The EMBO Journal Vol. 21 No. 13 pp. 3476±3485, 2002 Molecular basis of sequence-speci®c single-stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single-stranded DNA Demetrios T.Braddock1,2, James L.Baber1, mitosis (Michelotti et al., 1997) and the tight control of David Levens2 and G.Marius Clore1,3 oncogenes (He et al., 2000; Liu et al., 2001). Recently, we solved the structure of a complex between 1Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of the KH3 and KH4 domains of FBP (FBP3/4) and a Health, Bethesda, MD 20892-0510 and 2Laboratory of Pathology, ssDNA 29mer from FUSE (Braddock et al., 2002). In the Building 10, National Cancer Institute, National Institutes of Health, FBP3/4±FUSE complex, KH3 and KH4 bind in a speci®c Bethesda, MD 20892, USA orientation and register to the ssDNA 29mer, which is 3Corresponding author preserved in complexes of the individual KH domains e-mail:
[email protected] bound to shorter oligonucleotides, 9±10 bp in length, encompassing their respective target sites in the larger To elucidate the basis of sequence-speci®c single- complex. Although the ssDNA binding site is located stranded (ss) DNA recognition by K homology (KH) within a relatively narrow groove that generally favors domains, we have solved the solution structure of a pyrimidines over purines, the origin of further sequence- complex between the KH3 domain of the transcrip- speci®c base recognition appears to be subtle.