Intercropping Withcassava Proceedings of an International Workshop Held Attrivandrum, India, 27 Nov-I Dec1978 Ectors: Ecward Webec Barry \Estel Anc Ariyn Campdeh

Total Page:16

File Type:pdf, Size:1020Kb

Intercropping Withcassava Proceedings of an International Workshop Held Attrivandrum, India, 27 Nov-I Dec1978 Ectors: Ecward Webec Barry \Estel Anc Ariyn Campdeh Intercropping WithCassava Proceedings of an international workshop held atTrivandrum, India, 27 Nov-i Dec1978 Ectors: Ecward Webec Barry \esteL anc ariyn CampDeH ARCHIV 38421 IDRC-142e The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Government of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East. © 1979 International Development Research Centre Postal Address: Box 8500, Ottawa, Canada K1G 3H9 Head Office: 60 Queen Street, Ottawa Weber, E. Nestel, B. Campbell, M. IDRC, Ottawa, CA Central Tuber Crops Research Institute, Trivandrum, IN IDRC-142e Intercropping with cassava : proceedings of an international workshop held at Trivandrum, India, 27 Nov-i Dec 1978. Ottawa, Ont. IDRC, 1979. 144 p.: ill. /IDRC publication!, !conference paper!, !cassava!, /intercropping!, !crop diversification!, !agricultural research!, /research centres!, !Latin America/, !Asia!, !Africa/ - !agricultural management!, !plant protection!, /soil fertility!, /economic aspects!, !CIAT!, !IRRI/, !agricultural statistics!, bibliography. UDC: 631.584:635.23 ISBN: 0-88936-231-9 Microfiche edition available IDRC- 142e Intercropping with Cassava Proceedings of an international workshop held at Trivandrum, India, 27 Nov-i Dec 1978 Editors: Edward Weber,' Barry Nestel,2 and Marilyn Campbell3 Cosponsored by the Central Tuber Crops Research Institute (Indian Council for Agricultural Research) and the International Development Research Centre 1Senior Program Officer, Agriculture, Food and Nutrition Sciences Division. IDRC. 2Consultant to the AFNS Division of IDRC. 3Communications Division, IDRC. Contents Foreword Edward Weber and Barry Nestel 5 Multiple cropping cassava and field beans: status of present work at the International Centre of Tropical Agriculture (CIAT) M. Thung and J.H. Cock 7 Intercropping with cassava in Central America Raüf A. Moreno and Robert D. Hart 17 Cassava intercropping in Brazil Marcio Carvaiho Marques Porto, Pedro Alves de Almeida, Pedro Luiz Pires de Mattos, and Raymundo Fonséca Souza 25 Intercropping systems with cassava in Kerala State, India C.R. Mohan Kumar and N. Hrishi 31 Cassava intercropping patterns and management practices in Indonesia Suryatna Effendi 35 Cassava intercropping patterns and management practices at Tamil Nadu Agricultural University, Coimbatore, India C.R. Muthukrishnan and S. Thamburaj 37 Cassava intercropping patterns and practices in Malaysia W.Y. Chew 43 Intercropping with cassava in Africa W. N. 0. Ezeilo 49 Cassava and cassava-based intercrop systems in Thailand Sophon Sinthuprama 57 Cassava intercropping research: agroclimatic and biological interactions H.G. Zandstra 67 Soil fertility implications of cropping patterns and practices for cassava Jerry L. McIntosh and Suryatna Effendi 77 Agroeconomic considerations in cassava intercropping research J.C. Flinn 87 Agronomic implications of cassavalegume intercropping systems Dietrich E. Leihner 103 Crop protection implications of cassava intercropping RaülA.Moreno 113 Discussion summary 129 Bibliography 133 Participants 141 2 Crop Protection Implications of Cassava Intercropping Raül A. Moreno Centro Agronórnico Tropical de Investigación y Enseñanza (CA TIE), Turrialba, Costa Rica It has been cited repeatedly (Janzen 1973; Igboz- crop residues, shifting cultivation, rotation, and the wike 1971; and Hoidridge 1959) that tropical agro- cultivation of mixtures of varieties contribute to ecosystems with mixed stand populations are more achieve a certain degree of sanitary stability. Severe stable than monocultures, although this belief can parasite damage is in general terms rare in subsis- be refuted with several exceptions, notably sugartence production systems. As the farm becomes cane (Robinson 1976). Outbreaks of insect pests larger and the resource base more diversified, the and/or plant pathogens constitute one of the mostcassava-based production systems become more important factors contributing to the unbalance of market-oriented and cassava monoculture becomes a plant community in the tropics. prevalent. The management of these market-oriented The search for integrated pest management meth-production systems implies the use of pesticides al- ods has led to a series of entomological studies and though cassava is still considered a safe crop as com- theoretical discussions related to the influence of the pared to other tropical crops. composition of the plant community on the com- Small-scale agriculture has not received attention position of the insect populations. Some of these from researchers until recently; consequently data studies have been recently conducted under tropical on these mixed cropped production systems have conditions (Risch 1977). However, this information just begun to accumulate. is still not enough to provide a basis for designing Information about cassava diseases was generally new, more stable production systems for differentlacking (CIAT 1970) but has improved notably in tropical conditions. recent years (Lozano and Booth 1974). However, Information on the influence of mixed plantquantitatively epidemiological studies are few populations on the plant pathogen community com-(Lozano and Sequeira 1974) and most of these eval- position in the tropics is greatly lacking. Botanicaluated the reaction of different cultivars to certain epidemic development in most plant communitiescassava pathogens (CIAT 1975). of mixed genotypes has been studied mostly in tem- Information about botanical epidemics on cassava perate regions with horticultural crops (Berger 1973, intercropped with other crops was unavailable to the 1975) and more thoroughly discussed in cereals author and as a consequence, this paper is based (Krantz l968a, b, and 1974). Studies of botanical largely on Central American data on plant pathogens epidemic dynamics to interpret the hostpathogen- attacking cassava cultivated in pure and mixed environment system in its tridimensional magnitude stands and on the possible influence of cassava on are recent in plant pathology. Because tropical eco- the disease development of other crops that are inter- systems are generally more complex than temperate cropped with cassava. Most of the information has ecosystems and there are more plant diseases in the been obtained during the last 4 years by my former tropics than in temperate regions (Weilman 1969), graduate students, colleagues, and field assistants the study of botanical epidemics in the tropics isof CATIE. complex and needs a more integrated systems approach (Robinson 1976). Cassava, like other food crops, is intercropped by Influence of Intercropping on small farmers to minimize production risk involved Cassava Disease Development in "reduced scale" agriculture. These close to sub- sistence food crops production systems are culti- Larios and Moreno (1976, 1977) conducted one vated with the minimum of cash expenditure on pest of the most comprehensive studies on the influence and pathogen control. Intercropping, the burning of of intercropped species on the development of cas- 113 sava diseases. In this work the incidence and sever- Very susceptible cultivars display a necrotic reac- ity of several cassava diseases were studied in dif-tion. In Turrialba, both incidence (I) and severity ferent cropping systems (Fig. 1). Species, varieties(S) of this disease were positively correlated to de- of plant components, and planting distances in everyviations (frequency and amplitude) below the average cropping system are summarized in Table I. Inci- temperature (21.1 °C) and below average daily rel- dence (%) is the number of infected units andative humidity (88.79%). Significant and negative severity is the affected area (%) estimated accordingcorrelations between I and S and both average daily to previously calculated scales. The concepts of in-precipitation and 24-h periods with more than 5 mm cidence and severity have been previously discussedof rain, also were found. I and S decreased propor- by James and Shih (1973). Disease developmenttionally as the number of leaves per plant increased. was evaluated approximately every 20 days from theAs this disease attacks mainly the lower leaves, same 16 cassava plants randomly selected from 90when more foliage is produced either the relative m2 plots. humidity reaches levels inappropriate for pathogen development or the intercepted amount of light in- Cassava Powdery Mildew (Oidium manihotis P.creases to critical levels for both the pathogen and Henn) the persistence of lower leaves. Figure 2AE shows that peaks in both I and S curves coincide with the 0. manihotis attacks mainly the lower leaves of"dry period" at Turrialba (February and March susceptible cassava cultivars and produces a typicalmainly) when water tension reaches negative values yellowing on the attacked surface (Drumond 1946).(Amézquita 1974). Immediately after this period, either the growth of the host surpasses the devel- opment of the pathogen or the microenvironmental CA SSA VA conditions become inappropriate for the pathogen. Maxima values of leaf
Recommended publications
  • Diabrotica Speciosa Primary Pest of Soybean Arthropods Cucurbit Beetle Beetle
    Diabrotica speciosa Primary Pest of Soybean Arthropods Cucurbit beetle Beetle Diabrotica speciosa Scientific name Diabrotica speciosa Germar Synonyms: Diabrotica amabilis, Diabrotica hexaspilota, Diabrotica simoni, Diabrotica simulans, Diabrotica vigens, and Galeruca speciosa Common names Cucurbit beetle, chrysanthemum beetle, San Antonio beetle, and South American corn rootworm Type of pest Beetle Taxonomic position Class: Insecta, Order: Coleoptera, Family: Chrysomelidae Reason for Inclusion in Manual CAPS Target: AHP Prioritized Pest List - 2010 Pest Description Diabrotica speciosa was first described by Germar in 1824, as Galeruca speciosa. Two subspecies have been described, D. speciosa vigens (Bolivia, Peru and Ecuador), and D. speciosa amabilis (Bolivia, Colombia, Venezuela and Panama). These two subspecies differ mainly in the coloring of the head and elytra (Araujo Marques, 1941; Bechyne and Bechyne, 1962). Eggs: Eggs are ovoid, about 0.74 x 0.36 mm, clear white to pale yellow. They exhibit fine reticulation that under the microscope appears like a pattern of polygonal ridges that enclose a variable number of pits (12 to 30) (Krysan, 1986). Eggs are laid in the soil near the base of a host plant in clusters, lightly agglutinated by a colorless secretion. The mandibles and anal plate of the developing larvae can be seen in mature eggs. Larvae: Defago (1991) published a detailed description of the third instar of D. speciosa. First instars are about 1.2 mm long, and mature third instars are about 8.5 mm long. They are subcylindrical; chalky white; head capsule dirty yellow to light brown, epicraneal and frontal sutures lighter, with long light-brown setae; mandibles reddish dark brown; antennae and palpi pale yellow.
    [Show full text]
  • 2. Banded Cucumber Beetle (Diabrotica Balteata Leconte)
    EXOTIC PEST FACT SHEET 2 Banded Cucumber Beetle (Diabrotica balteata LeConte) What are they? What should I look for? How can I protect my industry? Banded cucumber beetle is a serious agricultural pest. Larvae will hatch from small groups of eggs which are Check your production sites frequently for the presence The most frequent damage caused by Banded cucumber laid just under the surface of the soil. Once hatched they of new diseases and unusual symptoms. Make sure you beetle is defoliation by adults and larvae feeding on the cause damage to roots and tubers. Plants with damaged are familiar with common pests and diseases of your roots of seedlings (rootworm). roots will lose vigour, have poor growth and may have industry so you can recognise something different. poor fruit set. Large holes will be left in tubers. What are the main hosts? The Banded cucumber beetle is associated with cucurbits How do they spread? (melons, cucumber and pumpkin), beans, brassicas, As the Banded cucumber beetle larvae burrow and feed kumara, tomato, wheat and maize. on roots and tubers the most likely method of spread is larvae remaining with tubers during shipment. Adults What do they look like? can fly short distances so are unlikely to remain with host plant material during processing and transport. Adults are 5 – 6 mm with a red head. They usually have Their ability to fly will enable them to disperse into yellow bands running across the back with a thin green nearby crops. Eggs may be spread through soil band running lengthwise down the centre (Fig.
    [Show full text]
  • Banded Cucumber Beetle, Diabrotica Balteata Leconte (Insecta: Coleoptera: Chrysomelidae)1 John L
    EENY-093 Banded Cucumber Beetle, Diabrotica balteata LeConte (Insecta: Coleoptera: Chrysomelidae)1 John L. Capinera2 Introduction and Distribution Larva The banded cucumber beetle is basically a tropical insect, The three instars have mean head capsule widths measuring and until the early 1900s, its distribution in the United about 0.24, 0.35, and 0.51 mm, respectively. The body States was limited to southern Arizona and Texas (Saba length during these instars is reported to be about 2.3, 4.5, 1970), and south through Mexico and Central America and 8.9 mm. Larval color is somewhat variable; initially it is (Krysan 1986). It has since expanded its range throughout white, but may also take on a pale yellow color depending the southern United States from North Carolina to on the food source. Development time is temperature southern California, though its intolerance to freezing dependent, but the range is about 4–8, 3–11, and 4–15 days temperatures probably limits its northward distribution for instars 1 to 3, respectively. Total larval development to its current status. Within Florida it is most abundant in time is usually 11–17 days. the organic soils near Lake Okeechobee, though it occurs throughout the state, where it is known as a vegetable pest. Life Cycle and Description The banded cucumber beetle does not enter diapause (Saba 1970). It remains active as long as the weather remains favorable, with up to six to seven generations per year reported in Louisiana (Pitre and Kantack 1962) and Texas. Under optimal conditions, a life cycle can be completed in 45 days.
    [Show full text]
  • Diabrotica Virgifera Virgifera
    Bulletin OEPP/EPPO Bulletin (2017) 47 (2), 164–173 ISSN 0250-8052. DOI: 10.1111/epp.12381 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/36 (2) Diagnostics Diagnostic PM 7/36 (2) Diabrotica virgifera virgifera Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved in 2003-09. Diabrotica virgifera virgifera. Revised in 2017-02. This Standard should be used in conjunction with PM 7/76 Use of EPPO diagnostic protocols. onto other flowering crops. Cucurbits are particularly attrac- 1. Introduction tive to corn rootworms, but these pests have also been The New World genus Diabrotica Chevrolat, 1836 is one found on lucerne, clover, rape, soybean and sunflower. of the largest leaf beetle genera, with about 354 described However, maize seems to be the preferred source of food species (Derunkov et al., 2015). Ten species or subspecies (Toepfer et al., 2015). within this genus are generally recognized as pests (Krysan Further information on the biology of Diabrotica can be & Miller, 1986); Diabrotica barberi Smith & Lawrence, found in the EPPO data sheet on Diabrotica barberi and Diabrotica undecimpunctata howardi Barber and Diabrotica virgifera (EPPO, 1997), information on geo- Diabrotica virgifera virgifera LeConte are serious pests of graphical distribution is available in the EPPO Global Data- maize in North America, the latter species in Europe too. base (EPPO, 2016). There are two subspecies of D. virgifera, virgifera (west- ern corn rootworm) and zeae Krysan & Smith (Mexican 2. Identity corn rootworm) (Krysan et al., 1980). Diabrotica virgifera virgifera is distributed from the Mid-Western to Eastern Name: Diabrotica virgifera virgifera LeConte and South-Eastern USA and northward into Ontario, Synonyms: Diabrotica virgifera Canada and is adapted to temperate climates (diapause), Taxonomic position: Insecta: Coleoptera: Chrysomelidae: while D.
    [Show full text]
  • Cucumber Beetles in Vegetable Crops 2019 Continuing Education for Pest Management Zheng Wang, Ph.D
    Cucumber Beetles in Vegetable Crops 2019 Continuing Education for Pest Management Zheng Wang, Ph.D. University of California Cooperative Extension October 22, 2019 In the next 50-55 minutes… Cucumber beetles: Identity Their damage Control/prevent practices across the country Cucumber Beetles: Identity Cucumber beetles in general: Stripped cucumber beetle Spotted cucumber beetle Banded cucumber beetle Abundant info from xxx.edu. Cucumber Beetles: Identity Common name Latin name Major distribution Susceptible vegetables Western spotted cucumber Diabrotica Rocky Mountains, Major pest for cucurbits beetle undecimpunctata Mississippi River are including all melons, undecimpunctata considered the limits of cucumber, watermelon, Spotted cucumber beetle D. Undecimpunctata their distributions. squash. (Southern corn rootworm) howardi Western spotted and Other vegetables include striped cucumber beetles beans, sweet corn, sweet Western stripped Acalymma trivittatum are commonly found in potato, etc. (mainly fed by cucumber beetle California. Western species). Eastern stripped A. vittatum cucumber beetle Banded cucumber beetle Level of severity is varied. Banded cucumber beetle Diabrotica balteata is found mainly in southern California. Cucumber Beetles: Morphology 1/5-in long, 1/10-in wide Source:Source: P. Goodell USGS and P. Phillips Cucumber Beetles: Morphology 1/4-in long, 12 black spots on elytra Source: P. Goodell and P. Phillips Cucumber Beetles: Morphology Range throughout southern U.S. from NC to southern CA Source: J. Castner, Univ. of FL Similar size to spotted cucumber beetle Prefer Legumes and Cucurbitaceae crops Cucumber Beetles: Morphology Black stripes end before reaching the abdomen tip Do not confuse striped Source: Dept. of Entomology, KSU cucumber beetle with Western corn rootworm. In the next 50-55 minutes… Cucumber beetles: Identity Their damage Control/prevent practices across the country Cucumber Beetles: Damage Cucumber beetles have a wide range of host plants.
    [Show full text]
  • Encapsulated Entomopathogenic Nematodes Can Protect Maize Plants from Diabrotica Balteata Larvae
    insects Article Encapsulated Entomopathogenic Nematodes Can Protect Maize Plants from Diabrotica balteata Larvae , Geoffrey Jaffuel * y, Ilham Sbaiti y and Ted C. J. Turlings FARCE Laboratory, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland; [email protected] (I.S.); [email protected] (T.C.J.T.) * Correspondence: geoffrey.jaff[email protected]; Tel.: +41-32-718-2513 These authors contributed equally to the work. y Received: 25 November 2019; Accepted: 27 December 2019; Published: 30 December 2019 Abstract: To face the environmental problems caused by chemical pesticides, more ecologically friendly alternative pest control strategies are needed. Entomopathogenic nematodes (EPN) have great potential to control soil-dwelling insects that cause critical damage to the roots of cultivated plants. EPN are normally suspended in water and then sprayed on plants or onto the soil, but the inconsistent efficiency of this application method has led to the development of new formulations. Among them is the use of alginate capsules or beads that encapsulate the EPN in favorable conditions for later application. In this study, we evaluated whether alginate beads containing EPN are able to kill larvae of the banded cumber beetle Diabrotica balteata LeConte and thereby protect maize plants from damage by these generalist rootworms. EPN formulated in beads were as effective as sprayed EPN at killing D. balteata. They were found to protect maize plants from D. balteata damage, but only if applied in time. The treatment failed when rootworm attack started a week before the EPN beads were applied. Hence, the well-timed application of EPN-containing alginate beads may be an effective way to control root herbivores.
    [Show full text]
  • A REVIEW of INSECT PREVALENCE in MAIZE (ZEA MA YS L.) and BEAN (PHASEOLUS VULGARIS L.) POLYCULTURAL SYSTEMS Agricultural Systems
    Field Crops Research, 1(1978) 33--49 O Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands A REVIEW OF INSECT PREVALENCE IN MAIZE (ZEA MA YS L.) AND BEAN (PHASEOLUS VULGARIS L.) POLYCULTURAL SYSTEMS MIGUEL ANGEL ALTIERI, CHARLES A. FRANCIS, AART VAN SCHOONHOVEN and JERRY D. DOLL Centro Internacional de Agricultura Tropical (CIA T), A.A. 6713, Call (Colombia) (Received 14 March 1977) ABSTRACT Altieri, M.A., Francis, C.A., Van Schoonhoven, A. and Doll, J.D., 1978. A review of insect prevalence in maize (Zea mays L.) and bean (Phaseolus vulgaris L.) polycultural systems. Field Crops Res., 1: 33--49. Tropical agroecosystems often include two or more crops arranged in diverse polycul- tural patterns. Experimental evaluation of the pest situation in polycultural systems was carried out in several field experiments at CIAT (Centro Internacional de Agricultura Tropical, Palmira, Colombia) with maize and beans in monoculture and polyculture. Beans grown as maize/bean polycultures had 26% fewer Empoasca kraemeri Ross and Moore adults than monoculture beans. Similarly the populations of Diabrotica balteata Le Comte were 45% less in polycultures. Spodoptera frugiperda (Smith) incidence as cutworm in maize was reduced 14% in polycultures. Also these systems had 23% less infestation of fall armyworm as whorl feeder. Date of planting affects pest interactions in these systems. For example, maize planted 30 and 20 days earlier than beans reduced leafhoppers on beans by 66% as compared to simultaneous planting. Fall armyworm damage on maize was reduced 88% when beans were planted 20 to 40 days earlier than the maize. Diversification of monocultural systems with other crops, especially non-host plants, seems to be one effective strategy in tropical pest management.
    [Show full text]
  • A Review of the Natural Enemies of Beetles in the Subtribe Diabroticina (Coleoptera: Chrysomelidae): Implications for Sustainable Pest Management S
    This article was downloaded by: [USDA National Agricultural Library] On: 13 May 2009 Access details: Access Details: [subscription number 908592637] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): implications for sustainable pest management S. Toepfer a; T. Haye a; M. Erlandson b; M. Goettel c; J. G. Lundgren d; R. G. Kleespies e; D. C. Weber f; G. Cabrera Walsh g; A. Peters h; R. -U. Ehlers i; H. Strasser j; D. Moore k; S. Keller l; S. Vidal m; U. Kuhlmann a a CABI Europe-Switzerland, Delémont, Switzerland b Agriculture & Agri-Food Canada, Saskatoon, SK, Canada c Agriculture & Agri-Food Canada, Lethbridge, AB, Canada d NCARL, USDA-ARS, Brookings, SD, USA e Julius Kühn-Institute, Institute for Biological Control, Darmstadt, Germany f IIBBL, USDA-ARS, Beltsville, MD, USA g South American USDA-ARS, Buenos Aires, Argentina h e-nema, Schwentinental, Germany i Christian-Albrechts-University, Kiel, Germany j University of Innsbruck, Austria k CABI, Egham, UK l Agroscope ART, Reckenholz, Switzerland m University of Goettingen, Germany Online Publication Date: 01 January 2009 To cite this Article Toepfer, S., Haye, T., Erlandson, M., Goettel, M., Lundgren, J. G., Kleespies, R. G., Weber, D. C., Walsh, G. Cabrera, Peters, A., Ehlers, R. -U., Strasser, H., Moore, D., Keller, S., Vidal, S.
    [Show full text]
  • INTERACTIONS BETWEEN STRAINS of SQUASH MOSAIC VIRUS in PUMPKIN and CANTALOUPE PLANTS by Jos6 Albersio De Aratijo^Lima a Thesis S
    Interactions between strains of squash mosaic virus in pumpkin and cantaloupe plants. Item Type text; Thesis-Reproduction (electronic) Authors Lima, José Albersio de Araújo, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 08:47:18 Link to Item http://hdl.handle.net/10150/554643 INTERACTIONS BETWEEN STRAINS OF SQUASH MOSAIC VIRUS IN PUMPKIN AND CANTALOUPE PLANTS by Jos6 Albersio de Aratijo^Lima A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANT PATHOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Fighting Invasive Species
    REPORT TO THE TWENTY-FIFTH LEGISLATURE REGULAR SESSION OF 2010 REPORT ON THE FIGHT AGAINST INVASIVE SPECIES FOR THE PERIOD OF JULY 1, 2007 - JUNE 30, 2008 & JULY 1, 2008 - JUNE 30, 2009 Prepared by THE STATE OF HAWAII DEPARTMENT OF AGRICULTURE PLANT INDUSTRY DIVISION In response to Act 213, Section 9, Session Laws of Hawaii 2007 TABLE OF CONTENTS SECTION I – BACKGROUND A Act 213...................................................................................................... 3 B Scope of the Report .................................................................................. 3 C Role of the Plant Industry Division in the Hawaii Department of Agriculture ................................................................................................. 3 D Role of the Plant Pest Control Branch in the Plant Industry Division ........ 3 E On-Going Activities of the Plant Pest Control Branch ............................... 4 F Acknowledgements................................................................................... 5 SECTION II – PROGRAM HIGHLIGHTS A New Pest Detections ................................................................................. 6 B Foreign Exploration................................................................................. 11 C Major Pest Control Efforts ....................................................................... 12 SECTION III – ADMINISTRATION A Revision of Administrative Rules............................................................. 28 B Facilities Planning..................................................................................
    [Show full text]
  • INTERACTIONS BETWEEN STRAINS of SQUASH MOSAIC VIRUS in PUMPKIN and CANTALOUPE PLANTS by Jos6 Albersio De Aratijo^Lima a Thesis S
    Interactions between strains of squash mosaic virus in pumpkin and cantaloupe plants. Item Type text; Thesis-Reproduction (electronic) Authors Lima, José Albersio de Araújo, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 08:02:54 Link to Item http://hdl.handle.net/10150/554643 INTERACTIONS BETWEEN STRAINS OF SQUASH MOSAIC VIRUS IN PUMPKIN AND CANTALOUPE PLANTS by Jos6 Albersio de Aratijo^Lima A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANT PATHOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Biology and Management of Pest Diabrotica Species in South America
    insects Review Biology and Management of Pest Diabrotica Species in South America Guillermo Cabrera Walsh 1,* , Crébio J. Ávila 2, Nora Cabrera 3, Dori E. Nava 4, Alexandre de Sene Pinto 5 and Donald C. Weber 6 1 ARS-SABCL/FuEDEI (Foundation for the Study of Invasive Species), Hurlingham B1686EFA, Argentina 2 EMBRAPA Agropecuaria Oeste, Dourados, Mato Grosso de Sul Caixa-postal 449, Brazil; [email protected] 3 Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata B1900FWA, Argentina; [email protected] 4 EMBRAPA Clima Temperado, Pelotas, Rio Grande do Sul Caixa-Postal 403, Brazil; [email protected] 5 Centro Universitario Moura Lacerda, Ribeirão Preto, São Paulo 14076-510, Brazil; [email protected] 6 USDA-ARS Invasive Insect Biocontrol & Behavior Laboratory, Baltimore Avenue, Beltsville, MD 10300, USA; [email protected] * Correspondence: [email protected]; Tel.: +54-11-4452-4838 Received: 27 May 2020; Accepted: 4 July 2020; Published: 8 July 2020 Abstract: The genus Diabrotica has over 400 described species, the majority of them neotropical. However, only three species of neotropical Diabrotica are considered agricultural pests: D. speciosa, D. balteata, and D. viridula. D. speciosa and D. balteata are polyphagous both as adults and during the larval stage. D. viridula are stenophagous during the larval stage, feeding essentially on maize roots, and polyphagous as adults. The larvae of the three species are pests on maize, but D. speciosa larvae also feed on potatoes and peanuts, while D. balteata larvae feed on beans and peanuts. None of these species express a winter/dry season egg diapause, displaying instead several continuous, latitude-mediated generations per year.
    [Show full text]