Dab) in Uganda

Total Page:16

File Type:pdf, Size:1020Kb

Dab) in Uganda INTRODUCTION OF DIGITAL AUDIO BROADCASTING (DAB) IN UGANDA A 2015/2016 INTER-UNIVERSITY COLLABORATIVE RESEARCH STUDY FUNDED BY UGANDA COMMUNICATIONS COMMISSION FINAL PROJECT REPORT JANUARY 2017 Research Team: 1 Dr. Roseline N. Akol (Principal Investigator) 2 Paul Bogere 3 Godfrey Kibalya Mirondo 4 Nelson Tashobya Ruhaabwa List of Abbreviations and Acronyms AAC Advanced Audio Coding AFRISWOG African Spectrum Working Group AM Amplitude Modulation CAS Conditional Access System DAB Digital Audio Broadcasting DMB Digital Multimedia Broadcasting DTV Digital Television DVB-T Digital Video Broadcasting - Terrestrial EACO East-African Communications Organization ETSI European Telecommunications Standards Institute FM Frequency Modulation ICT Information Communication Technologies IEC International Electro-technical Committee ITU International Telecommunications Union ITU GE06 ITU Geneva 2006 Plan ITU-R ITU Radio Communication Sector MPEG Motion Picture Expert Group NAB National Association of Broadcasters NPHC National Population and Housing Census PAD Programme Associated Data RCC-06 The 2006 Regional Radio-Communication Conference ii RF Radio Frequency UBOS Uganda Bureau of Statistics UNBS Uganda National Bureau of Standards UNHS Uganda National Household Survey UCC Uganda Communications Commission iii Table of Contents Table of Contents ........................................................................................................................................... iv Executive Summary .................................................................................................................................... viii 1 INTRODUCTION ................................................................................................................................... 1 1.1 Background................................................................................................................................. 1 1.2 Objectives of the study .............................................................................................................. 1 1.3 Digital Audio Broadcasting Technology overview .............................................................. 2 1.3.1 DAB Network layout .................................................................................................. 2 1.3.2 DAB Family of Standards .......................................................................................... 4 1.4 Advantages and Challenges of DAB ...................................................................................... 5 1.4.1 Advantages of DAB .................................................................................................... 5 1.4.2 Challenges with DAB ................................................................................................. 8 1.5 DAB Receivers ............................................................................................................................ 9 1.5.1 DAB radio receivers and receiver profiles .............................................................. 9 1.5.2 DAB Radio in Cars .................................................................................................. 910 1.5.3 DAB Radio over phone ............................................................................................ 11 1.6 Status of DAB deployment around the world ..................................................................... 11 2 METHODOLOGY ................................................................................................................................. 13 3 INTERNATION EXPERIENCES ON DAB INTRODUCTION/MIGRATION ............................ 19 3.1 International DAB Experiences ............................................................................................. 19 3.1.1 South Africa DAB Experience ................................................................................. 19 3.1.2 United Kingdom DAB Experience ......................................................................... 22 iv 3.1.3 Germany DAB Experience ....................................................................................... 26 3.1.4 Australia DAB Experience ....................................................................................... 28 3.1.5 Challenges to implementation and uptake of DAB – UK Example ................... 33 4 ASSESSING UGANDA’S READINESS FOR DAB ........................................................................... 36 4.1 Infrastructure requirements for DAB network .................................................................... 36 4.1.1 Option 1: DAB site-sharing with Digital TV ......................................................... 36 4.1.2 Option 2: DAB Signal Distribution via the NBI .................................................... 37 4.2 Policy, Legal and Regulatory framework ............................................................................ 39 4.3 Harmonizing DAB with regional and International Obligations ..................................... 42 4.3.1 The Institutional framework for DAB introduction ............................................. 44 4.4 Market readiness, Structures and Interventions required for DAB ................................. 47 4.4.1 How DAB affects the Radio Market Structure ...................................................... 47 4.4.2 FM radio broadcasters’ views on DAB .................................................................. 49 4.4.2.1 Support for introduction of DAB among FM radio operators ....................... 49 4.4.2.2 Signal distribution network sub-system run as a single entity ...................... 50 4.4.2.3 Proposed incentives required for successful introduction of DAB in Uganda – by radio operators ..................................................................................................................... 51 4.4.2.4 The perceived impact of introducing DAB on radio broadcasting business 51 4.4.3 FM Radio listeners views on DAB .......................................................................... 52 4.4.3.1 Value of radio service to households ................................................................. 52 4.4.3.2 Existing challenges with Analogue radio services ........................................... 53 4.4.4 Financial Feasibility of acquiring DAB Radio receivers .................................. 5453 4.4.4.1 Current Cost of Analogue radio receiver sets ................................................... 54 v 4.4.4.2 Affordability of a DAB Radio Receiver ......................................................... 5554 4.4.4.3 End-user willingness and ability to pay subscription fees for DAB .............. 56 4.4.4.4 Affordable monthly subscription fee for DAB ................................................. 56 4.4.4.5 Listeners Proposed Incentives for making DAB introduction successful..... 57 4.4.5 Consultations with other key Market Stakeholders ............................................. 57 4.4.5.1 Uganda National Bureau of Standards .............................................................. 57 4.4.5.2 Kampala City Traders’ Association (KACITA) ................................................ 58 4.4.5.3 Kampala Capital City Authority ........................................................................ 59 5 RECOMMENDATIONS FOR SUCCESSFUL DAB INTRODUCTION IN UGANDA ............... 61 5.1 Recommendation on the version of DAB to implement .................................................... 61 5.2 Recommendations on infrastructure .................................................................................... 61 5.3 Recommendations on institutional framework ................................................................... 62 5.4 Recommendations on policy, legal and regulatory framework........................................ 63 5.5 Recommendations on market development and Universal access .................................. 63 5.6 Learnings from Uganda’s Digital TV Migration Experience ............................................ 64 REFERENCES ................................................................................................................................................ 66 APPENDIX 1: KEY STAKEHOLDERS CONSULTED ............................................................................. 68 APPENDIX 2: DAB RECEIVER PROFILES ............................................................................................... 70 APPENDIX 3: DAB COUNTRY EXPERIENCES – EXTENDED LIST ................................................... 72 APPENDIX 4: DIGITAL SOUND BROADCASTING TECHNOLOGIES ............................................. 79 vi LIST OF FIGURES Figure 1-1: DAB Network architecture - Adopted from [2] ..................................................................... 3 Figure 1-2: DAB network architecture with communication channels ................................................... 3 Figure 1-3: Map showing status of DAB deployment worldwide......................................................... 12 Figure 4-1: Signet DTV Transmitting sites that can be updgraded for DAB network usage ............ 36 Figure 4-2: NITA-U National infrastructure backbone routes ............................................................... 38 Figure 4-3: DAB value chain ....................................................................................................................... 48 Figure 4-4: Operators' DAB Structure preferences .................................................................................
Recommended publications
  • ANTENNA ODIBILOOP Di I0ZAN Per SWL – BCL (1°Parte) Di I0ZAN Florenzio Zannoni
    Panorama radiofonico internazionale n. 30 Dal 1982 dalla parte del Radioascolto Rivista telematica edita in proprio dall'AIR Associazione Italiana Radioascolto c.p. 1338 - 10100 Torino AD www.air-radio.it l’editoriale ………………. Il 10-11 Maggio si svolgerà a Torino il consueto Meeting radiorama annuale AIR. PANORAMA RADIOFONICO INTERNAZIONALE organo ufficiale dell’A.I.R. Per rendere piu moderna ed interessante la prima giornata, Associazione Italiana Radioascolto recapito editoriale: abbiamo deciso di cambiare formula . radiorama - C. P. 1338 - 10100 TORINO AD e-mail: [email protected] Presentazioni ridotte al minimo. Posto adatto al AIR - radiorama radioascolto, antenne di ricezione a disposizione per esperimenti, - Responsabile Organo Ufficiale: Giancarlo VENTURI - Responsabile impaginazione radiorama:Claudio RE - Responsabile Blog AIR-radiorama: i singoli Autori banchi con ricevitori, accessori ed ausili per il radioascolto a - Responsabile sito web: Emanuele PELICIOLI ------------------------------------------------- disposizione di tutti , con presentazioni di esperienze pratiche in Il presente numero di radiorama e' pubblicato in rete in proprio dall'AIR tempo reale. Associazione Italiana Radioascolto, tramite il server Aruba con sede in località Il tutto ritrasmesso come sempre via Internet, radio e Palazzetto, 4 - 52011 Bibbiena Stazione (AR). Non costituisce testata giornalistica, televisioni, oltre ad essere registrato per poi essere a disposizione non ha carattere periodico ed è aggiornato secondo la disponibilità e la reperibilità dei sul sito AIR. L’evento sarà denominato EXPO AIR . materiali. Pertanto, non può essere considerato in alcun modo un prodotto editoriale ai sensi della L. n. 62 del Bruno Pecolatto 7.03.2001. La responsabilità di quanto Segretario AIR pubblicato è esclusivamente dei singoli Autori.
    [Show full text]
  • China's Power Sector Heads Towards a Cleaner Future
    EMBARGOED TO 10AM Beijing Time, 27 AUGUST 2013 CONTACT (China) Jun Ying, Bloomberg New Energy Finance +86 10 6649 7522 [email protected] CHINA’S POWER SECTOR HEADS TOWARDS A CLEANER FUTURE China’s power capacity will more than double by 2030 and renewables including large hydro will account for more than half of new plants, eroding coal’s dominant share and attracting investment of $1.4 trillion. China’s power sector carbon emissions could be in decline by 2027. Beijing, 27 August 2013 – China’s power sector is expected to go through significant changes through to 2030, according to a new report released by Bloomberg New Energy Finance. China will add 88GW of new power plants annually from now until 2030, which is equivalent to building the UK’s total generating capacity every year. China is already the world’s largest power generator and its largest carbon emitter. Over the next two decades China could add more than 1,500GW of new generating capacity and invest more than $3.9 trillion in power sector assets. However, as a result of shifts in generation mix, China’s total power sector emissions could start declining as early as 2027. Bloomberg New Energy Finance analysed China’s power sector based on four scenarios. In the central scenario, dubbed ‘New Normal’, China’s total power generation capacity more than doubles by 2030, with renewables including large hydro contributing more than half of all new capacity additions. This, together with an increase in gas-based generation, would drive the share of coal-fired power generation capacity down from 67% in 2012 to 44% in 2030.
    [Show full text]
  • Advances in Satellite Technologies- ISRO Initiatives
    Advances in Satellite Technologies- ISRO Initiatives Sumitesh Sarkar Space Applications Centre (ISRO) March 27, 2019 National Workshop on Advances in Satellite Technologies National Workshop on Advances in Satellite Technologies - Mach 27, 2019 Advance Technology : Key Areas Migration from Broadcast/VSAT centric to Data-centric Payload design - HTS . Multi-beam coverage in Ku and Ka-band ensuring Frequency Reuse and enhanced Payload performance . Increased Payload Hardware – need for miniaturization . Addressing new applications like Mobile backhauling, In-Flight Connectivity etc. Special focus on unserved/underserved regions within India Use of Higher frequency bands – Ku to Ka to Q/V band . Migration to higher frequency bands – ‘User ‘ as well as ‘Feeder’ links . More interference free Spectrum . Constraints of available technologies Redefining MSS with enhanced capabilities . Multi-beam High power transponders in S-band - enabling SDMB services National Workshop on Advances in Satellite Technologies - Mach 27, 2019 2 Evolution in On-board Antenna Technology Single Circular beam Shaped Beam Multibeam(HTS) (Dual Gridded Reflector) National Workshop on Advances in Satellite Technologies - Mach 27, 2019 Technology Trends – Active Low power RF Circuits MMIC SOC 9mm X 6mm Ka-band (In test) 100mmx40mm 70mmx60mm x25mm x22mm based based MMIC die in pac. pac. MMIC Chip MMIC LTCC pac. Qualified (In BB test) 100mmx100mm x25mm Gen In production by industry nd MIC based MIC 2 RF Technologies RF 170mmx100mmx35mm MIC MIC based 200mmx180mmx100mm (2RF sec.) 1stgen. INSAT-2A to INSAT-2D INSAT-3 and 4 Series GSAT-5 GSAT-7/11 Future technologies Payload Generation National Workshop on Advances in Satellite Technologies - Mach 27, 2019 High Throughput Satellite : GSAT-11 Features: .
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • Airborne L-Band Radio Frequency Interference Observations from the SMAPVEX08 Campaign and Associated Flights James Park, Student Member, IEEE, J
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Airborne L-Band Radio Frequency Interference Observations From the SMAPVEX08 Campaign and Associated Flights James Park, Student Member, IEEE, J. T. Johnson, Fellow, IEEE, Ninoslav Majurec, Noppasin Niamsuwan, Member, IEEE, Jeffrey R. Piepmeier, Member, IEEE, Priscilla N. Mohammed, Member, IEEE, Christopher S. Ruf, Fellow, IEEE, Sidharth Misra, Simon H. Yueh, Fellow, IEEE, and Steve J. Dinardo, Member, IEEE Abstract—Statistics of radio frequency interference (RFI) ob- The current experience of significant RFI corruption of the served in the band 1398–1422 MHz during an airborne campaign observations of the SMOS radiometer [8], as well as the up- in the United States are reported for use in analysis and forecasting coming deployment of the Aquarius and SMAP missions [11], of L-band RFI for microwave radiometry. The observations were [12] motivate studies of the properties of the RFI environment conducted from September to October 2008, and included approx- imately 92 h of flight time, of which approximately 20 h of “tran- as well as the performance of a variety of RFI detection and sit” or dedicated RFI observing flights are used in compiling the mitigation approaches. statistics presented. The observations used include outbound and A recent work [7] has reported results from an airborne return flights from Colorado to Maryland, as well as RFI surveys L-band RFI observing system in Europe and Australia. The over large cities. The Passive Active L-Band Sensor (PALS) ra- hardware utilized in [7] was capable of implementing algo- diometer of NASA Jet Propulsion Laboratory augmented by three rithms for pulsed RFI detection using either a “pulse” or a dedicated RFI observing systems was used in these observations.
    [Show full text]
  • L-Shaped Monopole Antenna with Modified Partial Ground Plane for Multiband Operation
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-10, August 2019 L-Shaped Monopole Antenna with Modified Partial Ground Plane for Multiband Operation Prachi Pandey, Neelesh Agrawal, Mukesh Kumar, Navendu Nitin, Anil Kumar Abstract- In this paper a design of L-shaped monopole In [4] a meandered T-shaped monopole is proposed for antenna (LMA) with modified partial ground plane for multiband 2.45/5.2/5.8 GHz LAN operations with a long and a short operation is presented. The `dimension of proposed antenna is arm strip extended from the feedline. A compact improved 40× 47 mm2 with 1.6 height using Teflon substrate having T-Form monopole antenna [5] using two asymmetric dielectric constant 2.1. The ground plane is amended by inserting horizontal strips has been designed to achieve multiband an anti-symmetric horizontal L-slots. Single band to multiband behaviour is accomplished by applying two horizontal L-slots on operation. In [6] a C-shaped monopole antenna is designed partial ground plane of LMA. Both the slots are antisymmetric to having a shorted parasitic strip to obtain two separate Y-axis. The parametric study has also been done which is impedance bandwidth. Frequency agility, improved gain and responsible for antenna behaviour. The operating frequency beam forming can be attained by applying additional bands of designed antenna are 2.35-2.91GHz,3.24-3.51GHz dielectric layers. But additional layers increase the weight of ,4.31-5.30GHz and 5.90-6.31GHz which is suitable for Bluetooth the antenna which is again undesirable in wireless (2.4GHZ),WLAN (2.4GHz,5.2GHz), WiMAX (2.3GHz, 2.5GHz, environment.
    [Show full text]
  • A Layman's Interpretation Guide L-Band and C-Band Synthetic
    A Layman’s Interpretation Guide to L-band and C-band Synthetic Aperture Radar data Version 2.0 15 November, 2018 Table of Contents 1 About this guide .................................................................................................................................... 2 2 Briefly about Synthetic Aperture Radar ......................................................................................... 2 2.1 The radar wavelength .................................................................................................................... 2 2.2 Polarisation ....................................................................................................................................... 3 2.3 Radar backscatter ........................................................................................................................... 3 2.3.1 Sigma-nought .................................................................................................................................................. 3 2.3.2 Gamma-nought ............................................................................................................................................... 3 2.4 Backscatter mechanisms .............................................................................................................. 4 2.4.1 Direct backscatter ......................................................................................................................................... 4 2.4.2 Forward scattering ......................................................................................................................................
    [Show full text]
  • For Immediate Release Ceg Media Contacts Bnef Media
    FOR IMMEDIATE RELEASE June 21, 2010 CEG MEDIA CONTACTS Ken Locklin Lewis Milford Clean Energy Group Clean Energy Group C 703-476-1561 P 802-223-2554 [email protected] C 802-238-4023 [email protected] BNEF MEDIA CONTACT Jill Goodkind Bloomberg LP +1 212 617 3669 [email protected] SHEPHERDING CLEAN ENERGY PROJECTS THROUGH THE “VALLEY OF DEATH” Washington, June 21, 2010—A new report issued by Clean Energy Group (CEG) and Bloomberg New Energy Finance (BNEF) undertakes a much-needed evaluation of current gaps in clean energy financing, offering recommendations to address the so-called commercialization “Valley of Death” financing shortfall that occurs before a clean energy technology can achieve commercial viability. The findings, based on analysis of interviews with more than five dozen industry thought-leaders and underlined with quantitative research from Bloomberg New Energy Finance’s Intelligence database, are contained in the white paper “Crossing the Valley of Death: Solutions to the next generation clean energy project financing gap.” Clean Energy Group, with the support of The Annenberg Foundation, commissioned Bloomberg New Energy Finance to join in the study, which examines the shortage of capital for clean energy technologies that require extensive and expensive field-testing before being deployed. Clean Energy Group and Bloomberg New Energy Finance conducted over 60 open-ended interviews with technologists, entrepreneurs, project developers, venture capitalists, institutional investors, bankers and policymakers from 10 countries across the globe to provide solutions on how to address the “Valley of Death” phenomenon. Ken Locklin, Clean Energy Group’s director of finance and investment, said, “This study presents some exciting new approaches to overcome this Valley of Death financing challenge that we should explore further.
    [Show full text]
  • DVB-SCENE Issue 21 Lo Res.Indd
    Edition No.21 March 2007 DVB-SCENE Tune in to Digital Convergence Tune 21 The Standard for the Digital World I want This issue’s highlights > Convergence Utopia > IPTV Analysis & Update my > HDTV Update > Future Focus on DVB-T > DVB-H Interoperability > Introducing DVB-SH > A Look at Latin America > Market Watch IPTV Unique Broadband Systems Ltd. is the world’s leading designer and manufacturer of complete DVB-T/H system solutions for Mobile Media Operators and Broadcasters DVB-H IP Encapsulator DVB-T/H Gateway DVE 6000 DVE 7000 / DVE-R 7000 What makes DVE 6000 the best product on the market today? The DVE 7000 DVB-H Satellite Gateway is the core of highly optimized, efficient and cost effective mobile Dynamic Time SlicingTM Technique delivering DVB-H architecture. A single DVE 7000 device unprecedented bandwidth utilization and processes, distributes and manages global and local network efficiency (Statistical Multiplexing) content grouped in packages to multiple remote SFN DVB-SCENE : 02 Internal SI/PSI table editor, parser, compiler & MFN networks through a satellite link and drasti- and generator (UBS SI/PSI TDL) cally improves satellite link efficiency. The DVE-R 7000 Internal SFN Adapter satellite receiver demultiplexes the content specific to it’s location. Internal stream recorder and player IP DVB-S2 ASI Single compact unit DVE-R 7000 SFN1 DVE 6000 NetManager Application MODULATOR 1 SFN3 SFN2 MODULATOR 3 DVB-T/H Modulator MODULATOR 2 DVM 5000 Fully DVB-H Compliant 30 MHz to 1 GHz RF Output (L-band version available) Web Browser
    [Show full text]
  • Satellite Communications
    Satellite Communications Ashaad Rambharos CSE, Intelsat 1 Satellite Example IS904 • General Satellite Information • Spacecraft Type: Three-Axis Stabilized • Orbital Location: 60.0 ° East Longitude • Orbital Control: +/- 0.05 ° • Launch: 23 February 2002 2 IS904 Coverage maps 3 General Satellite Information cont • Payload: Up to 34 x 72 MHz C-Band transponders * • Up to 11 x 36 MHz C-Band transponders * • 2 x 41 MHz C-Band transponders • Up to 2 x 77 MHz Ku-Band transponders • Up to 6 x 72 MHz Ku-Band transponders • Up to 8 x 36 MHz Ku-Band transponders • Frequency Bands: • C-Band: Uplink 5850 – 6425 MHz • Downlink 3625 – 4200 MHz • Ku-Band: Uplink 14.00 – 14.50 GHz • Downlink 10.95 – 11.20 GHz (Band A) and • Downlink 11.45 – 11.70 GHz (Band B) • Beacons: • 3947.5 or 3948 MHz 3952 or 3952.5 MHz • 11198 MHz 11452 MHz 4 Intelsat 904 C-Band Payload • Number of Transponders: • Up to 34 x 72 MHz * • Up to 11 x 36 MHz * • 2 x 41 MHz • Transponder Bandwidth: • 72 MHz with 8 MHz Guard Bands • 36 MHz with 4 MHz Guard Bands • 41 MHz with 4 MHz Guard Bands • Polarization: Circular: LHCP and RHCP • SFD (at Beam Reference Contour): -67.0 to -89.0 dBW/m² • Input Attenuators: 22 dB in 2 dB steps • 5 Intelsat 904 C-Band Payload cont • G/T: > -11.2 dB/K typical for GA, GB > -7.4 dB/K typical for WH > -5.1 dB/K typical for EH > 0.0 dB/K typical for NWZ > -1.5 dB/K typical for NEZ, SEZ > -3.5 dB/K typical for MEZ > -5.0 dB/K typical for SWZ > -4.5 dB/K typical for CEZ (combined NEZ/SEZ) • EIRP: > 31.0 dBW typical for GA, GB > 40.1 dBW typical for Ch.
    [Show full text]
  • FINANCE for RESILIENCE ANNOUNCES WINNERS for 2014 Initiative Kick-Starts the Top Six Opportunities for Providing New Finance for Clean Energy
    EMBARGOED AND CONFIDENTIAL UNTIL 10AM BST (GMT+1) FRIDAY, APRIL 11 EMBARGOED TO 10am BST (GMT+1), Monday April 11, 2014 CONTACT Janis Hoberg Finance for Resilience +44 20 3525 8303 [email protected] FINANCE FOR RESILIENCE ANNOUNCES WINNERS FOR 2014 Initiative kick-starts the top six opportunities for providing new finance for clean energy London and New York, 11 April 2014. Opportunities championed by Bank of America, the European Investment Bank and the Rocky Mountain Institute are among those selected as Finance for Resilience (or ‘FiRe’) Priorities for 2014 by participants at the Bloomberg New Energy Finance Summit in New York this week. All of the winning ideas (known as "interventions") are actionable and have the potential to reach a scale of $1bn-a-year in additional finance within three years. Investment areas targeted by the six selected interventions include green bonds, energy efficiency and emerging markets (see full list below). Michael Liebreich, chairman of FiRe and of the advisory board of Bloomberg New Energy Finance, said: "The idea of FiRe arose as a response to the UN Secretary General's challenge at last year's Summit: for the private sector to step up to the mark and do more to fund clean energy. It's been amazing to see FiRe coming together. We started with 35 ideas; then there were 26 candidates; then 12 finalists; and now six fantastic winners. These are really powerful ideas for generating new investment opportunities in clean energy." Several hundred leaders from the energy industry, finance and government joined working group sessions at the Summit on Wednesday to help the "champions" behind the six interventions develop them further.
    [Show full text]
  • Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars With
    A&A 586, A92 (2016) Astronomy DOI: 10.1051/0004-6361/201425196 & c ESO 2016 Astrophysics Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR M. Pilia1,2, J. W. T. Hessels1,3,B.W.Stappers4, V. I. Kondratiev1,5,M.Kramer6,4, J. van Leeuwen1,3, P. Weltevrede4, A. G. Lyne4,K.Zagkouris7, T. E. Hassall8,A.V.Bilous9,R.P.Breton8,H.Falcke9,1, J.-M. Grießmeier10,11, E. Keane12,13, A. Karastergiou7 , M. Kuniyoshi14, A. Noutsos6, S. Osłowski15,6, M. Serylak16, C. Sobey1, S. ter Veen9, A. Alexov17, J. Anderson18, A. Asgekar1,19,I.M.Avruch20,21,M.E.Bell22,M.J.Bentum1,23,G.Bernardi24, L. Bîrzan25, A. Bonafede26, F. Breitling27,J.W.Broderick7,8, M. Brüggen26,B.Ciardi28,S.Corbel29,11,E.deGeus1,30, A. de Jong1,A.Deller1,S.Duscha1,J.Eislöffel31,R.A.Fallows1, R. Fender7, C. Ferrari32, W. Frieswijk1, M. A. Garrett1,25,A.W.Gunst1, J. P. Hamaker1, G. Heald1, A. Horneffer6, P. Jonker20, E. Juette33, G. Kuper1, P. Maat1, G. Mann27,S.Markoff3, R. McFadden1, D. McKay-Bukowski34,35, J. C. A. Miller-Jones36, A. Nelles9, H. Paas37, M. Pandey-Pommier38, M. Pietka7,R.Pizzo1,A.G.Polatidis1,W.Reich6, H. Röttgering25, A. Rowlinson22, D. Schwarz15,O.Smirnov39,40, M. Steinmetz27,A.Stewart7, J. D. Swinbank41,M.Tagger10,Y.Tang1, C. Tasse42, S. Thoudam9,M.C.Toribio1,A.J.vanderHorst3,R.Vermeulen1,C.Vocks27, R. J. van Weeren24, R. A. M. J. Wijers3, R. Wijnands3, S. J. Wijnholds1,O.Wucknitz6,andP.Zarka42 (Affiliations can be found after the references) Received 20 October 2014 / Accepted 18 September 2015 ABSTRACT Context.
    [Show full text]