Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS Rutgers, The State University of New Jersey University of California, San Diego Table of Contents About the Cover The front cover maps the proteins and chemical reactions involved with the metabolic pathway called the citric Message from the Director ......................................3 acid cycle . Also known as the Krebs cycle or the tricarboxylic acid The RCSB PDB and the PDB Archive ...................4 cycle, the citric acid cycle is at the center of cellular me - tabolism. It plays a starring role in both the process of energy production and biosynthesis. The cycle finishes the sugar-breaking job started in glycolysis and fuels the PDB Structures ............................................................5 production of ATP in the process. It is also a central hub in biosynthetic reactions, providing intermediates that are used to build amino acids and other molecules. Cit - Data Deposition, Processing, and Annotation .......6 ric acid cycle enzymes are found in all cells that use oxy - gen, and even in some cells that don't. The eight reactions of the citric acid cycle use a small Related wwPDB Initiatives ......................................8 molecule –oxaloacetate –as a catalyst. The cycle starts by addition of an acetyl group to oxaloacetate, then, in eight steps, the acetyl group is completely broken apart, Data Access, Query, and Reporting ....................10 restoring the oxaloacetate molecule for another round. In a typically biological twist, it's not quite this simple. You might imagine that the enzymes could just pop off PDB-101, Outreach, and Education ...................14 the two carbon atoms of the acetyl group, using the oxaloacetate as a convenient carrier. However, by care - fully labeling particular carbon atoms in these mole - cules, scientists have found that things get shuffled Related Resources ...................................................18 around a bit, and two carbon atoms in the original oxaloacetate are the parts that are actually released as carbon dioxide. Then, at the end of the cycle, the original References and Acknowledgements ................18 acetate atoms are shuffled around to recreate the oxaloacetate. The structures shown here, taken from several different organisms, are explored further in the October 2012 Mole - cule of the Month (doi:10.2210/rcsb_pdb/mom_2012_10 ). Illustration created with guidance from Fundamentals of Biochemistry. 63 Citric Acid Cycle Enzymes The metabolite atoms on the front cover are depicted as follows: Oxygen Carbon Hydrogen Sulfur malate dehydrogenase (1mld) 75 citrate synthase (1cts) 64 fumarase (1fuo) 74 aconitase (7acn) 65 succinate dehydrogenase (1nek) 73 isocitrate dehydrogenase (3blw) 66 succinyl-CoA 72 synthetase (2fp4) 2-oxoglutarate dehydrogenase complex (1e2o, 67 1bbl, 68 1pmr, 69 2eq7, 70 and 2jgd) 71 Message from the Director 3 With the goal of enabling a structural view of biology, the RCSB PDB organ - ization takes on many roles. At its core is the Protein Data Bank (PDB) archive, a key repository of information describing proteins, nucleic acids, and other important biological macromolecular machines that help inform our understanding of biology and medicine. Along with our Worldwide PDB collaborators, the RCSB PDB curates, annotates, and makes publicly available the PDB data deposited by scientists around the globe. The RCSB PDB then provides a window to these data through a rich online resource with powerful searching, reporting, and visualization tools for researchers. This information is then streamlined for students and teachers in the form of the educational site called PDB-101. This annual report gives a glimpse of the RCSB PDB activities that help drive these efforts. During the reporting period of July 1, 2011 - June 30, 2012, the RCSB PDB has reached several milestones while simultaneously preparing for an exciting future. In March 2012, 80,000 entries became available in the archive. The PDB reached the 70,000 mark in December 2010. Other PDB numbers: 9250 entries were deposited and annotated in the calendar year 2011, and 8076 were released into the archive (compared with 8878 depositions and 7897 released entries in the previous year). Data were downloaded 379 million times in 2011, compared with 209 million in 2010. Other milestones have been reached near and far. Of local note, team members at Rutgers are happy to report that they have settled into the Center for Integrative Proteomics Research building. This new facility was built to join together structural biology, bioinformatics, and proteomics research groups on campus. These include the RCSB PDB, core facilities, research laboratories, and meeting space. This building has already hosted several meetings and workshops, including the Worldwide PDB’s Small Angle Scattering Task Force. Globally, the wwPDB continues to collaborate on several projects that will take the PDB into the next generation. As the amount of data deposited to the PDB increases, the need to develop more streamlined methods for processing and validation becomes greater. To this end, the wwPDB has made significant progress on the development of a Common Deposition and Annotation tool that will be used by all wwPDB sites to more effectively capture and process PDB depositions. External testing will begin in 2013. The versatile, knowledgeable, and creative team of scientists, developers, and educators at the RCSB PDB look forward to reaching even more milestones in the coming year. Helen M. Berman Director, RCSB PDB Board of Governors Professor of Chemistry and Chemical Biology Center for Integrative Proteomics Research in Piscataway, NJ Rutgers, The State University of New Jersey The RCSB PDB and the PDB Archive 4 Funding The RCSB PDB: Enabling Science and Education Worldwide The RCSB PDB is supported by funds from the: The RCSB Protein Data Bank 1 provides a global resource for the advancement of research and education in biology and medicine by • National Science curating, integrating, and disseminating biological macromolecular Foundation structural information in the context of function, biological processes, (NSF DBI 0829586) evolution, pathways, and disease states. • National Institute of General NIGMS Administered by the Research Collaboratory for Structural Bioinfor - Medical Sciences (NIGMS) matics (RCSB), the RCSB PDB builds upon the data available in the • Office of Science, PDB archive by creating tools and educational materials for use by Department of Energy (DOE) researchers, teachers, and students studying a variety of fields focused • National Library of Medicine on biology: molecular biology, structural biology, computational (NLM) biology, pharmacology, and others. • National Cancer Institute Through its online resources and interactions with its user commu - (NCI) nities, the RCSB PDB helps to answer broad biological questions • National Institute of where macromolecular structure is key. Neurological Disorders and Stroke (NINDS) PDB: A Community Resource for Science • National Institute of In the late 1950s, scientists began to decipher the 3D shapes of proteins Diabetes & Digestive & at an atomic level. As structures were determined using X-ray crystallog - Kidney Diseases (NIDDK) raphy, early computer graphics programs provided interactive views of these macromolecules. The possibilities for science and knowledge seen in these glimpses of myoglobin, 2,3 hemoglobin, 4,5 lysozyme, 6,7 and ribonuclease 8,9 inspired a new field of structural biology. The potential research that could be enabled by archiving and sharing data from these experiments moved the scientific community to action. was part of the team that first envisioned the PDB archive. Dr. Martha Beginning with only seven structures, the PDB archive was es tablished Quesada, Deputy Director (Rutgers), and Professor Philip E. Bourne, in 1971 to provide both a home and access point for the data produced Associate Director (UCSD), join her in RCSB PDB management. from these experiments. 10 Scientists would send their coordinate data to the PDB, who would then mail them to interested users. The RCSB PDB Team is composed of experts in diverse fields of computer science, biology, chemistry, and education. In addition to working Today, the PDB contains and supports online access to more than with PDB data, RCSB PDB members co-author scientific papers, 80,000 biomacromolecules that help researchers understand all aspects exhibit at meetings, present posters and papers, and attend and of biomedicine and agriculture, from protein synthesis to health and organize workshops. Staff members also serve as tutors, teachers, and disease to biological energy. Data are deposited by scientists from mentors to students of all ages. around the world, and used by a growing number of researchers in a variety of fields. The RCSB PDB receives input from an advisory board of experts in X-ray crystallography, nuclear magnetic resonance (NMR), 3D electron The PDB archive is managed by the World - microscopy (3DEM), bioinformatics, and education. wide Protein Data Bank (wwPDB), 11 a con - sortium of groups that host deposition, annotation, and distribution centers for PDB data and collaborate on a variety of projects and outreach efforts. Each wwPDB member develops separate websites, tools, and resources to access and analyze PDB data. As a member, the RCSB PDB collab - orates with the wwPDB on matters relating to getting data in the archive, while independently developing tools
Recommended publications
  • To Find Information About Arabidopsis Genes Leonore Reiser1, Shabari
    UNIT 1.11 Using The Arabidopsis Information Resource (TAIR) to Find Information About Arabidopsis Genes Leonore Reiser1, Shabari Subramaniam1, Donghui Li1, and Eva Huala1 1Phoenix Bioinformatics, Redwood City, CA USA ABSTRACT The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource of Arabidopsis biology for plant scientists. TAIR curates and integrates information about genes, proteins, gene function, orthologs gene expression, mutant phenotypes, biological materials such as clones and seed stocks, genetic markers, genetic and physical maps, genome organization, images of mutant plants, protein sub-cellular localizations, publications, and the research community. The various data types are extensively interconnected and can be accessed through a variety of Web-based search and display tools. This unit primarily focuses on some basic methods for searching, browsing, visualizing, and analyzing information about Arabidopsis genes and genome, Additionally we describe how members of the community can share data using TAIR’s Online Annotation Submission Tool (TOAST), in order to make their published research more accessible and visible. Keywords: Arabidopsis ● databases ● bioinformatics ● data mining ● genomics INTRODUCTION The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource for the biology of Arabidopsis thaliana (Huala et al., 2001; Garcia-Hernandez et al., 2002; Rhee et al., 2003; Weems et al., 2004; Swarbreck et al., 2008, Lamesch, et al., 2010, Berardini et al., 2016). The TAIR database contains information about genes, proteins, gene expression, mutant phenotypes, germplasms, clones, genetic markers, genetic and physical maps, genome organization, publications, and the research community. In addition, seed and DNA stocks from the Arabidopsis Biological Resource Center (ABRC; Scholl et al., 2003) are integrated with genomic data, and can be ordered through TAIR.
    [Show full text]
  • Orthofiller: Utilising Data from Multiple Species to Improve the Completeness of Genome Annotations Michael P
    Dunne and Kelly BMC Genomics (2017) 18:390 DOI 10.1186/s12864-017-3771-x SOFTWARE Open Access OrthoFiller: utilising data from multiple species to improve the completeness of genome annotations Michael P. Dunne and Steven Kelly* Abstract Backround: Complete and accurate annotation of sequenced genomes is of paramount importance to their utility and analysis. Differences in gene prediction pipelines mean that genome annotations for a species can differ considerably in the quality and quantity of their predicted genes. Furthermore, genes that are present in genome sequences sometimes fail to be detected by computational gene prediction methods. Erroneously unannotated genes can lead to oversights and inaccurate assertions in biological investigations, especially for smaller-scale genome projects, which rely heavily on computational prediction. Results: Here we present OrthoFiller, a tool designed to address the problem of finding and adding such missing genes to genome annotations. OrthoFiller leverages information from multiple related species to identify those genes whose existence can be verified through comparison with known gene families, but which have not been predicted. By simulating missing gene annotations in real sequence datasets from both plants and fungi we demonstrate the accuracy and utility of OrthoFiller for finding missing genes and improving genome annotations. Furthermore, we show that applying OrthoFiller to existing “complete” genome annotations can identify and correct substantial numbers of erroneously missing genes in these two sets of species. Conclusions: We show that significant improvements in the completeness of genome annotations can be made by leveraging information from multiple species. Keywords: Genome annotation, Gene prediction, Orthology, Orthogroup Background of several effective algorithms for identifying genes in Genome sequences have become fundamental to many de novo sequenced genomes [3].
    [Show full text]
  • Impact of the Protein Data Bank Across Scientific Disciplines.Data Science Journal, 19: 25, Pp
    Feng, Z, et al. 2020. Impact of the Protein Data Bank Across Scientific Disciplines. Data Science Journal, 19: 25, pp. 1–14. DOI: https://doi.org/10.5334/dsj-2020-025 RESEARCH PAPER Impact of the Protein Data Bank Across Scientific Disciplines Zukang Feng1,2, Natalie Verdiguel3, Luigi Di Costanzo1,4, David S. Goodsell1,5, John D. Westbrook1,2, Stephen K. Burley1,2,6,7,8 and Christine Zardecki1,2 1 Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ, US 2 Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, US 3 University of Central Florida, Orlando, Florida, US 4 Department of Agricultural Sciences, University of Naples Federico II, Portici, IT 5 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, US 6 Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, US 7 Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, US 8 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, US Corresponding author: Christine Zardecki ([email protected]) The Protein Data Bank archive (PDB) was established in 1971 as the 1st open access digital data resource for biology and medicine. Today, the PDB contains >160,000 atomic-level, experimentally-determined 3D biomolecular structures. PDB data are freely and publicly available for download, without restrictions. Each entry contains summary information about the structure and experiment, atomic coordinates, and in most cases, a citation to a corresponding scien- tific publication.
    [Show full text]
  • Infravec2 Open Research Data Management Plan
    INFRAVEC2 OPEN RESEARCH DATA MANAGEMENT PLAN Authors: Andrea Crisanti, Gareth Maslen, Andy Yates, Paul Kersey, Alain Kohl, Clelia Supparo, Ken Vernick Date: 10th July 2020 Version: 3.0 Overview Infravec2 will align to Open Research Data, as follows: Data Types and Standards Infravec2 will generate a variety of data types, including molecular data types: genome sequence and assembly, structural annotation (gene models, repeats, other functional regions) and functional annotation (protein function assignment), variation data, and transcriptome data; arbovirus and malaria experimental infection data, linked to archived samples; and microbiome data (Operational Taxonomic Units), including natural virome composition. All data will be released according to the appropriate standards and formats for each data type. For example, DNA sequence will be released in FASTA format; variant calls in Variant Call Format; sequence alignments in BAM (Binary Alignment Map) and CRAM (Compressed Read Alignment Map) formats, etc. We will strongly encourage the organisation of linked data sets as Track Hubs, a mechanism for publishing a set of linked genomic data that aids data discovery, sharing, and selection for subsequent analysis. We will develop internal standards within the consortium to define minimal metadata that will accompany all data sets, following the template of the Minimal Information Standards for Biological and Biomedical Investigations (http://www.dcc.ac.uk/resources/metadata-standards/mibbi-minimum-information-biological- and-biomedical-investigations). Data Exploitation, Accessibility, Curation and Preservation All molecular data for which existing public data repositories exist will be submitted to such repositories on or before the publication of written manuscripts, with early release of data (i.e.
    [Show full text]
  • Lab 5: Bioinformatics I Sanger Sequence Analysis
    Lab 5: Bioinformatics I Sanger Sequence Analysis Project Guide The Wolbachia Project 1 Arthropod Identification 2 DNA Extraction 3 PCR 4 Gel Electrophoresis 5 Bioinformatics Content is made available under the Creative Commons Attribution-NonCommercial-No Derivatives International License. Contact ([email protected]) if you would like to make adaptations for distribution beyond the classroom. The Wolbachia Project: Discover the Microbes Within! was developed by a collaboration of scientists, educators, and outreach specialists. It is directed by the Bordenstein Lab at Vanderbilt University. https://www.vanderbilt.edu/wolbachiaproject 2 Activity at a Glance Goal To analyze and interpret the quality of Sanger sequences, and generate a consensus DNA sequence for bioinformatics analyses. Learning Objectives Upon completion of this activity, students will (i) understand the Sanger method of sequencing, also known as the chain-termination method; (ii) be able to interpret chromatograms; (iii) evaluate sequencing Quality Scores; and (iv) generate a consensus DNA sequence based on forward and reverse Sanger reactions. Prerequisite Skills While no computer programming skills are necessary to complete this work, prior exposure to personal computers and the Internet is assumed. Teaching Time: One class period Recommended Background Tutorials • DNA Learning Center Animation: Sanger Method of DNA Sequencing (https://www.dnalc.org/view/15479-sanger-method-of-dna-sequencing-3d-animation-with- narration.html) • YouTube video: The Sanger
    [Show full text]
  • Introduction to Bioinformatics (Elective) – SBB1609
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY Unit 1 – Introduction to Bioinformatics (Elective) – SBB1609 1 I HISTORY OF BIOINFORMATICS Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biologicaldata. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data. Bioinformatics has been used for in silico analyses of biological queries using mathematical and statistical techniques. Bioinformatics derives knowledge from computer analysis of biological data. These can consist of the information stored in the genetic code, but also experimental results from various sources, patient statistics, and scientific literature. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics is a rapidly developing branch of biology and is highly interdisciplinary, using techniques and concepts from informatics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical applications in different areas of biology and medicine. Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. "Classical" bioinformatics: "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.” The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics as: "Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline.
    [Show full text]
  • A Tool to Sanity Check and If Needed Reformat FASTA Files
    bioRxiv preprint doi: https://doi.org/10.1101/024448; this version posted August 13, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Fasta-O-Matic: a tool to sanity check and if needed reformat FASTA files Jennifer Shelton Kansas State University August 11, 2015 Abstract As the shear volume of bioinformatic sequence data increases the only way to take advantage of this content is to more completely automate ro- bust analysis workflows. Analysis bottlenecks are often mundane and overlooked processing steps. Idiosyncrasies in reading and/or writing bioinformatics file formats can halt or impair analysis workflows by in- terfering with the transfer of data from one informatics tools to another. Fasta-O-Matic automates handling of common but minor format issues that otherwise may halt pipelines. The need for automation must be balanced by the need for manual confirmation that any formatting error is actually minor rather than indicative of a corrupt data file. To that end Fasta-O-Matic reports any issues detected to the user with optionally color coded and quiet or verbose logs. Fasta-O-Matic can be used as a general pre-processing tool in bioin- formatics workflows (e.g. to automatically wrap FASTA files so that they can be read by BioPerl). It was also developed as a sanity check for bioinformatic core facilities that tend to repeat common analysis steps on FASTA files received from disparate sources.
    [Show full text]
  • Genbank Dennis A
    Published online 28 November 2016 Nucleic Acids Research, 2017, Vol. 45, Database issue D37–D42 doi: 10.1093/nar/gkw1070 GenBank Dennis A. Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell and Eric W. Sayers* National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA Received September 15, 2016; Revised October 19, 2016; Editorial Decision October 24, 2016; Accepted November 07, 2016 ABSTRACT data from sequencing centers. The U.S. Patent and Trade- ® mark Office also contributes sequences from issued patents. GenBank (www.ncbi.nlm.nih.gov/genbank/)isa GenBank participates with the EMBL-EBI European Nu- comprehensive database that contains publicly avail- cleotide Archive (ENA) (2) and the DNA Data Bank of able nucleotide sequences for 370 000 formally de- Japan (DDBJ) (3) as a partner in the International Nu- Downloaded from scribed species. These sequences are obtained pri- cleotide Sequence Database Collaboration (INSDC) (4). marily through submissions from individual labora- The INSDC partners exchange data daily to ensure that tories and batch submissions from large-scale se- a uniform and comprehensive collection of sequence infor- quencing projects, including whole genome shotgun mation is available worldwide. NCBI makes GenBank data (WGS) and environmental sampling projects. Most available at no cost over the Internet, through FTP and a submissions are made using the web-based BankIt wide range of Web-based retrieval and analysis services (5). http://nar.oxfordjournals.org/ or the NCBI Submission Portal. GenBank staff assign accession numbers upon data receipt.
    [Show full text]
  • The FASTA Program Package Introduction
    fasta-36.3.8 December 4, 2020 The FASTA program package Introduction This documentation describes the version 36 of the FASTA program package (see W. R. Pearson and D. J. Lipman (1988), “Improved Tools for Biological Sequence Analysis”, PNAS 85:2444-2448, [17] W. R. Pearson (1996) “Effective protein sequence comparison” Meth. Enzymol. 266:227- 258 [15]; and Pearson et. al. (1997) Genomics 46:24-36 [18]. Version 3 of the FASTA packages contains many programs for searching DNA and protein databases and for evaluating statistical significance from randomly shuffled sequences. This document is divided into four sections: (1) A summary overview of the programs in the FASTA3 package; (2) A guide to using the FASTA programs; (3) A guide to installing the programs and databases. Section (4) provides answers to some Frequently Asked Questions (FAQs). In addition to this document, the changes v36.html, changes v35.html and changes v34.html files list functional changes to the programs. The readme.v30..v36 files provide a more complete revision history of the programs, including bug fixes. The programs are easy to use; if you are using them on a machine that is administered by someone else, you can focus on sections (1) and (2) to learn how to use the programs. If you are installing the programs on your own machine, you will need to read section (3) carefully. FASTA and BLAST – FASTA and BLAST have the same goal: to identify statistically signifi- cant sequence similarity that can be used to infer homology. The FASTA programs offer several advantages over BLAST: 1.
    [Show full text]
  • The Candida Genome Database: the New Homology Information Page Highlights Protein Similarity and Phylogeny Jonathan Binkley, Martha B
    Published online 31 October 2013 Nucleic Acids Research, 2014, Vol. 42, Database issue D711–D716 doi:10.1093/nar/gkt1046 The Candida Genome Database: The new homology information page highlights protein similarity and phylogeny Jonathan Binkley, Martha B. Arnaud*, Diane O. Inglis, Marek S. Skrzypek, Prachi Shah, Farrell Wymore, Gail Binkley, Stuart R. Miyasato, Matt Simison and Gavin Sherlock Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA Received September 12, 2013; Revised October 9, 2013; Accepted October 10, 2013 ABSTRACT mammalian hosts as well as a pathogen that causes painful opportunistic mucosal infections in otherwise The Candida Genome Database (CGD, http://www. healthy individuals and causes severe and deadly blood- candidagenome.org/) is a freely available online stream infections in the susceptible severely ill and/or im- resource that provides gene, protein and sequence munocompromised patient population (2). This fungus information for multiple Candida species, along with exhibits a number of properties associated with the web-based tools for accessing, analyzing and ability to invade host tissue, to resist the effects of exploring these data. The goal of CGD is to facilitate antifungal therapeutic drugs and the human immune and accelerate research into Candida pathogenesis system and to alternately cause disease or coexist with and biology. The CGD Web site is organized around the host as a commensal, including the ability to grow in Locus pages, which display information collected multiple morphological forms and to switch between about individual genes. Locus pages have multiple them, and the ability to grow as drug-resistant biofilms (3–7).
    [Show full text]
  • The Dynamic Landscape of Fission Yeast Meiosis Alternative-Splice Isoforms
    Downloaded from genome.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press The dynamic landscape of fission yeast meiosis alternative- splice isoforms Zheng Kuang1,2, Jef D. Boeke1,2* and Stefan Canzar3,4* Affiliations 1Institute for Systems Genetics, NYU Langone Medical Center, New York City, NY 10016, USA 2Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York City, NY 10016, USA 3Toyota Technological Institute at Chicago, Chicago, IL 60637, USA. 4Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany. *Corresponding authors Contact: Jef D. Boeke: [email protected] Stefan Canzar: [email protected] Running title: Isoform landscape in fission yeast meiosis Keywords: alternative splicing, isoforms, fission yeast, meiosis, dynamic transcriptome 1 Downloaded from genome.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Alternative splicing increases the diversity of transcriptomes and proteomes in metazoans. The extent to which alternative splicing is active and functional in unicellular organisms is less understood. Here we exploit a single-molecule long-read sequencing technique and develop an open-source software program called SpliceHunter to characterize the transcriptome in the meiosis of fission yeast. We reveal 14353 alternative splicing events in 17669 novel isoforms at different stages of meiosis, including antisense and read-through transcripts. Intron retention is the major type of alternative splicing, followed by alternate “intron in exon”. 770 novel transcription units are detected; 53 of the predicted proteins show homology in other species and form theoretical stable structures. We report the complexity of alternative splicing along isoforms, including 683 intramolecularly co-associated intron pairs.
    [Show full text]
  • Pdbefold Tutorial Tutorial Pdbefold Can May Be Accessed from Multiple Locations on the Pdbe Website
    PDBe TUTORIAL PDBeFold (SSM: Secondary Structure Matching) http://pdbe.org/fold/ This PDBe tutorial introduces PDBeFold, an interactive service for comparing protein structures in 3D. This service provides: . Pairwise and multiple comparison and 3D alignment of protein structures . Examination of a protein structure for similarity with the whole Protein Data Bank (PDB) archive or SCOP. Best C -alignment of compared structures . Download and visualisation of best-superposed structures using various graphical packages PDBeFold structure alignment is based on identification of residues occupying “equivalent” geometrical positions. In other words, unlike sequence alignment, residue type is neglected. The PDBeFold service is a very powerful structure alignment tool which can perform both pairwise and multiple three dimensional alignment. In addition to this there are various options by which the results of the structural alignment query can be sorted. The results of the Secondary Structure Matching can be sorted based on the Q score (Cα- alignment), P score (taking into account RMSD, number of aligned residues, number of gaps, number of matched Secondary Structure Elements and the SSE match score), Z score (based on Gaussian Statistics), RMSD and % Sequence Identity. It is hoped that at the end of this tutorial users will be able to use PDbeFold for the analysis of their own uploaded structures or entries already in the PDB archive. Protein Data Bank in Europe http://pdbe.org PDBeFOLD Tutorial Tutorial PDBeFold can may be accessed from multiple locations on the PDBe website. From the PDBe home page (http://pdbe.org/), there are two access points for the program as shown below.
    [Show full text]