Ontong Java–Manihiki–Hikurangi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hikurangi Plateau: Crustal Structure, Rifted Formation, and Gondwana Subduction History
Article Geochemistry 3 Volume 9, Number 7 Geophysics 3 July 2008 Q07004, doi:10.1029/2007GC001855 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Click Here for Full Article Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history Bryan Davy Institute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt, New Zealand ([email protected]) Kaj Hoernle IFM-GEOMAR, Wischhofstraße 1-3, D-24148 Kiel, Germany Reinhard Werner Tethys Geoconsulting GmbH, Wischhofstraße 1-3, D-24148 Kiel, Germany [1] Seismic reflection profiles across the Hikurangi Plateau Large Igneous Province and adjacent margins reveal the faulted volcanic basement and overlying Mesozoic-Cenozoic sedimentary units as well as the structure of the paleoconvergent Gondwana margin at the southern plateau limit. The Hikurangi Plateau crust can be traced 50–100 km southward beneath the Chatham Rise where subduction cessation timing and geometry are interpreted to be variable along the margin. A model fit of the Hikurangi Plateau back against the Manihiki Plateau aligns the Manihiki Scarp with the eastern margin of the Rekohu Embayment. Extensional and rotated block faults which formed during the breakup of the combined Manihiki- Hikurangi plateau are interpreted in seismic sections of the Hikurangi Plateau basement. Guyots and ridge- like seamounts which are widely scattered across the Hikurangi Plateau are interpreted to have formed at 99–89 Ma immediately following Hikurangi Plateau jamming of the Gondwana convergent margin at 100 Ma. Volcanism from this period cannot be separately resolved in the seismic reflection data from basement volcanism; hence seamount formation during Manihiki-Hikurangi Plateau emplacement and breakup (125–120 Ma) cannot be ruled out. -
Playing Jigsaw with Large Igneous Provinces a Plate Tectonic
PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Playing jigsaw with Large Igneous Provinces—A plate tectonic 10.1002/2015GC006036 reconstruction of Ontong Java Nui, West Pacific Key Points: Katharina Hochmuth1, Karsten Gohl1, and Gabriele Uenzelmann-Neben1 New plate kinematic reconstruction of the western Pacific during the 1Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany Cretaceous Detailed breakup scenario of the ‘‘Super’’-Large Igneous Province Abstract The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, Ontong Java Nui Ontong Java Nui ‘‘Super’’-Large and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong simi- Igneous Province as result of larities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein plume-ridge interaction referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences Correspondence to: in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java K. Hochmuth, [email protected] Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed ‘‘Super’’-LIP, a detailed scenario Citation: for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interac- Hochmuth, K., K. Gohl, and tion of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The G. -
Midcontinent Rift
VOL. 97 NO. 18 15 SEP 2016 NORTH AMERICA’S MIDCONTINENT RIFT Augmented Reality for Earth Science Quirky Geoscience Tunes Future of AGU Meetings NEW in Fall 2016 GeoHealth will foster the intersection of Earth science disciplines (Earth processes, climate change, atmospheric and ocean sciences, hydrology, among others), with those of the health sciences, defined broadly (environmental and ecosystem health and services, human and agricultural health, geomedicine, and the impact of natural hazards). Now Accepting Applications for Two Editors in Chief of GeoHealth AGU is launching GeoHealth under Founding Editor Rita R. Colwell. We are seeking applications for two dynamic, well-organized scientists with high editorial standards and strong leadership skills to serve 4-year terms as the editors in chief (EICs) to lead this exciting journal starting in 2017 and beyond. One editor’s main area of focus will be on the geosciences, while the other editor’s main area of focus will be on health. This is an important opportunity to help shape and lead this increasingly important, cross-cutting discipline. The EICs will be the principal architects of the scientific content of the journal. They are active scientists, well-known and well-regarded in their respective discipline. The EICs must be active in soliciting the best science from the best scientists to be published in the journal. Working with the other editors and AGU staff, EICs are the arbiter of the content of the journal. Among other functions, EICs will be responsible for: • Acting as an ambassador to the author/editor/reviewer/scientist community. • Setting the strategy for the journal. -
Project Report: the Siberian Traps and the End-Permian Mass Extinction
Project Report: The Siberian Traps and the end-Permian mass extinction During the summer of 2008, I spent a month and a half in the field in Arctic Siberia. The eruption of the Siberian Traps ca. 252 million years ago was one of the greatest volcanic cataclysms in the geologic record, and may have been associated with the most severe biotic crisis since the Cambrian radiation. The remnants of this volcanism are exposed along the remote Kotuy River in Siberia (Figure 1). The causes of the end-Permian mass extinction, during which > 90% of marine species vanished forever, remain poorly understood. The apparently coincident eruption of the Siberian Traps large igneous province—which is one of the most voluminous continental flood basalt provinces in Phanerozoic time—has been widely invoked as a potential trigger mechanism for the mass extinction (e.g. Campbell et al., 1992). By traveling to the scene of this ancient eruption in Siberia, I hoped to gather clues to the character and possible environmental consequences of the eruption. I accompanied a small team of scientists from Russia and MIT, including my doctoral advisor (Linda Elkins-Tanton). The Siberian Traps are difficult to reach, and logistics were complex. As shown in Figure Figure 1. White star marks the approximate location of field work in the summer of 2008, along the Kotuy River in Siberia (71°54 N, 102° 7’ E). Figure 2. We used small water craft to navigate the Kotuy River and reach the Siberian Traps volcanic stratigraphy. The cliffs shown here are limestones from the underlying sedimentary sequence. -
New Constraints on the Age, Geochemistry
New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada. -
Subsidence and Growth of Pacific Cretaceous Plateaus
ELSEVIER Earth and Planetary Science Letters 161 (1998) 85±100 Subsidence and growth of Paci®c Cretaceous plateaus Garrett Ito a,Ł, Peter D. Clift b a School of Ocean and Earth Science and Technology, POST 713, University of Hawaii at Manoa, Honolulu, HI 96822, USA b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 10 November 1997; revised version received 11 May 1998; accepted 4 June 1998 Abstract The Ontong Java, Manihiki, and Shatsky oceanic plateaus are among the Earth's largest igneous provinces and are commonly believed to have erupted rapidly during the surfacing of giant heads of initiating mantle plumes. We investigate this hypothesis by using sediment descriptions of Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill cores to constrain plateau subsidence histories which re¯ect mantle thermal and crustal accretionary processes. We ®nd that total plateau subsidence is comparable to that expected of normal sea¯oor but less than predictions of thermal models of hotspot-affected lithosphere. If crustal emplacement was rapid, then uncertainties in paleo-water depths allow for the anomalous subsidence predicted for plumes with only moderate temperature anomalies and volumes, comparable to the sources of modern-day hotspots such as Hawaii and Iceland. Rapid emplacement over a plume head of high temperature and volume, however, is dif®cult to reconcile with the subsidence reconstructions. An alternative possibility that reconciles low subsidence over a high-temperature, high-volume plume source is a scenario in which plateau subsidence is the superposition of (1) subsidence due to the cooling of the plume source, and (2) uplift due to prolonged crustal growth in the form of magmatic underplating. -
Cook Islands of the Basicbasic Informationinformation Onon Thethe Marinemarine Resourcesresources Ofof Thethe Cookcook Islandsislands
Basic Information on the Marine Resources of the Cook Islands Basic Information on the Marine Resources of the Cook Islands Produced by the Ministry of Marine Resources Government of the Cook Islands and the Information Section Marine Resources Division Secretariat of the Pacific Community (SPC) with financial assistance from France . Acknowledgements The Ministry of Marine Resources wishes to acknowledge the following people and organisations for their contribution to the production of this Basic Information on the Marine Resources of the Cook Islands handbook: Ms Maria Clippingdale, Australian Volunteer Abroad, for compiling the information; the Cook Islands Natural Heritage Project for allowing some of its data to be used; Dr Mike King for allowing some of his drawings and illustration to be used in this handbook; Aymeric Desurmont, Secretariat of the Pacific Community (SPC) Fisheries Information Specialist, for formatting and layout and for the overall co-ordination of efforts; Kim des Rochers, SPC English Editor for editing; Jipé Le-Bars, SPC Graphic Artist, for his drawings of fish and fishing methods; Ministry of Marine Resources staff Ian Bertram, Nooroa Roi, Ben Ponia, Kori Raumea, and Joshua Mitchell for reviewing sections of this document; and, most importantly, the Government of France for its financial support. iii iv Table of Contents Introduction .................................................... 1 Tavere or taverevere ku on canoes ................................. 19 Geography ............................................................................ -
Present-Day Crustal Motion in the Solomon Islands from GPS
GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 19, PAGES 3627-3630, OCTOBER 1, 1998 Present-day crustal motion in the Solomon Islands from GPS observations Paul Tregoning Research School of Earth Sciences, The Australian National University, Canberra, Australia Francis Tan, John Gilliland School of Geoinformatics, Planning and Building, The University of South Australia, Adelaide, Australia Herbert McQueen and Kurt Lambeck Research School of Earth Sciences, The Australian National University, Canberra, Australia Abstract. Site velocities in the Solomon Islands from Ontong Java Plateau (OJP) collided with the Solomon Arc, Global Positioning System measurements spanning two years probably ∼20 to 25 Ma [e.g. Coleman and Kroenke, 1981; provide direct evidence of active deformation between the Kroenke, 1984; Yan and Kroenke, 1993]. Since that time it Pacific Plate and the Solomon Arc block. Convergence is is thought that subduction of the Pacific Plate ceased dur- occurring at the San Cristobal Trench at a rate of ∼524 ing the Early Miocene but it may have recommenced in the mm/yr, with no apparent local deformation occurring in the Mid-Miocene. About 10 Ma polarity reversal occurred and Australian Plate at a distance of ∼100 km from the trench. the Australian Plate began subducting to the northeast at The islands of Guadalcanal and Makira are in a first ap- the New Britain and San Cristobal Trenches, thus creating proximation moving with the Pacific Plate although there is the southern islands of the New Georgia group, Bougainville evidence of small but significant decoupling from the Pacific and Buka Island [Vedder and Bruns, 1989]. Active shallow Plate of 14-23 mm/yr in a direction of 75-85◦. -
SO225 MANIHIKI II Weekly Report No
SO225 MANIHIKI II Weekly Report No. 1 R/V SONNE (19.11. – 25.11.2012) 10°13,6´S / 165°52,0´W The starting point of R/V SONNE expedition SO-225 was the port of Suva on Viti Levu island (Fiji). After 48 hours of travel the first group of scientists, engineers, and technicians from Germany arrived safe but somewhat tiered in Suva in the late evening of Saturday the 19th of November. There, the unloading of nine containers with scientific equipment for SO-225 and the mobilization of the remotely operated vehicle ROV Kiel 6000 kept us busy during the following days. In the evening of November 19th, the remaining scientists arrived in Suva, finally completing the scientific party of the SO-225 expedition. In tropical heat and occasionally heavy rain showers we managed to finish all port related cruise preparations on time thanks to the excellent support from the SONNE crew. Approximately one hour after a test program of the ROV Kiel 6000 was successfully completed, RV SONNE left Suva and headed towards the Manihiki Plateau, located ~1.000 nm to the northeast of Fiji in the area of the northern Cook Islands. Views of Suva/Fiji upon departure of R/V Sonne. RV Sonne cruises SO-224 and SO-225 are part of the cooperative project MANIHIKI II between GEOMAR and the Alfred Wegener Institute for Polar and Marine Research (AWI), funded by the German Ministry of Education and Research (BMBF). This multidisciplinary project continues previous research at the Manihiki Plateau conducted since 2007 (SO-193) on morphological, volcanological, geochemical, and geochronological studies and is now broadened by geophysical and paleoceanographic research foci. -
3.16 Oceanic Plateaus A.C.Kerr Cardiffuniversity,Wales,UK
3.16 Oceanic Plateaus A.C.Kerr CardiffUniversity,Wales,UK 3.16.1 INTRODUCTION 537 3.16.2 FORMATION OF OCEANIC PLATEAUS 539 3.16.3 PRESERVATIONOFOCEANIC PLATEAUS 540 3.16.4GEOCHEMISTRY OF CRETACEOUSOCEANICPLATEAUS 540 3.16.4.1 GeneralChemicalCharacteristics 540 3.16.4.2 MantlePlumeSource Regions ofOceanic Plateaus 541 3.16.4.3 Caribbean–ColombianOceanic Plateau(, 90 Ma) 544 3.16.4.4OntongJavaPlateau(, 122 and , 90 Ma) 548 3.16.5THE INFLUENCE OF CONTINENTALCRUST ON OCEANIC PLATEAUS 549 3.16.5.1 The NorthAtlantic Igneous Province ( , 60 Ma to Present Day) 549 3.16.5.2 The KerguelenIgneous Province ( , 133 Ma to Present Day) 550 3.16.6 IDENTIFICATION OF OCEANIC PLATEAUS IN THE GEOLOGICAL RECORD 551 3.16.6.1 Diagnostic FeaturesofOceanic Plateaus 552 3.16.6.2 Mafic Triassic Accreted Terranesinthe NorthAmericanCordillera 553 3.16.6.3 Carboniferous to CretaceousAccreted Oceanic Plateaus inJapan 554 3.16.7 PRECAMBRIAN OCEANICPLATEAUS 556 3.16.8ENVIRONMENTAL IMPACT OF OCEANICPLATEAU FORMATION557 3.16.8.1 Cenomanian–TuronianBoundary (CTB)Extinction Event 558 3.16.8.2 LinksbetweenCTB Oceanic PlateauVolcanism andEnvironmentalPerturbation 558 3.16.9 CONCLUDING STATEMENTS 560 REFERENCES 561 3.16.1 INTRODUCTION knowledge ofthe oceanbasins hasimproved over the last 25years,many moreoceanic plateaus Although the existence oflarge continentalflood havebeenidentified (Figure1).Coffinand basalt provinceshasbeenknownfor some Eldholm (1992) introduced the term “large igneous considerabletime, e.g.,Holmes(1918),the provinces” (LIPs) asageneric term encompassing recognition thatsimilarfloodbasalt provinces oceanic plateaus,continentalfloodbasalt alsoexist belowthe oceans isrelatively recent. In provinces,andthoseprovinceswhich form at the early 1970s increasingamounts ofevidence the continent–oceanboundary (volcanic rifted fromseismic reflection andrefraction studies margins). -
Cook Islands Stories of Inspiration from Women in Local Government
Women’s Leadership Stories- Cook Islands Stories of inspiration from women in local government Commonwealth Local Government Forum Pacific CLGF Pacific wishes to thank all the people Disclaimer involved in the development of this publication, The information contained in this publication including: is provided in good faith by the CLGF Pacific Project. It has been obtained from current • the partners of the Akateretere Anga Tau and past women local government employees O Te Pa Enua Program, in particular the and council member and is understood Cook Islands National Council of Women, to be accurate and current at the date of the Cook Islands Gender and Development publication. It is not intended to be, and Division, the Pa Enua Local Governance Unit should not be relied upon as the ultimate and • the Pacific Women in Local Government complete source of information or advice for Network readers entering local government. • the women who so generously shared Copyright 2013 by the Commonwealth Local their stories Government Forum Pacific Requests and enquiries concerning this publication should be addressed to: Regional Director CLGF Pacific GPO Box 159 Suva, Fiji For general information about programs and activities for women in local government in the Pacific please visit:www.wilgpacific.org ‘ When I was 12 years old, I decided on my life goals: I wanted to put God at the centre of my life, I wanted to be rich and I wanted to be a leader.’ Tuki Wright, October 2012 Contents Introduction . 1 Women’s Pathways From the Pa Enua . 26 Foreword . 2 Mrs Tuki Wright 27 PUKAPUKA ISLAND Messages of solidarity . -
Cook Islands Seabed Minerals : a Precautionary Approach to Mining / Gerald Mccormack
Cook Islands Seabed Minerals a precautionary approach to mining Gerald McCormack second edition, with corrections Cook Islands Natural Heritage Trust Rarotonga 2016 1° = primary 2° = secondary dt = dry tonnes M = million Ma = million years (from megaannus) for dates and duration mbsl = metres below sea level Mdt/y = million dry tonnes per year M/y = million per year ppm = parts per million t = tonne = 1,000kg (a.k.a. metric ton with symbol mt) wt = wet tonnes AABW = Antarctic Bottom Water BPA = Biodiversity Preservation Area CBD = Convention on Biological Diversity CISWF = Cook Islands Sovereign Wealth Fund CCD = Carbonate Compensation Depth CCZ = Clarion-Clipperton Zone DSC = Deep Sound Channel EEZ = Exclusive Economic Zone EIA - Environmental Impact Assessment GDP = Gross Domestic Product REY = Rare Earth Elements + Yttrium SBMA = Cook Islands Seabed Minerals Authority SMS = Seabed Massive Sulphides SPB = South Penrhyn Basin ISA = International Seabed Authority, a UN agency WCPFC = Western and Central Pacific Fisheries Commission Front cover An oblique view of the Cook Islands seafloor with the South Penrhyn Basin and its nodule fields in the foreground and the Manihiki Plateau in the background. Cook Islands Seabed Minerals a precautionary approach to mining Gerald McCormack second edition, with corrections Cook Islands Natural Heritage Trust Rarotonga 2016 Text and illustrations are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This means they are free for non-commercial use provided the author and illustrator are acknowledged. For other uses please contact the Cook Islands Natural Heritage Trust. The author extends his appreciation to the Minister of Natural Heritage, the Hon. Kiriau Turepu and to the Trust Chair, Ian Karika and his Board for their encouragement and support.