Improve the “Long Tail" Recommendation Through Popularity-Sensitive Clustering

Total Page:16

File Type:pdf, Size:1020Kb

Improve the “Long Tail Improve the “Long Tail" Recommendation through Popularity-Sensitive Clustering Huaiyi Huang, Ying Zhao, Jiabao Yan, Lei Yang Department of Computer Science and Technology / Department of Software Engineering Tsinghua University, Beijing, 100084, China {huanghy11, yanjb11, yanglei11}@mails.tsinghua.edu.cn [email protected] ABSTRACT popular items for the lack of information. Several recom- Collaborative filtering(CF) is one of the most successful ap- mendation methods were proposed in the literature with proaches to build recommender system. In recommender the aim of improving the \long tail" recommendation per- system, \long tail" items are considered to be particularly formance [10, 21, 13, 14, 22]. They are either specific rec- valuable. Many clustering algorithms based on CF designed ommendation methods targeting only \long tail" items [10, only to tackle the \long tail" items, while others trade off 21, 22], or comprehensive ones trading-off between overall the overall recommendation accuracy and \long tail" perfor- recommendation accuracy and \long tail" performance [13, mance. Our approach is based on utilizing the item popular- 14]. ity information. We demonstrate that \long tail" recommen- dation can be inferred precisely by balanced item popularity We propose to tackle this problem from a clustering perspec- of each cluster. We propose a novel popularity-sensitive clus- tive. In addition to reaching the common goals of clustering, tering method. In terms of \long tail" and overall accuracy, such as grouping users with similar behaviors or to increase our method outperforms previous ones via experiments on the density of the user-item matrix for each cluster, our clus- MovieLens, citeUlike, and MobileApp. tering method also aims to make the popularity distribution of items within each cluster more balanced and to reduce Categories and Subject Descriptors the effect of \long tail". To the best of our knowledge, this is a novel perspective that utilizes clustering collaborative H.3.3 [Information Search and Retrieval]: Information filtering models to improve the \long tail" item recommen- filtering; H.3.5 [Online Information Services]: Web-based dation. services This paper proposes a novel popularity-sensitive clustering General Terms method to improve the \long tail" item recommendation and Algorithms, Performance makes the following two contributions. Keywords First, we propose a clustering objective function that di- rectly models item popularity in each cluster, and adaptively Collaborative Filtering, Recommender Systems, Clustering normalizes item popularity by the total item popularity asso- Algorithm, Long Tail ciated with the item and the cluster. We design such an ob- jective function that its optimal solution tends to have more 1. INTRODUCTION evenly distributed item popularity in each cluster. Conse- Collaborative filtering (CF) techniques and recommenda- quently, the less popular items in resulting clusters have a tion systems have been studied extensively in the past few better chance to be recommended correctly. decades [1, 8, 16] to fulfill users' information needs with per- sonalized recommendations. Items with very low usage are Second, we propose an incremental optimization algorithm called \long tail" items, and are very common in domains to optimize the proposed object function. We conduct a like mobile apps, reference papers, and movies. Recommen- comprehensive experimental evaluation of the proposed clus- dations from the \long tail" of the popularity distribution tering method on three real world datasets against three of items are generally considered to be particularly valuable other state-of-the-art clustering methods. Our experimen- [15], and are much more challenging than recommending tal results show that the proposed popularity-sensitive clus- tering method indeed produces clusters with more evenly distributed item popularity, and it improves not only the \long tail" recommendation accuracy, but also overall rec- ommendation accuracy for a wide range of recommendation methods. The rest of this paper is organized as follows. Section 2 provides some discussions on related work on the \long tail" problem and clustering collaborative filtering models. Sec- tion 3 describes the motivation of popularity-sensitive clus- tering. Section 4 describes the graph model of item pop- 100% MovieLens ularities in clusters and proposes our popularity-sensitive CUL clustering algorithm with a discussion on its objective func- 10% MobileApp tion and optimization method. Section 5 presents a compre- hensive experimental evaluation of the proposed clustering 1% method on three real world datasets. Finally, Section 6 pro- vides some concluding remarks. 0.1% 2. RELATED WORK Percent of Users Collaborative filtering (CF) techniques are the most widely 0.01% used and well performing algorithms that have been pro- 0 20% 40% 60% 80% 100% posed developed in the past for recommender systems [1, Percent of Items 8, 16]. Among the challenges that collaborative filtering techniques have to face, such as cold start, diversity, etc., the problem of \long tail" has been identified and studied Figure 1: Distribution of item popularities with to a large extent [10, 21, 13, 15, 14, 2, 22]. Recommenda- items sorted by popularity tions from the \long tail" of the popularity distribution of items are generally considered to be particularly valuable, but the recommendation accuracy tends to decrease towards \long tail" of the popularity distribution of items are gen- the \long tail". erally considered to be particularly valuable, while the rec- ommendation accuracy tends to decrease towards the \long The study of \long tail" came in different perspectives. [2] tail". The more unbalanced a popularity distribution is, the showed the importance of recommending\long tail"products severer the problem is. In other words, for datasets that is and how this is going to change the e-commerce. [15] pro- highly unbalanced, recommending less popular items usually posed an accuracy metric that takes the effect of \long tail" means a decrease in accuracy. into consideration. Many recommendation methods were proposed to tackle the problem of \long tail". There are In this paper, we examined three datasets MovieLens, CUL, specific recommendation methods targeting only \long tail" and MobileApp from movie, reference papers, and mobile items [10, 21], and also are ones trading-off between over- app domains, respectively. In Figure 3, we show the distribu- all recommendation accuracy and \long tail" performance tion of item popularites in terms of percentage of total users, [13, 14]. For example, Eigenapp is a recommendation al- with items sorted by popularity. The MobileApp dataset gorithm for recommending mobile apps in online mobile exhibits the \long tail" phenomenon most significantly, i.e., app stores proposed by [13], which employs an item nor- only a few popular items are used by the majority of users malization based on global popularity and a PCA analy- and the majority of apps are not being used in any signifi- sis to promote less popular items. In [14], a graph model cant sense (say being used by more than 0:1% of users). The was proposed that has an explicit \long tail" factor to trade CUL dataset exhibits the \long tail" shape as well, however, off among accuracy, diversity, and long-tail. Both [13] and with a key difference that the majority of papers (greater [14] achieved better recommendation accuracy for \long tail" than 90%) are being cited by 1% to 0:1% of users. The items with the sacrifice of overall recommendation accuracy. MovieLens dataset on the other hand is less challenging for To the best of our knowledge, there has not been methods unpopular movies, as the majority of movies has more than whose targets are to improve overall recommendation accu- 1% of viewers. Recommendations from the \long tail" of the racy and \long tail" accuracy simultaneously like ours. popularity distribution of items are particularly valuable for MobileApp and CUL. The technique of clustering has been used together collab- orative filtering from the very beginning [12, 7]. Studies We propose to tackle this problem from a clustering perspec- used clustering to improve efficiency of recommender sys- tive. In addition to reaching the common goals of clustering, tems [12], or to generate collection of user data that share such as grouping users with similar behaviors or to increase similar behaviors or close relationships [4, 18, 17, 23, 20, the density of the user-item matrix for each cluster, our clus- 7, 6], based on which collaborative filtering techniques can tering method also aims to make the popularity distribution be applied to. Some of the proposed clustering methods fo- within each cluster more balanced and to reduce the effect cused on forming clusters of users or items [12, 4, 18, 17, 23], of \long tail". In doing so, our popularity sensitive clustering and others focused on finding co-clusters [20, 7, 6], clusters method gives less popular items a better chance to be rec- of a subset of users and a subset of items. For example, [20] ommended correctly in resultant clusters without sacrificing proposed a multiclass co-clustering method that allows users the accuracy of overall recommendation. and items present in multiple clusters. To the best of our knowledge, there has not been clustering methods proposed Note that, normalizing item weights according to its global to solve the problem of \long tail". popularity in the entire dataset before performing clustering
Recommended publications
  • Dual Transfer Learning Framework for Improved Long-Tail Item Recommendation
    A Model of Two Tales: Dual Transfer Learning Framework for Improved Long-tail Item Recommendation Yin Zhang*, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong, Ed H. Chi [email protected],{zcheng,tyao,xinyang,lichan,edchi}@google.com Google, Inc, USA Texas A&M University, USA ABSTRACT Highly skewed long-tail item distribution is very common in recom- mendation systems. It significantly hurts model performance on tail items. To improve tail-item recommendation, we conduct research to transfer knowledge from head items to tail items, leveraging the rich user feedback in head items and the semantic connec- tions between head and tail items. Specifically, we propose a novel dual transfer learning framework that jointly learns the knowledge transfer from both model-level and item-level: 1. The model-level knowledge transfer builds a generic meta-mapping of model param- eters from few-shot to many-shot model. It captures the implicit data augmentation on the model-level to improve the represen- tation learning of tail items. 2. The item-level transfer connects head and tail items through item-level features, to ensure a smooth transfer of meta-mapping from head items to tail items. The two types of transfers are incorporated to ensure the learned knowledge from head items can be well applied for tail item representation learning in the long-tail distribution settings. Through extensive experiments on two benchmark datasets, results show that our pro- posed dual transfer learning framework significantly outperforms other state-of-the-art methods for tail item recommendation in hit ratio and NDCG. It is also very encouraging that our framework further improves head items and overall performance on top of the gains on tail items.
    [Show full text]
  • Branch and Bramble-Youtube Guide-Download
    YOUTUBE SEO A GUIDE Why YouTube SEO? Dos and Don’ts Overall Recommended Steps Keyword Tools & Processes THE GIST Best Prac4ces: Before Uploading Best Prac4ces: Uploading Best Prac4ces: AIer Publica4on YouTube Stories Appendix WHY YOUTUBE SEO? Op4mizing around YouTube SEO is essen4al to the success of a video and is slightly different than tradi4onal SEO. Unlike web pages or digital copy, videos cannot be ”read” by search engines’ algorithms. This significantly reduces discoverability if certain steps are not taken when crea4ng, producing, and uploading project to the plaSorm. YouTube is the 2nd largest YouTube is improving video search engine a4er Google. discovery by offering capon uploading. Videos are not “read” by Titles, descripons, keywords, search engines’ algorithms. hashtags, and metatags are several elements that help increase a video’s searchability. DO THIS: • Include long tail keywords that are more than 3 words long. • Focus on choosing 5-7 keywords. YOUTUBE KEYWORDS • Determine why someone would watch the video. Today’s YouTube SEO focuses on user intent, par4cularly when it comes to language. Since algorithms know language just as well, if not beWer, than we do, choosing keywords based on why individuals are looking for a par4cular video is DON’T DO THIS: paramount. • Do not keyword stuff — write as many There are two different methods for finding keywords and keywords as possible. they should be tailored based on where you’re at in the video process. • Use keywords that are unrelated to the video. • Use the same keyword finding process for new videos vs. already published videos. RECOMMENDED ACTIONS Find 5-7 relevant video keywords based on 1 7 Upload cap4ons for every video.
    [Show full text]
  • Evaluation of Recommendation System for Sustainable E-Commerce: Accuracy, Diversity and Customer Satisfaction
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 January 2020 doi:10.20944/preprints202001.0015.v1 Article Evaluation of Recommendation System for Sustainable E-Commerce: Accuracy, Diversity and Customer Satisfaction Qinglong Li 1, Ilyoung Choi 2 and Jaekyeong Kim 3,* 1 Department of Social Network Science, KyungHee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea; [email protected] 2 Graduate School of Business Administration, KyungHee University, 26, Kyungheedae-ro, Dongdaemun- gu, Seoul, 02453, Republic of Korea; [email protected] 3 School of Management, KyungHee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-961-9355 (F.L.) Abstract: With the development of information technology and the popularization of mobile devices, collecting various types of customer data such as purchase history or behavior patterns became possible. As the customer data being accumulated, there is a growing demand for personalized recommendation services that provide customized services to customers. Currently, global e-commerce companies offer personalized recommendation services to gain a sustainable competitive advantage. However, previous research on recommendation systems has consistently raised the issue that the accuracy of recommendation algorithms does not necessarily lead to the satisfaction of recommended service users. It also claims that customers are highly satisfied when the recommendation system recommends diverse items to them. In this study, we want to identify the factors that determine customer satisfaction when using the recommendation system which provides personalized services. To this end, we developed a recommendation system based on Deep Neural Networks (DNN) and measured the accuracy of recommendation service, the diversity of recommended items and customer satisfaction with the recommendation service.
    [Show full text]
  • Collaborative Filtering: a Machine Learning Perspective by Benjamin Marlin a Thesis Submitted in Conformity with the Requirement
    Collaborative Filtering: A Machine Learning Perspective by Benjamin Marlin A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2004 by Benjamin Marlin Abstract Collaborative Filtering: A Machine Learning Perspective Benjamin Marlin Master of Science Graduate Department of Computer Science University of Toronto 2004 Collaborative filtering was initially proposed as a framework for filtering information based on the preferences of users, and has since been refined in many different ways. This thesis is a comprehensive study of rating-based, pure, non-sequential collaborative filtering. We analyze existing methods for the task of rating prediction from a machine learning perspective. We show that many existing methods proposed for this task are simple applications or modifications of one or more standard machine learning methods for classification, regression, clustering, dimensionality reduction, and density estima- tion. We introduce new prediction methods in all of these classes. We introduce a new experimental procedure for testing stronger forms of generalization than has been used previously. We implement a total of nine prediction methods, and conduct large scale prediction accuracy experiments. We show interesting new results on the relative performance of these methods. ii Acknowledgements I would like to begin by thanking my supervisor Richard Zemel for introducing me to the field of collaborative filtering, for numerous helpful discussions about a multitude of models and methods, and for many constructive comments about this thesis itself. I would like to thank my second reader Sam Roweis for his thorough review of this thesis, as well as for many interesting discussions of this and other research.
    [Show full text]
  • A Recommender System for Groups of Users
    PolyLens: A Recommender System for Groups of Users Mark O’Connor, Dan Cosley, Joseph A. Konstan, and John Riedl Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA {oconnor;cosley;konstan;riedl}@cs.umn.edu Abstract. We present PolyLens, a new collaborative filtering recommender system designed to recommend items for groups of users, rather than for individuals. A group recommender is more appropriate and useful for domains in which several people participate in a single activity, as is often the case with movies and restaurants. We present an analysis of the primary design issues for group recommenders, including questions about the nature of groups, the rights of group members, social value functions for groups, and interfaces for displaying group recommendations. We then report on our PolyLens prototype and the lessons we learned from usage logs and surveys from a nine-month trial that included 819 users. We found that users not only valued group recommendations, but were willing to yield some privacy to get the benefits of group recommendations. Users valued an extension to the group recommender system that enabled them to invite non-members to participate, via email. Introduction Recommender systems (Resnick & Varian, 1997) help users faced with an overwhelming selection of items by identifying particular items that are likely to match each user’s tastes or preferences (Schafer et al., 1999). The most sophisticated systems learn each user’s tastes and provide personalized recommendations. Though several machine learning and personalization technologies can attempt to learn user preferences, automated collaborative filtering (Resnick et al., 1994; Shardanand & Maes, 1995) has become the preferred real-time technology for personal recommendations, in part because it leverages the experiences of an entire community of users to provide high quality recommendations without detailed models of either content or user tastes.
    [Show full text]
  • Making History Useful: the Long Tail, the Search Economy and the U.S. Latino & Latina World War II Oral History Project Web Site
    Making History Useful: The Long Tail, the Search Economy and the U.S. Latino & Latina World War II Oral History Project Web Site BY Dr. J. Richard Stevens Dr. Maggie Rivas-Rodriguez Assistant Professor Associate Professor Division of Journalism School of Journalism Southern Methodist University The University of Texas at Austin P.O. Box 750113 1 University Station A1000 Dallas, TX 75275 Austin, Texas, 78712 214-768-1915 512-471-0405 [email protected] [email protected] Abstract This article presents two cases involving personally relevant searches that led users to the U.S. Latino & Latina World War II Oral History Project Web site. Using the long tail and the search economy paradigms (core components of current Web 2.0 development), the authors argue that the relevant searches were only possible because of the open archives of the site, and that the practice of denying open and free access to content by online news media affects their relevance to Web users. Key Words: Web 2.0, long tail, search economy, archives Making History Useful 1 Introduction Though online journalism remains in its infancy (Foust, 2005), development of its forms and structure are beginning to emerge. All media forms must adapt to their environment or die (Fidler, 1995), and how online journalism adapts to the ways in which Web users create relevancy is a critical issue facing news organizations. Aizu (1997, p. 473) argued that the Internet provides a global arena for “minor culture” that “the mass media and or the mass economy cannot pay attention to.” These observations are consistent with the niche element of the long tail paradigm.
    [Show full text]
  • The Long Tail: Why the Future of Business Is Selling Less of More
    J PROD INNOV MANAG 2007;24;274­281 © 2007 Product Development & Management Association increases, the impact of the long tail phenomenon increases. Chris Anderson states “Many of our assumptions about popular taste are actually artifacts of poor supply­and­demand matching – a market response to inefficient distribution” (p. 16). For example, fifty years ago a few television network executives controlled the few programs available for viewing on a given evening. Decades ago, viewers were more likely to accept whatever the networks offered. Today, viewing behavior is more diverse and there is more efficient distribution. There are more many The Long Tail: Why the Future of Business more television networks (for example, a science Is Selling Less of More fiction network), more televisions per capita, and Chris Anderson. New York: Hyperion, 2006. 230 + compelling alternatives, so it is unlikely that a given xii pages. US$24.95 network program will be seen by more than 30 percent of potential viewers. Now, it is more likely The Long Tail is an extension of an influential article that consumers will find and view their personal published in Wired Magazine (Anderson, 2004). As a favorites from a choice of hundreds of channels and business concept, the long tail phenomenon is then interact with an online community that shares attractive because “products that are in low demand similar preferences. or have low sales volume can collectively make up a Chapter 4 explores specific supply and demand market share that rivals or exceeds the relatively few conditions necessary for narrowly targeted goods and current bestsellers and blockbusters, if the store or services to be economically attractive.
    [Show full text]
  • Indian Regional Movie Dataset for Recommender Systems
    Indian Regional Movie Dataset for Recommender Systems Prerna Agarwal∗ Richa Verma∗ Angshul Majumdar IIIT Delhi IIIT Delhi IIIT Delhi [email protected] [email protected] [email protected] ABSTRACT few years with a lot of diversity in languages and viewers. As per Indian regional movie dataset is the rst database of regional Indian the UNESCO cinema statistics [9], India produces around 1,724 movies, users and their ratings. It consists of movies belonging to movies every year with as many as 1,500 movies in Indian regional 18 dierent Indian regional languages and metadata of users with languages. India’s importance in the global lm industry is largely varying demographics. rough this dataset, the diversity of Indian because India is home to Bollywood in Mumbai. ere’s a huge base regional cinema and its huge viewership is captured. We analyze of audience in India with a population of 1.3 billion which is evident the dataset that contains roughly 10K ratings of 919 users and by the fact that there are more than two thousand multiplexes in 2,851 movies using some supervised and unsupervised collaborative India where over 2.2 billion movie tickets were sold in 2016. e box ltering techniques like Probabilistic Matrix Factorization, Matrix oce revenue in India keeps on rising every year. erefore, there Completion, Blind Compressed Sensing etc. e dataset consists of is a huge need for a dataset like Movielens in Indian context that can metadata information of users like age, occupation, home state and be used for testing and bench-marking recommendation systems known languages.
    [Show full text]
  • Recommender Systems User-Facing Decision Support Systems
    Recommender Systems User-Facing Decision Support Systems Michael Hahsler Intelligent Data Analysis Lab (IDA@SMU) CSE, Lyle School of Engineering Southern Methodist University EMIS 5/7357: Decision Support Systems February 22, 2012 Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 1 / 44 Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 2 / 44 Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 3 / 44 Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 4 / 44 Table of Contents 1 Recommender Systems & DSS 2 Content-based Approach 3 Collaborative Filtering (CF) Memory-based CF Model-based CF 4 Strategies for the Cold Start Problem 5 Open-Source Implementations 6 Example: recommenderlab for R 7 Empirical Evidence Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 5 / 44 Decision Support Systems ? Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 6 / 44 Decision Support Systems \Decision Support Systems are defined broadly [...] as interactive computer-based systems that help people use computer communications, data, documents, knowledge, and models to solve problems and make decisions." Power (2002) Main Components: Knowledge base Model User interface Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 6 / 44 ! A recommender system is a decision support systems which help a seller to choose suitable items to offer given a limited information channel. Recommender Systems Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations. Sarwar et al. (2000) Advantages of recommender systems (Schafer et al., 2001): Improve conversion rate: Help customers find a product she/he wants to buy.
    [Show full text]
  • Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CiteSeerX Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach Gediminas Adomavicius Department of Information & Decision Sciences Carlson School of Management University of Minnesota [email protected] Ramesh Sankaranarayanan Department of Information, Operations & Management Sciences Stern School of Business New York University [email protected] Shahana Sen Marketing Department Silberman College of Business Fairleigh Dickinson University [email protected] Alexander Tuzhilin Department of Information, Operations & Management Sciences Stern School of Business New York University [email protected] Abstract The paper presents a multidimensional (MD) approach to recommender systems that can provide recommendations based on additional contextual information besides the typical information on users and items used in most of the current recommender systems. This approach supports multiple dimensions, extensive profiling, and hierarchical aggregation of recommendations. The paper also presents a multidimensional rating estimation method capable of selecting two- dimensional segments of ratings pertinent to the recommendation context and applying standard collaborative filtering or other traditional two-dimensional rating estimation techniques to these segments. A comparison of the multidimensional and two-dimensional rating estimation approaches is made, and the tradeoffs between the two are studied. Moreover, the paper introduces a combined rating estimation method that identifies the situations where the MD approach outperforms the standard two-dimensional approach and uses the MD approach in those situations and the standard two-dimensional approach elsewhere. Finally, the paper presents a pilot empirical study of the combined approach, using a multidimensional movie recommender system that was developed for implementing this approach and testing its performance.
    [Show full text]
  • How-Relevant-Is-The-Long-Tail.Pdf
    How Relevant is the Long Tail? A Relevance Assessment Study on Million Short Philipp Schaer1, Philipp Mayr2, Sebastian S¨unkler3, and Dirk Lewandowski3 1 Cologne University of Applied Sciences, Cologne, Germany 2 GESIS – Leibniz Institute for the Social Sciences, Cologne, Germany 3 Hamburg University of Applied Sciences, Hamburg, Germany Abstract. Users of web search engines are known to mostly focus on the top ranked results of the search engine result page. While many studies support this well known information seeking pattern only few studies concentrate on the question what users are missing by neglecting lower ranked results. To learn more about the relevance distributions in the so-called long tail we conducted a relevance assessment study with the Million Short long-tail web search engine. While we see a clear difference in the content between the head and the tail of the search engine result list we see no statistical significant differences in the binary relevance judgments and weak significant differences when using graded relevance. The tail contains different but still valuable results. We argue that the long tail can be a rich source for the diversification of web search engine result lists but it needs more evaluation to clearly describe the differences. 1 Introduction The ranking algorithms of web search engines try to predict the relevance of web pages to a given search query by a user. By incorporating hundreds of “signals” modern search engines do a great job in bringing a usable order to the vast amounts of web data available. Users are used to rely mostly on the first few results presented in search engine result pages (SERP).
    [Show full text]
  • Music Recommendation and Discovery in the Long Tail
    MUSIC RECOMMENDATION AND DISCOVERY IN THE LONG TAIL Oscar` Celma Herrada 2008 c Copyright by Oscar` Celma Herrada 2008 All Rights Reserved ii To Alex and Claudia who bring the whole endeavour into perspective. iii iv Acknowledgements I would like to thank my supervisor, Dr. Xavier Serra, for giving me the opportunity to work on this very fascinating topic at the Music Technology Group (MTG). Also, I want to thank Perfecto Herrera for providing support, countless suggestions, reading all my writings, giving ideas, and devoting much time to me during this long journey. This thesis would not exist if it weren’t for the the help and assistance of many people. At the risk of unfair omission, I want to express my gratitude to them. I would like to thank all the colleagues from MTG that were —directly or indirectly— involved in some bits of this work. Special mention goes to Mohamed Sordo, Koppi, Pedro Cano, Mart´ın Blech, Emilia G´omez, Dmitry Bogdanov, Owen Meyers, Jens Grivolla, Cyril Laurier, Nicolas Wack, Xavier Oliver, Vegar Sandvold, Jos´ePedro Garc´ıa, Nicolas Falquet, David Garc´ıa, Miquel Ram´ırez, and Otto W¨ust. Also, I thank the MTG/IUA Administration Staff (Cristina Garrido, Joana Clotet and Salvador Gurrera), and the sysadmins (Guillem Serrate, Jordi Funollet, Maarten de Boer, Ram´on Loureiro, and Carlos Atance). They provided help, hints and patience when I played around with the machines. During my six months stage at the Center for Computing Research of the National Poly- technic Institute (Mexico City) in 2007, I met a lot of interesting people ranging different disciplines.
    [Show full text]