Identifying Latent Enzyme Activities: Substrate Ambiguity Within Modern Bacterial Sugar Kinases† Brian G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Simple Colorimetric RNA Polymerase Assay
Virology 274, 429–437 (2000) doi:10.1006/viro.2000.0492, available online at http://www.idealibrary.com on Exploiting Polymerase Promiscuity: A Simple Colorimetric RNA Polymerase Assay William Vassiliou,* Jeffery B. Epp,† Bin-Bin Wang,* Alfred M. Del Vecchio,‡,1 Theodore Widlanski,§ and C. Cheng Kao*,2 *Department of Biology, Indiana University, Bloomington, Indiana 47405; †Dow AgroSciences, Indianapolis, Indiana 46268; ‡SmithKline Beecham Inc., Collegeville, Pennsylvania 19426; and §Department of Chemistry, Indiana University, Bloomington, Indiana 47405 Received May 18, 2000; accepted June 29, 2000 We developed a convenient colorimetric assay for monitoring RNA synthesis from DNA-dependent RNA polymerases (DdRp) and viral RNA-dependent RNA polymerases (RdRp). ATP and GTP with a p-nitrophenyl moiety attached to the ␥-phosphate were synthesized (PNP–NTPs). These PNP–NTPs can be used for RNA synthesis by several RNA polymerases, including the RdRps from brome mosaic virus and bovine viral diarrhea virus and the DdRps from bacteriophage T7 and SP6. When the polymerase reactions were performed in the presence of alkaline phosphatase, which digests the p-nitrophe- nylpyrophosphate side-product of phosphoryl transfer to the chromogenic p-nitrophenylate, an increase in absorbence at 405 nm was observed. These nucleotide analogues were used in continuous colorimetric monitoring of polymerase activity. Furthermore, the PNP–NTPs were found to be stable and utilized by RNA polymerases in the presence of human plasma. This simple colorimetric polymerase assay can be performed in a standard laboratory spectrophotometer and will be useful in screens for inhibitors of viral RNA synthesis. © 2000 Academic Press INTRODUCTION polymerases are primarily tested using radioactive assays that require special handling of the isotope RNA and DNA polymerases carry out the synthesis of and are incompatible with continuous monitoring of oligonucleotides by transfer of a nucleoside monophos- polymerase activity (Ferrari et al., 1999). -
A Mutation in DNA Polymerase Α Rescues WEE1KO Sensitivity to HU
International Journal of Molecular Sciences Article A Mutation in DNA Polymerase α Rescues WEE1KO Sensitivity to HU Thomas Eekhout 1,2 , José Antonio Pedroza-Garcia 1,2 , Pooneh Kalhorzadeh 1,2, Geert De Jaeger 1,2 and Lieven De Veylder 1,2,* 1 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; [email protected] (T.E.); [email protected] (J.A.P.-G.); [email protected] (P.K.); [email protected] (G.D.J.) 2 Center for Plant Systems Biology, VIB, 9052 Gent, Belgium * Correspondence: [email protected] Abstract: During DNA replication, the WEE1 kinase is responsible for safeguarding genomic integrity by phosphorylating and thus inhibiting cyclin-dependent kinases (CDKs), which are the driving force of the cell cycle. Consequentially, wee1 mutant plants fail to respond properly to problems arising during DNA replication and are hypersensitive to replication stress. Here, we report the identification of the pola-2 mutant, mutated in the catalytic subunit of DNA polymerase α, as a suppressor mutant of wee1. The mutated protein appears to be less stable, causing a loss of interaction with its subunits and resulting in a prolonged S-phase. Keywords: replication stress; DNA damage; cell cycle checkpoint Citation: Eekhout, T.; Pedroza- 1. Introduction Garcia, J.A.; Kalhorzadeh, P.; De Jaeger, G.; De Veylder, L. A Mutation DNA replication is a highly complex process that ensures the chromosomes are in DNA Polymerase α Rescues correctly replicated to be passed onto the daughter cells during mitosis. Replication starts WEE1KO Sensitivity to HU. Int. -
The Conserved Structure of Plant Telomerase RNA Provides the Missing Link for an Evolutionary Pathway from Ciliates to Humans
The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans Jiarui Songa, Dhenugen Logeswaranb,1, Claudia Castillo-Gonzáleza,1, Yang Lib, Sreyashree Bosea, Behailu Birhanu Aklilua, Zeyang Mac,d, Alexander Polkhovskiya,e, Julian J.-L. Chenb,2, and Dorothy E. Shippena,2 aDepartment of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; bSchool of Molecular Sciences, Arizona State University, Tempe, AZ 85287; cNational Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China; dCollege of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China; and eCenter of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russian Federation Edited by Thomas R. Cech, University of Colorado Boulder, Boulder, CO, and approved October 24, 2019 (received for review September 4, 2019) Telomerase is essential for maintaining telomere integrity. Although transcribed by RNA polymerase III (Pol III) (6, 7). The La-related telomerase function is widely conserved, the integral telomerase protein P65 in Tetrahymena recognizes the 3′ poly-U tail of TR RNA (TR) that provides a template for telomeric DNA synthesis has and bends the RNA to facilitate telomerase RNP assembly (8, 9). diverged dramatically. Nevertheless, TR molecules retain 2 highly In contrast, fungi maintain much larger TR molecules (900 to conserved structural domains critical for catalysis: a template- 2,400 nt) that are transcribed by RNA polymerase II (Pol II) (3). proximal pseudoknot (PK) structure and a downstream stem-loop The 3′ end maturation of fungal TRs requires components of the structure. Here we introduce the authentic TR from the plant canonical snRNA biogenesis pathway and results in RNP assembly Arabidopsis thaliana, called AtTR, identified through next-generation sequencing of RNAs copurifying with Arabidopsis TERT. -
Human Glucokinase Gene
Proc. Nati. Acad. Sci. USA Vol. 89, pp. 7698-7702, August 1992 Genetics Human glucokinase gene: Isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus (glucose/metabolism/phosphorylation/structure4unctlon/chromosome 7) M. STOFFEL*, PH. FROGUELt, J. TAKEDA*, H. ZOUALItt, N. VIONNET*, S. NISHI*§, I. T. WEBER¶, R. W. HARRISON¶, S. J. PILKISII, S. LESAGEtt, M. VAXILLAIREtt, G. VELHOtt, F. SUNtt, F. lIRSt, PH. PASSAt, D. COHENt, AND G. I. BELL*"** *Howard Hughes Medical Institute, and Departments of Biochemistry and Molecular Biology, and of Medicine, The University of Chicago, 5841 South Maryland Avenue, MC1028, Chicago, IL 60637; §Second Division of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-32, Japan; IDepartment of Pharmacology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107; IlDepartment of Physiology and Biophysics, State University of New York, Stony Brook, NY 11794; tCentre d'Etude du Polymorphisme Humain, 27 rue Juliette Dodu, and Service d'Endocrinologie, H6pital Saint-Louis, 75010 Paris, France; and tG6ndthon, 1 rue de l'Internationale, 91000 Evry, France Communicated by Jean Dausset, May 28, 1992 ABSTRACT DNA polymorphisms in the glucokinase gene by maintaining a gradient for glucose transport into these cells have recently been shown to be tightly linked to early-onset thereby regulating hepatic glucose disposal. In (3 cells, glu- non-insulin-dependent diabetes mellitus in "80% of French cokinase is believed to be part of the glucose-sensing mech- families with this form of diabetes. We previously identified a anism and to be involved in the regulation ofinsulin secretion. -
Arthur Kornberg Discovered (The First) DNA Polymerase Four
Arthur Kornberg discovered (the first) DNA polymerase Using an “in vitro” system for DNA polymerase activity: 1. Grow E. coli 2. Break open cells 3. Prepare soluble extract 4. Fractionate extract to resolve different proteins from each other; repeat; repeat 5. Search for DNA polymerase activity using an biochemical assay: incorporate radioactive building blocks into DNA chains Four requirements of DNA-templated (DNA-dependent) DNA polymerases • single-stranded template • deoxyribonucleotides with 5’ triphosphate (dNTPs) • magnesium ions • annealed primer with 3’ OH Synthesis ONLY occurs in the 5’-3’ direction Fig 4-1 E. coli DNA polymerase I 5’-3’ polymerase activity Primer has a 3’-OH Incoming dNTP has a 5’ triphosphate Pyrophosphate (PP) is lost when dNMP adds to the chain E. coli DNA polymerase I: 3 separable enzyme activities in 3 protein domains 5’-3’ polymerase + 3’-5’ exonuclease = Klenow fragment N C 5’-3’ exonuclease Fig 4-3 E. coli DNA polymerase I 3’-5’ exonuclease Opposite polarity compared to polymerase: polymerase activity must stop to allow 3’-5’ exonuclease activity No dNTP can be re-made in reversed 3’-5’ direction: dNMP released by hydrolysis of phosphodiester backboneFig 4-4 Proof-reading (editing) of misincorporated 3’ dNMP by the 3’-5’ exonuclease Fidelity is accuracy of template-cognate dNTP selection. It depends on the polymerase active site structure and the balance of competing polymerase and exonuclease activities. A mismatch disfavors extension and favors the exonuclease.Fig 4-5 Superimposed structure of the Klenow fragment of DNA pol I with two different DNAs “Fingers” “Thumb” “Palm” red/orange helix: 3’ in red is elongating blue/cyan helix: 3’ in blue is getting edited Fig 4-6 E. -
Taming the Wild Rubisco: Explorations in Functional Metagenomics
Taming the Wild RubisCO: Explorations in Functional Metagenomics DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Brian Hurin Witte, M.S. Graduate Program in Microbiology The Ohio State University 2012 Dissertation Committee : F. Robert Tabita, Advisor Joseph Krzycki Birgit E. Alber Paul Fuerst Copyright by Brian Hurin Witte 2012 Abstract Ribulose bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39) (RubisCO) is the most abundant protein on Earth and the mechanism by which the vast majority of carbon enters the planet’s biosphere. Despite decades of study, many significant questions about this enzyme remain unanswered. As anthropogenic CO2 levels continue to rise, understanding this key component of the carbon cycle is crucial to forecasting feedback circuits, as well as to engineering food and fuel crops to produce more biomass with few inputs of increasingly scarce resources. This study demonstrates three means of investigating the natural diversity of RubisCO. Chapter 1 builds on existing DNA sequence-based techniques of gene discovery and shows that RubisCO from uncultured organisms can be used to complement growth in a RubisCO-deletion strain of autotrophic bacteria. In a few short steps, the time-consuming work of bringing an autotrophic organism in to pure culture can be circumvented. Chapter 2 details a means of entirely bypassing the bias inherent in sequence-based gene discovery by using selection of RubisCO genes from a metagenomic library. Chapter 3 provides a more in-depth study of the RubisCO from the methanogenic archaeon Methanococcoides burtonii. -
RNA-Dependent RNA Polymerase Speed and Fidelity Are Not the Only Determinants of the Mechanism Or Efficiency of Recombination
G C A T T A C G G C A T genes Article RNA-Dependent RNA Polymerase Speed and Fidelity are not the Only Determinants of the Mechanism or Efficiency of Recombination Hyejeong Kim y, Victor D. Ellis III, Andrew Woodman, Yan Zhao, Jamie J. Arnold y and , Craig E. Cameron y * Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 201 Althouse Laboratory, University Park, PA 16802, USA; [email protected] (H.K.); [email protected] (V.D.E.); [email protected] (A.W.); [email protected] (Y.Z.); [email protected] (J.J.A.) * Correspondence: [email protected]; Tel.: +1-919-966-9699 Present address: Department of Microbiology and Immunology, School of Medicine, University of North y Carolina at Chapel Hill, 125 Mason Farm Rd., Chapel Hill, NC 27599-7290, USA. Received: 15 October 2019; Accepted: 21 November 2019; Published: 25 November 2019 Abstract: Using the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV) as our model system, we have shown that Lys-359 in motif-D functions as a general acid in the mechanism of nucleotidyl transfer. A K359H (KH) RdRp derivative is slow and faithful relative to wild-type enzyme. In the context of the KH virus, RdRp-coding sequence evolves, selecting for the following substitutions: I331F (IF, motif-C) and P356S (PS, motif-D). We have evaluated IF-KH, PS-KH, and IF-PS-KH viruses and enzymes. The speed and fidelity of each double mutant are equivalent. Each exhibits a unique recombination phenotype, with IF-KH being competent for copy-choice recombination and PS-KH being competent for forced-copy-choice recombination. -
T7 RNA Polymerase from Escherichia Coli BL 21/Par 1219 Nucleoside-Triphosphate: RNA Nucleotidyltransferase (DNA-Directed), EC 2.7.7.6 Cat
For life science research only. Not for use in diagnostic procedures. T7 RNA Polymerase From Escherichia coli BL 21/pAR 1219 Nucleoside-triphosphate: RNA nucleotidyltransferase (DNA-directed), EC 2.7.7.6 Cat. No. 10 881 767 001 y Version 22 1,000 U Content version: March 2016 Cat. No. 10 881 775 001 5,000 U Store at Ϫ15 to Ϫ25° C Product Overview Standard Transcription Assay Pack Content Additional Reagents Required • lin. template DNA including T7 RNA promotor Vial Content • Ribonucleoside triphosphates T7 RNA • 1,000 U • labeled nucleotide (according to application) Polymerase • 5,000 U •RNAse inhibitor Enzyme storage buffer: 10 mM Potassium phosphate, • Water, PCR Grade 200 mM KCl, 0.1 mM EDTA, 30 mM 2-mercaptoethanol, 50% glycerol (v/v), 0.1% Tween 20, pH 7.9 (+4°C). Radioactive Assay Supplied Transcrip- Buffer composition (10x conc.): Pipet the following components into a microfuge tube, mix and make up to a tion buffer 0.4 M Tris-HCl, pH 8.0 (+20°C), 60 mM MgCl2 , 100 mM final volume of 20 µl: dithiothreitol, 20 mM spermidine. Storage and Stability Reagent Volume/Concentration Stable at -15 to -25°C until the expiration date printed on the label. Template DN A 0.5 µg Product Description Nucleotides ATP, GTP, CTP, UTP each 0.5 mM final T7 RNA polymerase is commonly used to transcribe DNA which has been α 32 cloned into vectors which have two phage promoters in opposite orientation. Labeled nucleotide [ - P] CTP [400 Ci/ 0.1 µl aqueous solution RNA can be selectively synthesized from either strand of the insert DNA with mmol; 15 TBq/mmol] different polymerases. -
SUPPY Liglucosexlmtdh
US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0158968 A1 Panitch Et Al
US 20100158968A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0158968 A1 Panitch et al. (43) Pub. Date: Jun. 24, 2010 (54) CELL-PERMEANT PEPTIDE-BASED Publication Classification INHIBITOR OF KINASES (51) Int. Cl. (76) Inventors: Alyssa Panitch, West Lafayette, IN st e8 CR (US); Brandon Seal, West ( .01) Lafayette, IN (US) A638/10 (2006.01) s A638/16 (2006.01) Correspondence Address: A6IP 43/00 (2006.01) GREENBERG TRAURIG, LLP (52) U.S. Cl. ................ 424/422:514/15: 514/13: 514/14 200 PARKAVE., P.O. BOX 677 FLORHAMPARK, NJ 07932 (US) (57) ABSTRACT The described invention provides kinase inhibiting composi (21) Appl. No.: 12/634,476 tions containing a therapeutic amount of a therapeutic inhibi (22) Filed: Dec. 9, 2009 torpeptide that inhibits at least one kinase enzyme, methods e 19 for treating an inflammatory disorder whose pathophysiology comprises inflammatory cytokine expression, and methods Related U.S. Application Data for treating an inflammatory disorder whose pathophysiology (60) Provisional application No. 61/121,396, filed on Dec. comprises inflammatory cytokine expression using the kinase 10, 2008. inhibiting compositions. 20 { ki> | 0: & c s - --- 33- x: SE PEPELE, ics 1.-- E- X K. AAA 22.9 --- KKK. Y.A., 3.2; C. -r { AAEASA. A. E. i : A X AAAAAAA; ; ; ; :-n. 4:-: is SEEKESAN.ARESA, 3523 -- -- Yili.A.R.AKA: 5,342 3. {{RCE: Rix i: Patent Application Publication US 2010/0158968A1 & ******** NO s ***** · Patent Application Publication Jun. 24, 2010 Sheet 2 of 11 US 2010/0158968A1 it, O Peptide: Cso: g E 100 WRRKAWRRKANRO, GWAA. -
Datasheet for T7 RNA Polymerase
Applications: 1X RNAPol Reaction Buffer: Incubate at 37°C for 1 hour. For shorter (< 300 nt) • Radiolabeled RNA probes 40 mM Tris-HCl transcripts incubate at 37°C for 2–16 hours. T7 RNA Polymerase 6 mM MgCl • Non-isotopic RNA labeling 2 2 mM spermidine Notes on use: • Preparation of RNA vaccines 1 mM dithiothreitol For radio labeled high specific activity RNA 1-800-632-7799 • Guide RNA for gene targeting pH 7.9 @ 25°C probes, the concentration of the radioactive [email protected] nucleotide should be limited to 6 μM. www.neb.com • mRNA for in vitro translation and micro injection Unit Definition: One unit is defined as the amount of M0251S 013160118011 • RNA structure, processing and catalysis studies enzyme required to incorporate 1 nmol ATP into an To protect RNA against ribonuclease, RNase inhibitor (NEB #M0314 or #M0307) should be • RNA amplification acid-insoluble material in 1 hour at 37°C. added to a final concentration of 1 U/μl. M0251S • Anti-sense RNA for gene expression experiment Unit Assay Conditions: 1X RNAPol Reaction Buffer, T7 RNA Polymerase is extremely sensitive to salt supplemented with 0.5 mM each ATP, UTP, GTP, CTP 5,000 units 50,000 U/ml Lot: 0131601 Supplied in: 100 mM NaCl, 50 mM Tris-HCl (pH 7.9), inhibition. The overall salt concentration should and 1 µg T7 DNA in 50 µl. RECOMBINANT Store at –20°C Exp: 1/18 1 mM EDTA, 20 mM 2-mercaptoethanol, 0.1% Triton not exceed 50 mM. X-100 and 50% glycerol. Description: Bacteriophage T7 RNA Polymerase is Protocol for Standard RNA Synthesis: Assemble the Quality Control Assays a DNA-dependent RNA polymerase that is highly reaction at room temperature in the following order. -
Regulation of Trypanosoma Brucei
Clemson University TigerPrints All Dissertations Dissertations 5-2011 REGULATION OF TRYPANOSOMA BRUCEI HEXOKINASE 1 AND 2 ON MULTIPLE LEVELS: TRANSCRIPT ABUNDANCE, PROTEIN EXPRESSION AND ENZYME ACTIVITY Heidi Dodson Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Biochemistry Commons Recommended Citation Dodson, Heidi, "REGULATION OF TRYPANOSOMA BRUCEI HEXOKINASE 1 AND 2 ON MULTIPLE LEVELS: TRANSCRIPT ABUNDANCE, PROTEIN EXPRESSION AND ENZYME ACTIVITY" (2011). All Dissertations. 703. https://tigerprints.clemson.edu/all_dissertations/703 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. REGULATION OF TRYPANOSOMA BRUCEI HEXOKINASE 1 AND 2 ON MULTIPLE LEVELS: TRANSCRIPT ABUNDANCE, PROTEIN EXPRESSION AND ENZYME ACTIVITY A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Biochemistry and Molecular Biology by Heidi Cornelia Dodson May 2011 Accepted by: Dr. James C. Morris, Committee Chair Dr. Kimberly S. Paul Dr. Michael G. Sehorn Dr. Kerry S. Smith ABSTRACT Trypanosoma brucei, a unicellular eukaryotic parasite, is the causative agent of African sleeping sickness in sub-Saharan Africa. The parasite encounters two main environments as it progresses through its life cycle: the tsetse fly and the mammalian bloodstream. Nutrient availability is distinct in the two environments, requiring the parasite to utilize diverse metabolic pathways to efficiently produce ATP for survival. Bloodstream form parasites (BSF), residing in a glucose rich environment, rely solely on glycolysis for energy, while procyclic form (PF) parasites metabolize readily available proline and threonine in addition to glucose.