovykh G.V. Department of Cloud Physics Institute of Computer Technologies and Information High-Mountain Geophysical Institute Security, Head of Department of Higher Mathematics, Nalchik, Russia Southern Federal University, Taganrog, Russia [email protected] [email protected] Teunova N.V. Khuchunaev B.M. Department of Cloud Physics Department of Cloud Physics High-Mountain Geophysical Institute High-Mountain Geophysical Institute Nalchik, Russia Nalchik, Russia [email protected] [email protected] Bekkiev M.Yu. Tashilova A.A. Director High-Mountain Geophysical Institute Department of Cloud Physics Nalchik, Russia High-Mountain Geophysical Institute [email protected] Nalchik, Russia [email protected] Panaetov V.P. Budaev A.Kh. Department of Cloud Physics Department of Cloud Physics High-Mountain Geophysical Institute High-Mountain Geophysical Institute Nalchik, Russia Nalchik, Russia [email protected] [email protected] Abstract—The article is devoted to the development of methods particles, which has a significant influence on phase transitions for dispersing nanoreagents based on zinc oxide and silver iodide of water and coagulation of reagent particles. and the study of their ice-forming properties. It is shown that nanotubes of zinc oxide and silver iodide have good ice-forming The modern period in the world of science is described by properties with a specific yield of ice-forming nuclei up to 1013г- the intensive development of experimental and theoretical 1. Unlike traditional reagents, the activity of zinc oxide nanotubes studies of the formation of a new phase in the nanoscale range.
    [Show full text]
  • Characterization of Impact Initiation of Aluminum-Based Intermetallic-Forming Reactive Materials
    CHARACTERIZATION OF IMPACT INITIATION OF ALUMINUM-BASED INTERMETALLIC-FORMING REACTIVE MATERIALS A Thesis Presented to The Academic Faculty by Michael D. Tucker In Partial Fulfillment of the Requirements for the Degree Master of Science in Mechanical Engineering in the School of Mechanical Engineering Georgia Institute of Technology December 2011 CHARACTERIZATION OF IMPACT INITIATION OF ALUMINUM-BASED INTERMETALLIC-FORMING REACTIVE MATERIALS Approved by: Dr. Naresh Thadhani, Advisor School of Mechanical Engineering Georgia Institute of Technology Dr. Joe Cochran School of Mechanical Engineering Georgia Institute of Technology Dr. Antonia Antoniou School of Mechanical Engineering Georgia Institute of Technology Dr. Ken Gall School of Mechanical Engineering Georgia Institute of Technology Date Approved: August 2011 To all those who made a sacrifice of time, money, thoughts, prayers, and patience for me, and others like me. May I be a blessing to others as others have been to me and before me for all those after. To my family who I would do anything for, my parents, and to the memory of Uncle Willie and Uncle Lewis whom my family lost this year, and to my great-grandfather and greatest inspiration, Roy Nathaniel Tucker.... Papa, \I ain't dead yet" iii ACKNOWLEDGEMENTS First I would like to give honor to my Lord and Savior Jesus Christ for all the blessings that have been bestowed upon me, including the opportunity to further my education. I want to thank Dr. Thadhani for extending the opportunity to work and learn in his lab. I would like to thank my parents for their constant support of all my endeavors in life and for pushing me to be the man that I am today.
    [Show full text]
  • Development of PVD-Coated and Nanostructured Reactive Multilayer Films
    Seema Sen Development of PVD-coated and nanostructured reactive multilayer films Werkstofftechnik Aktuell Schriftenreihe aus dem Fakultätsübergreifenden Institut für Werkstofftechnik (IWT) an der TU Ilmenau Herausgegeben von Univ.-Prof. Dr. rer. nat. Peter Schaaf und Univ.-Prof. Dr.-Ing. Edda Rädlein Band 19 Die vorliegende Schriftenreihe "Werkstofftechnik Aktuell" berich- tet über aktuelle Forschungsergebnisse aus dem Institut für Werk- stofftechnik (IWT) der TU Ilmenau. Die ausgewählten Texte spiegeln die breit gefächerten materialwissenschaftlichen und werk- stofftechnischen Themen, die am IWT bearbeitet werden, wieder. Für weitere Informationen und Rückfragen können Sie sich gerne an das Institut (www.tu-ilmenau.de/wt) wenden oder das Institut persönlich besuchen. Über Ihre Anregungen, konstruktive Kritik und Ihre Kontaktaufnahme würden wir uns sehr freuen. Das IWT steht wissenschaftlichen Zusammenarbeiten stets aufgeschlossen gegenüber. Development of PVD-coated and nanostructured reactive multilayer films Seema Sen Universitätsverlag Ilmenau 2018 Impressum Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Angaben sind im Internet über http://dnb.d-nb.de abrufbar. Diese Arbeit hat der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität Ilmenau als Dissertation vorgelegen. Tag der Einreichung: 14. November 2017 1. Gutachter: Univ.-Prof. Dr. rer. nat. habil. Dr h.c.
    [Show full text]