Evolution of Cratonic Lithosphere After a Rapid Keel Delamination Event

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Cratonic Lithosphere After a Rapid Keel Delamination Event Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Craton Destruction 2: Evolution of Cratonic Lithosphere After a 10.1029/2017JB015374 Rapid Keel Delamination Event Special Section: Liang Liu1,2,3 , Jason P. Morgan2,4, Yigang Xu1 , and Martin Menzies1,2 Magnetism in the Geosciences - Advances and Perspectives 1Department of Earth Sciences, Royal Holloway University of London, Egham, UK, 2State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China, 3College of Earth 4 This article is a companion to Liu et al. Sciences, University of Chinese Academy of Sciences, Beijing, China, Department of Earth and Planetary Sciences, Harvard (2018), https://doi.org/10.1029/ University, Cambridge, MA, USA 2017JB015372. Abstract Cratonic lithosphere beneath the eastern North China Craton has undergone extensive Key Points: • Keel delamination followed by destruction since early Jurassic times (approximately 190 Ma). This is recorded in its episodic tectonic and convective erosion and lithospheric magmatic history. In this time, its lithosphere changed thickness from approximately 200 km to <60 km. This extension can explain the change was associated with a peak time (approximately 120 Ma) of lithospheric thinning and magmatism destruction of the eastern North fl China Craton that was linked with high surface heat ow recorded in rift basins. We believe that these records are best • Reactivation of an enriched mantle explained by a two-stage evolutionary process. First, approximately 100 km of cratonic “keel” underlying a layer is critical in leading to weak midlithospheric discontinuity layer (approximately 80–100 km) was rapidly removed in <10–20 Ma. delamination of cratonic bottom and – early postdelamination magmatism This keel delamination stage was followed by a protracted (approximately 50 100 Ma) period of convective • The heterogeneous lithosphere erosion and/or lithospheric extension that thinned the remaining lithosphere and continuously reworked the beneath North China can be former cratonic lithospheric mantle. This study focuses on numerical exploration of the well-recorded second produced by postdelamination ’ fi convective erosion and lithospheric stage of the eastern North China Craton s lithospheric evolution. We nd that (1) lithospheric mantle extension capped by thick crust can be locally replaced by deeper mantle material in 100 Ma due to small-scale convective erosion; (2) asthenospheric upwelling and related extension can replace lithospheric mantle over – “ ” Supporting Information: horizontal length scales of ~50 150 km, and account for observed mushroom-shaped low-velocity • Supporting Information S1 structures; (3) modeling shows conditions that could lead to the multiple eastern North China Craton • Figure S1 magmatic pulses between 190 and 115 Ma that are associated with temporal and spatial changes in magma • Movie S1 “ ” • Movie S2 source petrology and a magmatic hiatus; and (4) a wet midlithospheric discontinuity layer provides a • Movie S3 potential source material for on-craton magmatism. • Movie S4 • Movie S5 • Movie S6 • Movie S7 1. Introduction • Movie S8 • Movie S9 Cratons are generally observed to retain tectonic and magmatic quiescence for billions of years. However, some cratonic regions do record extensive crustal deformation and on-cratonic magmatism that reflect cra- Correspondence to: fi L. Liu, J. P. Morgan, and Y. Xu, ton destruction processes (Grif n et al., 1998; Menzies & Zhang, 1993). The eastern part of the North China [email protected]; Craton (ENCC) is the best-known Archaean craton to have experienced a recent destruction process [email protected]; (Griffin et al., 1998; Menzies et al., 2007; Menzies & Zhang, 1993; Xu, 2001; Xu et al., 2009; Zhu et al., 2012). [email protected] Here cratonic lithosphere (approximately 180–220 km; Griffin et al., 1998; Menzies & Zhang, 1993) was thinned to ~60–80 km between early Jurassic and early Cretaceous times (approximately ~190–115 Ma; Citation: Xu et al., 2009; Zhu, Jiang, et al., 2012). The process of the ENCC thinning was mainly reflected in the Liu, L., Morgan, J. P., Xu, Y., & Menzies, M. – “ ” – “ ” (2018). Craton destruction 2: Evolution approximately 190 155-Ma cold and 135 115-Ma hot on-cratonic magmas (Figure 1; Wu et al., 2005; of cratonic lithosphere after a rapid Zhang et al., 2014). Peak ENCC thinning occurred at approximately 120 Ma, and is apparent as widespread keel delamination event. Journal of crustal melting and formation of metamorphic core complexes (Xu et al., 2009; Zhu et al., 2012; Zhu, Jiang, Geophysical Research: Solid Earth, 123, fl 10,069–10,090. https://doi.org/10.1029/ et al., 2012; Figure 1b), rapid syn-rift surface subsidence, and high heat ow recorded in syn-rift basins 2017JB015374 (Jiang et al., 2016; Qiu et al., 2016). The modern ENCC lithospheric mantle is a reworked product after craton destruction, and is mainly composed of young asthenosphere-derived lithospheric mantle (Menzies et al., Received 21 DEC 2017 2007; Xu, 2001; Xu et al., 2009), that still contains preexisting Archean “cratonic” relics (Zhang et al., 2008; Accepted 17 JUL 2018 Accepted article online 29 JUL 2018 Zheng et al., 2001). Published online 8 NOV 2018 We think that this craton’s thinning and reworking is best understood as a two-stage evolutionary process. First, approximately 100 km of cratonic keel underlying a weak midlithospheric discontinuity layer – < – fi “ ” ©2018. American Geophysical Union. (approximately 80 100 km) was rapidly removed in 10 20 Ma. This rst stage of keel delamination is the All Rights Reserved. focus of a companion paper: Craton Destruction Part 1: Cratonic Keel Delamination; Liu et al., 2018; which we LIU ET AL. 10,069 Journal of Geophysical Research: Solid Earth 10.1029/2017JB015374 Figure 1. Geological map of the eastern North China craton (ENCC). (a) Distribution of Jurassic magmatism (approximately 190–160 Ma). (b) Distribution of Cretaceous magmatism (approximately 150–100 Ma) and major faults. See details for Cretaceous magma distribution in Figure 11. TNCO = Trans-North China Orogen, WNCC = Western North China Craton. will hereafter refer to as Part 1. A schematic cartoon of the proposed keel delamination process is shown in Figures 2a and 2b, and a video of a numerical experiment illustrating this delamination stage is shown in Supplementary Video 9. The keel delamination stage was followed by a protracted (approximately 50–100 Ma) period of small-scale convective erosion and/or lithospheric extension that thinned the remaining lithosphere and continuously reworked the former cratonic lithospheric mantle beneath the Moho. The goal of the current study is to better understand this second stage of postkeel-delamination Figure 2. Two-stage craton destruction model. (a and b) Intramantle keel delamination model. (a) An ~10-km weak, partly discontinuous layer (e.g., the metasome midlithosphere discontinuity layer (MLDL)) exists between ~80- and 100-km depths in the craton lithosphere. Because the lower keel is denser than its adjacent asthenosphere and materials adjacent to the edge of metasome are soft enough, the denser lower keel starts to delaminate along the metasome. (The conditions for and evolution of this delamination process are the focus of Part 1; Liu et al., 2018.) (b) Delamination stops where the metasome MLDL disappears. After the dela- mination of the lower keel, pockets of metasome material locally survive at the base of the lithosphere. The overlying lithosphere initially retains its cool cratonic temperature and does not melt, leading to a magmatic hiatus after initial melting of the metasome warmed by contact with asthenosphere. (c and d) Postdelamination lithospheric evolution. (c) Cold remaining lithosphere can be locally denser than underlying hot asthenosphere. Therefore, dense lithosphere will tend to sag during convective erosion, leading to local thinning of lithosphere and intrusion of asthenosphere and metasome material into the relic cratonic lithosphere. During this process, the remaining lithosphere is slowly heated, and the lower crust can sometimes locally melt. (d) Later lithospheric extension (approximately <140 Ma) can lead to focused magmatism and lithospheric replacement in regions close to preexisting translithospheric weak zone (e.g., the Tan-Lu fault zone). LIU ET AL. 10,070 Journal of Geophysical Research: Solid Earth 10.1029/2017JB015374 evolution of relic ENCC crust and uppermost lithospheric mantle. Our pri- mary tool to do this will be to explore and compare the implications of a suite of numerical experiments with observed patterns of post-Jurassic magmatism and deformation in the ENCC. Before diving into the numeri- cal experiments and their ability to match the ENCC’s well-documented postdelamination history, we first summarize the petrological, geochem- ical, geological, and geophysical observations that have been used to con- strain the ENCC’s recent evolution. 2. Tectonic and Magmatic Evolution During ENCC Destruction The ENCC destruction process is reflected in its episodic tectonic and mag- matic (felsic-magma-dominated) record. Due to its location adjacent to active subduction-collision zones, a primarily compressional state of the ENCC appeared no later than approximately 320 Ma (Meng, 2003; Xu et al., 2009). During this time, the crust along its margins is proposed to be locally thickened to approximately 50 km (cf. Meng, 2003). (Alternatively, it is also possible that
Recommended publications
  • GY 112 Lecture Notes D
    GY 112 Lecture Notes D. Haywick (2006) 1 GY 112 Lecture Notes Archean Geology Lecture Goals: A) Time frame (the Archean and earlier) B) Rocks and tectonic elements (shield/platform/craton) C) Tectonics and paleogeography Textbook reference: Levin 7th edition (2003), Chapter 6; Levin 8th edition (2006), Chapter 8 A) Time frame Up until comparatively recently (start of the 20th century), most geologists focused their discussion of geological time on two eons; the “Precambrian” and the Phanerozoic. We now officially recognize 4 eons and the Precambrian is just used as a come-all term for all time before the Phanerozoic: Eon Time Phanerozoic 550 MA to 0 MA Proterozoic 2.5 GA to 550 MA Archean 3.96 GA to 2.5 GA Hadean 4.6 GA to 3.96 GA The “youngest” of these two new eons, the Archean, was first introduced by field geologists working in areas where very old rocks cropped out. One of these geologists was Sir William Logan (pictured at left; ess.nrcan.gc.ca ) one of the most respected geologists working with the Geological Survey of Canada. His study area was the Canadian Shield. Logan was able to identify two major types of rocks; 1) layered sedimentary and volcanic rocks and 2) highly metamorphosed granitic gneisses (see image at the top of the next page from http://www.trailcanada.com/images/canadian-shield.jpg). Logan found evidence that the gneisses mostly underlayed the layered rocks and hence, they had to be older than the layered rocks. The layered rocks were known to be Proterozoic in age.
    [Show full text]
  • Northwestern Superior Craton Margin, Manitoba: an Overview of Archean
    GS-7 Northwestern Superior craton margin, Manitoba: an overview of Archean and Proterozoic episodes of crustal growth, erosion and orogenesis (parts of NTS 54D and 64A) by R.P. Hartlaub1, C.O. Böhm, L.M. Heaman2, and A. Simonetti2 Hartlaub, R.P., Böhm, C.O., Heaman, L.M. and Simonetti, A. 2005: Northwestern Superior craton margin, Manitoba: an overview of Archean and Proterozoic episodes of crustal growth, erosion, and orogenesis (parts of NTS 54D and 64A); in Report of Activities 2005, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, p. 54–60. Summary xenocrystic zircon, and in the The northwestern margin of the Superior Province in isotopic signature of Neoarchean Manitoba represents a dynamic boundary zone with good granite bodies (Böhm et al., 2000; potential for magmatic, sedimentary-hosted, and structur- Hartlaub et al., in press). The ALCC extends along the ally controlled mineral deposits. The region has a history Superior margin for at least 50 km, and may have a com- that commences in the early Archean with the formation mon history with other early Archean crustal fragments of the Assean Lake Crustal Complex. This fragment of in northern Quebec and Greenland (Hartlaub et al., in early to middle Archean crust was likely accreted to the press). Superior Province between 2.7 and 2.6 Ga, a major period South of the ALCC, the Split Lake Block repre- of Superior Province amalgamation. Sediments derived sents a variably retrogressed and shear zone–bounded from this amalgamation process were deposited at granulite terrain that is dominated by plutonic rocks and numerous locations along the northwestern margin of mafic granulite (Hartlaub et al., 2003, 2004).
    [Show full text]
  • Different Causes of the Delamination on the Example of Caucasus and Kyrgyz Tien Shan Collision Zones
    EGU2020-6412 https://doi.org/10.5194/egusphere-egu2020-6412 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Different causes of the delamination on the example of Caucasus and Kyrgyz Tien Shan collision zones. Irina Medved1,2,3, Ivan Koulakov2,3, and Mikhail Buslov1 1IGM SB RAS, Novosibirsk, Russian Federation ([email protected]) 2IPGG SB RAS, Novosibirsk, Russian Federation 3Novosibirsk State University, Novosibirsk, Russian Federation The causes of delamination of the mantle lithosphere in collision zones is actively debated in the scientific community. The main discussions are focused on the initiation of sinking of the continental lithosphere into the asthenosphere to a depth. Most scientists believe that such kind of immersion is impossible. However, there are several articles showing that this process is nonetheless taking place. For example Kay and Kay, (1993), Faccenda, Minelli, Gerya, (2009), Ueda et. al., (2012) and others propose various mechanisms of delamination, for example: eclogitization of the mafic layer of the lower crust, the effect of convection in the upper mantle, or gradual transition of the oceanic subduction into continental collision. Does the mantle part of the lithosphere sink into the mantle or spread laterally, as described in [for example, Deep Geodynamics, 2001; Bird, 1991; Schmeling and Marquart, 1991]? To answer these questions, we study deep structures beneath the Caucasus and Kyrgyz Tien Shan collision zones. The studies were carried out on the basis of multiscale seismic tomography methods: regional and global. This approach made it possible to study heterogeneities both in the crust and in the upper mantle.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Pan-African Orogeny 1
    Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1).
    [Show full text]
  • Timothy O. Nesheim
    Timothy O. Nesheim Introduction Superior Craton Kimberlites Beneath eastern North Dakota lays the Superior Craton and the To date, over a hundred kimberlites have been discovered across potential for continued diamond exploration as well as diamond the Superior Craton, more than half of which were discovered mine development. The Superior Craton is a large piece of Earth’s within the past 15 years. Most of these kimberlites occur as crust that has been tectonically stable for over 2.5 billion years. clusters within the Canadian provinces of Ontario and Quebec The long duration of tectonic stability has allowed the underlying (figs. 1 and 2). Moorhead et al. (2000) noted that the average mantle to cool enough to develop the necessary temperature and distance between kimberlite fields/clusters across the Canadian pressure conditions to form diamonds at depths of more than 50 Shield is similar to the typical global average distance of 250 miles miles below the surface. Diamonds are transported to the surface (400 km) between large kimberlite fields. Globally, only 14% through kimberlitic eruptions, which are volcanic eruptions that of kimberlites are diamondiferous (contain diamonds), most in originate tens of miles below the surface and typically erupt concentrations too low for commercial mining. The percentage along zones of weakness in Earth’s crust such as faults and of diamondiferous Superior kimberlites appears to be higher than fractures. The resulting eruption commonly forms a pipe-shaped the global average, including 1) the Attawapiskat cluster – 16 of 18 geologic feature called a kimberlite. Kimberlites typically occur kimberlites (89%) are diamondiferous and so far one kimberlite in groups referred to as either fields or clusters.
    [Show full text]
  • Komatiites, Kimberlites and Boninites. Nicholas Arndt
    Komatiites, kimberlites and boninites. Nicholas Arndt To cite this version: Nicholas Arndt. Komatiites, kimberlites and boninites.. Journal of Geophysical Research, American Geophysical Union, 2003, 108, pp.B6 2293. 10.1029/2002JB002157. hal-00097430 HAL Id: hal-00097430 https://hal.archives-ouvertes.fr/hal-00097430 Submitted on 11 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B6, 2293, doi:10.1029/2002JB002157, 2003 Komatiites, kimberlites, and boninites Nicholas Arndt Laboratoire de Ge´odynamique des Chaıˆnes Alpines, Universite´ de Grenoble, Grenoble, France Received 16 August 2002; revised 21 January 2003; accepted 26 February 2003; published 6 June 2003. [1] When the mantle melts, it produces ultramafic magma if the site of melting is unusually deep, the degree of melting is unusually high, or the source is refractory. For such melting to happen, the source must be unusually hot or very rich in volatiles. Differing conditions produce a spectrum of ultramafic magma types. Komatiites form by high degrees of melting, at great depths, of an essentially anhydrous source. Barberton- type komatiites are moderately high degree melts from a particularly hot and deep source; Munro-type komatiites are very high degree melts of a slightly cooler source.
    [Show full text]
  • Precambrian Plate Tectonics: Criteria and Evidence
    VOL.. 16,16, No.No. 77 A PublicAtioN of the GeoloGicicAl Society of America JulyJuly 20062006 Precambrian Plate Tectonics: Criteria and Evidence Inside: 2006 Medal and Award Recipients, p. 12 2006 GSA Fellows Elected, p. 13 2006 GSA Research Grant Recipients, p. 18 Call for Geological Papers, 2007 Section Meetings, p. 30 Volume 16, Number 7 July 2006 cover: Magnetic anomaly map of part of Western Australia, showing crustal blocks of different age and distinct structural trends, juxtaposed against one another across major structural deformation zones. All of the features on this map are GSA TODAY publishes news and information for more than Precambrian in age and demonstrate that plate tectonics 20,000 GSA members and subscribing libraries. GSA Today was in operation in the Precambrian. Image copyright the lead science articles should present the results of exciting new government of Western Australia. Compiled by Geoscience research or summarize and synthesize important problems Australia, image processing by J. Watt, 2006, Geological or issues, and they must be understandable to all in the earth science community. Submit manuscripts to science Survey of Western Australia. See “Precambrian plate tectonics: editors Keith A. Howard, [email protected], or Gerald M. Criteria and evidence” by Peter A. Cawood, Alfred Kröner, Ross, [email protected]. and Sergei Pisarevsky, p. 4–11. GSA TODAY (ISSN 1052-5173 USPS 0456-530) is published 11 times per year, monthly, with a combined April/May issue, by The Geological Society of America, Inc., with offices at 3300 Penrose Place, Boulder, Colorado. Mailing address: P.O. Box 9140, Boulder, CO 80301-9140, USA.
    [Show full text]
  • Post-Collisional Mantle Delamination in the Dinarides Implied
    www.nature.com/scientificreports OPEN Post‑collisional mantle delamination in the Dinarides implied from staircases of Oligo‑Miocene uplifted marine terraces Philipp Balling1*, Christoph Grützner1, Bruno Tomljenović2, Wim Spakman3 & Kamil Ustaszewski1 The Dinarides fold‑thrust belt on the Balkan Peninsula resulted from convergence between the Adriatic and Eurasian plates since Mid‑Jurassic times. Under the Dinarides, S‑wave receiver functions, P‑wave tomographic models, and shear‑wave splitting data show anomalously thin lithosphere overlying a short down‑fexed slab geometry. This geometry suggests a delamination of Adriatic lithosphere. Here, we link the evolution of this continental convergence system to hitherto unreported sets of extensively uplifted Oligocene–Miocene (28–17 Ma) marine terraces preserved at elevations of up to 600 m along the Dinaric coastal range. River incision on either side of the Mediterranean‑Black Sea drainage divide is comparable to the amounts of terrace uplift. The preservation of the uplifted terraces implies that the most External Dinarides did not experience substantial deformation other than surface uplift in the Neogene. These observations and the contemporaneous emplacement of igneous rocks (33–22 Ma) in the internal Dinarides suggest that the Oligo‑Miocene orogen‑wide uplift was driven by post‑break‑of delamination of the Adriatic lithospheric mantle, this was followed by isostatic readjustment of the remaining crust. Our study details how lithospheric delamination exerts an important control on crustal deformation and that its crustal signature and geomorphic imprint can be preserved for millions of years. Te infuence of deep-seated processes on deformation patterns and rates in collisional orogens is unequivo- cally accepted, yet challenging to quantify.
    [Show full text]
  • Hidden Middle Devonian Magmatism of North-Eastern Siberia: Age Constraints from Detrital Zircon U–Pb Data
    minerals Article Hidden Middle Devonian Magmatism of North-Eastern Siberia: Age Constraints from Detrital Zircon U–Pb Data Victoria B. Ershova 1,2,3,* , Andrei V. Prokopiev 3 and Andrei K. Khudoley 1 1 Institute of Earth Sciences, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; [email protected] 2 Geological Institute, Russian Academy of Sciences, 109017 Moscow, Russia 3 Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences, Lenin Av. 39, 677980 Yakutsk, Russia; [email protected] * Correspondence: [email protected] Received: 24 August 2020; Accepted: 26 September 2020; Published: 1 October 2020 Abstract: We present new data on the tectonic evolution of north-eastern Siberia using an integrated provenance analysis based on U–Pb detrital zircon dating and sandstone petrography of Devonian sedimentary strata. Our petrographic data suggest that Upper Devonian sandstones of north-eastern Siberia were derived from a local provenance, supported by the widespread distribution of ca. 1900–2000 Ma magmatic events in the basement of the neighboring Ust’-Lena and Olenek uplifts. Devonian detrital zircon age distributions of the Devonian sandstones are similar to ages of Middle Paleozoic magmatic rocks of Yakutsk-Vilyui large igneous province (LIP). Therefore, we suggest that the studied sandstones were derived from proximally-located uplifted blocks composed of Proterozoic–Devonian rocks and Middle–Late Devonian volcanics. Moreover, the abundance of Middle–Late Devonian zircons is suggestive of a wider distribution of coeval magmatism across north-eastern Siberia than previously supposed. We propose that widespread Devonian magmatism associated with the Yakutsk-Vilyui LIP also occurred to the east of our study area and is now buried beneath thick Carboniferous–Jurassic sedimentary rocks of the eastern Siberian passive margin, subsequently deformed into the Late Jurassic–Cretaceous Verkhoyansk fold-and-thrust belt.
    [Show full text]
  • The Plate Theory for Volcanism
    This article was originally published in Encyclopedia of Geology, second edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author’s institution, for non-commercial research and educational use, including without limitation, use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation, commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: https://www.elsevier.com/about/policies/copyright/permissions Foulger Gillian R. (2021) The Plate Theory for Volcanism. In: Alderton, David; Elias, Scott A. (eds.) Encyclopedia of Geology, 2nd edition. vol. 3, pp. 879-890. United Kingdom: Academic Press. dx.doi.org/10.1016/B978-0-08-102908-4.00105-3 © 2021 Elsevier Ltd. All rights reserved. Author's personal copy The Plate Theory for Volcanism Gillian R Foulger, Department of Earth Sciences, Science Laboratories, Durham University, Durham, United Kingdom © 2021 Elsevier Ltd. All rights reserved. Statement of Plate Theory 879 Background, History, Development and Discussion 879 Lithospheric Extension 880 Melt in the Mantle 881 Studying Intraplate Volcanism 882 Examples 883 Iceland 883 Yellowstone 885 The Hawaii and Emperor Volcano Chains 886 Discussion 888 Summary 888 References 888 Further Reading 889 Statement of Plate Theory The Plate Theory for volcanism proposes that all terrestrially driven volcanism on Earth’s surface, including at unusual areas such as Iceland, Yellowstone and Hawaii, is a consequence of plate tectonics.
    [Show full text]
  • Suzanne Y. O'reilly, GEMOC National
    controversy over the physical nature of the lithosphere and asthenosphere and the boundary zone between them. The subcontinental lithospheric mantle is isolated from the convecting mantle and thus tends to resist homogenization over time. At the lithosphere-asthenosphere boundary, the temperatures of the lithosphere and the uppermost asthenosphere coincide, and the greater buoyancy and viscosity of the lithosphere are important in maintaining its mechanical integrity. Suzanne Y. O’Reilly, GEMOC National mantle roots are highly buoyant; they This emphasizes a thermal and Key Centre, Department of Earth cannot be delaminated but require rheological distinction between and Planetary Sciences, Macquarie mechanical disaggregation (lithospheric lithosphere and asthenosphere that also University, Sydney, NSW 2109, Australia thinning and/or rifting) and infiltration coincides well with seismic observations of upwelling fertile material to be and with the geochemical signatures William L. Griffin, GEMOC National Key destroyed or transformed. In contrast, that are used in this paper to help define Centre, Department of Earth and Phanerozoic subcontinental lithospheric the location and character of the Planetary Sciences, Macquarie mantle is denser than the asthenosphere lithosphere-asthenosphere boundary. University, Sydney, NSW 2109, Australia, for observed thicknesses (~100 km) and Four-dimensional lithosphere and CSIRO Exploration and Mining, can “delaminate” under stress. The mapping is a methodology that P.O. Box 136, North Ryde, NSW 1670, contrasting properties of different integrates petrological, geochemical, Australia mantle domains require lateral contrasts geophysical, and tectonic information to in composition, density, thickness, and map the composition of the sub- Yvette H. Poudjom Djomani, GEMOC seismic response in the present-day continental lithospheric mantle (Fig.
    [Show full text]