Assessing the Severity of Traumatic Brain Injury—Time for a Change?

Total Page:16

File Type:pdf, Size:1020Kb

Assessing the Severity of Traumatic Brain Injury—Time for a Change? Journal of Clinical Medicine Review Assessing the Severity of Traumatic Brain Injury—Time for a Change? Olli Tenovuo 1,2,*, Ramon Diaz-Arrastia 3, Lee E. Goldstein 4, David J. Sharp 5,6, Joukje van der Naalt 7 and Nathan D. Zasler 8,9 1 Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, 20521 Turku, Finland 2 Department of Neurology, Institute of Clinical Medicine, University of Turku, 20500 Turku, Finland 3 Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] 4 Alzheimer’s Disease Research Center, College of Engineering, Boston University School of Medicine, Boston, MA 02118, USA; [email protected] 5 Clinical, cognitive and computational neuroimaging laboratory (C3NL), Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK; [email protected] 6 UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, W12 0NN UK 7 Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groning-en, The Netherlands; [email protected] 8 Concussion Care Centre of Virginia and Tree of Life, Richmond, VA 23233, USA; [email protected] 9 Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23284, USA * Correspondence: olli.tenovuo@tyks.fi; Tel.: +358-50-438-3802 Abstract: Traumatic brain injury (TBI) has been described to be man’s most complex disease, in man’s most complex organ. Despite this vast complexity, variability, and individuality, we still classify the severity of TBI based on non-specific, often unreliable, and pathophysiologically poorly understood measures. Current classifications are primarily based on clinical evaluations, which are non-specific Citation: Tenovuo, O.; Diaz-Arrastia, R.; and poorly predictive of long-term disability. Brain imaging results have also been used, yet there are Goldstein, L.E.; Sharp, D.J.; multiple ways of doing brain imaging, at different timepoints in this very dynamic injury. Severity van der Naalt, J.; Zasler, N.D. itself is a vague concept. All prediction models based on combining variables that can be assessed Assessing the Severity of Traumatic during the acute phase have reached only modest predictive values for later outcome. Yet, these Brain Injury—Time for a Change? J. Clin. Med. 2021, 10, 148. https:// early labels of severity often determine how the patient is treated by the healthcare system at large. doi.org/10.3390/jcm10010148 This opinion paper examines the problems and provides caveats regarding the use of current severity labels and the many practical and scientific issues that arise from doing so. The objective of this Received: 5 December 2020 paper is to show the causes and consequences of current practice and propose a new approach based Accepted: 30 December 2020 on risk classification. A new approach based on multimodal quantifiable data (including imaging Published: 4 January 2021 and biomarkers) and risk-labels would be of benefit both for the patients and for TBI clinical research and should be a priority for international efforts in the field. Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional clai- Keywords: traumatic brain injury; severity; assessment; outcome ms in published maps and institutio- nal affiliations. 1. Introduction Copyright: © 2021 by the authors. Li- Traumatic brain injuries (TBIs) are among the most common maladies affecting hu- censee MDPI, Basel, Switzerland. manity. Grading injury severity is an early step in management and is a first step towards This article is an open access article prognosis and targeted therapies. Fields of medicine as diverse as cardiology and oncology distributed under the terms and con- use grading schema, such as NYHA-congestive heart failure grading scale in cardiology ditions of the Creative Commons At- and staging scales in many cancers. Grading based exclusively on clinical features, in the tribution (CC BY) license (https:// absence of imaging or molecular biomarkers, provides suboptimal prognostic informa- creativecommons.org/licenses/by/ tion and is inadequate for identifying patients likely to benefit from specific therapies [1]. 4.0/). J. Clin. Med. 2021, 10, 148. https://doi.org/10.3390/jcm10010148 https://www.mdpi.com/journal/jcm J. Clin. Med. 2021, 10, 148 2 of 12 Grading scales that focus exclusively on clinical features may not capture disease endophe- notypes or differentiate underlying disease mechanisms. Progress in clinical management has often been made when grading scales have incorporated measurable biomarkers di- rectly related to the underlying pathophysiology, such as for choosing treatment options for gliomas or breast cancer based on biomarkers. TBI has been historically classified as mild, moderate, and severe, based exclusively on clinical features such as the level of consciousness or duration of post-traumatic am- nesia (PTA) [2]. The introduction of computerized tomography (CT) almost 40 years ago revolutionized the management of TBI, but primarily for the small subset (< 5%) of patients with TBI who require neurosurgical interventions. Over 90% of patients who sustain TBIs are classified in the mild end of the spectrum, including those injuries labeled as concussions. While most patients with a single mild TBI (mTBI) fully recover, some do not [3], leading to potentially prolonged suffering, impaired quality of life, and increased risk of post-traumatic sequelae. Because mTBI is so common, the cumulative social burden from mTBI approaches that arising from moderate to severe TBI [4], with treatment costs higher than those of more severe cases [5]. For decades, the cause of prolonged symptoms after mTBIs/concussions have been a subject of debate. This scientific confusion is reflected by the fact that mTBI has been defined more than 40 different ways in the scientific literature [6]. The situation is even more confusing for concussion, where there are no official or internationally agreed definitions [7]. The concept of concussion as a benign transient incident has prevailed until our times, and still strongly influences public opinion. However, recent work shows that even concussions can have long-lasting effects [8]. The inability to define concussion makes its use in clinical decision-making and research very problematic. There have been arguments made for classifying concussion as a type of mTBI [9]; yet, this position is not true in all guideline documents and, in practice, clinicians tend to use the terms mTBI and concussion synonymously. Studies in patients with “concussion” greatly overlap with studies in patients with mTBI, further confusing the field. In clinical reality, the ICD-10 diagnosis S06.0 (Commotio cerebri) is frequently used for patients with CT-negative TBI irrespective of the other clinical severity indices. These issues are of broad relevance as concerns about chronic traumatic encephalopathy (CTE) and other long-term sequelae of repetitive neurotrauma have spurred high-profile awareness campaigns, media discussions, and public health policies. In this discussion it often forgotten, that CTE seems to be more related to a large number of subconcussive impacts, than to the presence of a clearly demarcated TBI history. In this paper, we will point out how the current tools for assessing the severity of TBI are far from ideal, and current methods of classifying severity include numerous sources of error. We will discuss how assigning seemingly definitive severity labels to patients following TBI often leads to confusion and problems for patients, families, caretakers, and health care systems. For neurotrauma research, these problems have the potential to lead to study variability and inconsistency of results. Finally, we will propose a new approach for classifying TBIs and what will be needed to build a new and better classification. 2. TBI Severity: What Does It Really Mean? TBI severity can be assessed from several viewpoints (Table1) and varies depending on who is making the evaluation. Available measures of biological injury are not cur- rently used when assessing severity. Judgments about severity are context dependent, often subjective, and are influenced by the reference point and experience of the assessor. For example, a patient with life-threatening TBI surviving the critical early phase may recover to independent daily life, showing only mild deficits in the eyes of the neuro- surgeon, but severe cognitive deficits assessed by the neuropsychologist, and profound emotional/personality changes by the family. This creates challenges, as outcomes after TBI are so variable. Injuries judged as severe in the acute setting may show full recovery, whereas those thought to be mild can lead to disabling consequences. We fully acknowledge J. Clin. Med. 2021, 10, 148 3 of 12 that subjective views on outcome are not in any way specific to TBI, but simultaneously point out that few medical conditions are classified using such vaguely defined severity labels as in TBI. More importantly, because the whole concept of ’severity´ is so ill-defined, multifaceted and subjective, it should be abandoned and replaced with more appropriate descriptors, as discussed below. Table 1. Different viewpoints on TBI severity. Acute risk of death/mortality Quantifying brain biomarker efflux Risk/need for neurosurgical measures Level/intensity of treatment needed (home, ED 1, ward, ICU 2) Duration of hospital
Recommended publications
  • Measuring Injury Severity
    Measuring Injury Severity A brief introduction Thomas Songer, PhD University of Pittsburgh [email protected] Injury severity is an integral component in injury research and injury control. This lecture introduces the concept of injury severity and its use and importance in injury epidemiology. Upon completing the lecture, the reader should be able to: 1. Describe the importance of measuring injury severity for injury control 2. Describe the various measures of injury severity This lecture combines the work of several injury professionals. Much of the material arises from a seminar given by Ellen MacKenzie at the University of Pittsburgh, as well as reference works, such as that by O’Keefe. Further details are available at: “Measuring Injury Severity” by Ellen MacKenzie. Online at: http://www.circl.pitt.edu/home/Multimedia/Seminar2000/Mackenzie/Mackenzie.ht m O’Keefe G, Jurkovich GJ. Measurement of Injury Severity and Co-Morbidity. In Injury Control. Rivara FP, Cummings P, Koepsell TD, Grossman DC, Maier RV (eds). Cambridge University Press, 2001. 1 Degrees of Injury Severity Injury Deaths Hospitalization Emergency Dept. Physician Visit Households Material in the lectures before have spoken of the injury pyramid. It illustrates that injuries of differing levels of severity occur at different numerical frequencies. The most severe injuries occur less frequently. This point raises the issue of how do you compare injury circumstances in populations, particularly when levels of severity may differ between the populations. 2 Police EMS Self-Treat Emergency Dept. doctor Injury Hospital Morgue Trauma Center Rehab Center Robertson, 1992 For this issue, consider that injuries are often identified from several different sources.
    [Show full text]
  • Early Management of Retained Hemothorax in Blunt Head and Chest Trauma
    World J Surg https://doi.org/10.1007/s00268-017-4420-x ORIGINAL SCIENTIFIC REPORT Early Management of Retained Hemothorax in Blunt Head and Chest Trauma 1,2 1,8 1,7 1 Fong-Dee Huang • Wen-Bin Yeh • Sheng-Shih Chen • Yuan-Yuarn Liu • 1 1,3,6 4,5 I-Yin Lu • Yi-Pin Chou • Tzu-Chin Wu Ó The Author(s) 2018. This article is an open access publication Abstract Background Major blunt chest injury usually leads to the development of retained hemothorax and pneumothorax, and needs further intervention. However, since blunt chest injury may be combined with blunt head injury that typically requires patient observation for 3–4 days, other critical surgical interventions may be delayed. The purpose of this study is to analyze the outcomes of head injury patients who received early, versus delayed thoracic surgeries. Materials and methods From May 2005 to February 2012, 61 patients with major blunt injuries to the chest and head were prospectively enrolled. These patients had an intracranial hemorrhage without indications of craniotomy. All the patients received video-assisted thoracoscopic surgery (VATS) due to retained hemothorax or pneumothorax. Patients were divided into two groups according to the time from trauma to operation, this being within 4 days for Group 1 and more than 4 days for Group 2. The clinical outcomes included hospital length of stay (LOS), intensive care unit (ICU) LOS, infection rates, and the time period of ventilator use and chest tube intubation. Result All demographics, including age, gender, and trauma severity between the two groups showed no statistical differences.
    [Show full text]
  • 201 a Abbreviated Injury Severity Score (AIS) , 157 Abdominal Injuries , 115 Acetylsalicylic Acid (ASA) , 14 Acromioclavicular (
    Index A incentive spirometry , 151 Abbreviated Injury Severity Score (AIS) , 157 indications , 143–144 Abdominal injuries , 115 insertion technique , 144–145 Acetylsalicylic acid (ASA) , 14 mechanical ventilation , 152 Acromioclavicular (AC) joint , 166, 177 mechanics , 143 Acute respiratory distress syndrome (ARDS) , 28, 157 operative fi xation, of rib fractures , 145 Advanced Trauma Life Support (ATLS) , 3, 101 pneumonia , 151–152 Airway pressure release ventilation (APRV) , 48 Chest X ray , 42, 43 Allman classifi cation , 166 Clavicle fractures , 5 Analgesia , 109, 196 acromioclavicular joint dislocations , 166 comprehensive approach , 148 Allman classifi cation , 166 direct operative exposure , 148 clinical evaluation , 166–167 elderly patients , 149, 151 development , 164 epidural analgesia , 149 distal clavicle fractures , 172–175 intercostal nerve blocks , 149 epidemiology , 164 opioids , 148–149 history , 163 Antibiotic prophylaxis , 145 intramedullary nail fi xation , 172 Antibiotics , 48, 113, 134, 145, 152 muscle groups/deforming forces , 165 Arterial blood gases , 42 nonoperative treatment , 167–168 operative dangers , 165–166 operative treatment , 169–170 B osteology , 164 Bioabsorbable implants , 67–70 plate fi xation , 170–172 Bioabsorbable plates , 127 Computed tomography , 106 Blunt cardiac injury , 107–108 CONsolidated Standards Of Reporting Trials Blunt cerebrovascular injury , 106 (CONSORT) Statement , 192 Blunt thoracic aortic injury , 106–107 Continuous positive airway pressure (CPAP) , 35, 152 Bronchoalveolar lavage
    [Show full text]
  • Original Article Clinical Effectiveness Analysis of Dextran 40 Plus Dexamethasone on the Prevention of Fat Embolism Syndrome
    Int J Clin Exp Med 2014;7(8):2343-2346 www.ijcem.com /ISSN:1940-5901/IJCEM0001158 Original Article Clinical effectiveness analysis of dextran 40 plus dexamethasone on the prevention of fat embolism syndrome Xi-Ming Liu1*, Jin-Cheng Huang2*, Guo-Dong Wang1, Sheng-Hui Lan1, Hua-Song Wang1, Chang-Wu Pan3, Ji-Ping Zhang2, Xian-Hua Cai1 1Department of Orthopaedics, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China; 2Depart- ment of Orthopaedics, The Second People’s Hospital of Yichang 443000, Hubei, China; 3Department of Orthopae- dics, The People’s Hospital of Tuanfeng 438000, Hubei, China. *Equal contributors. Received June 19, 2014; Accepted July 27, 2014; Epub August 15, 2014; Published August 30, 2014 Abstract: This study aims to investigate the clinical efficacy of Dextran 40 plus dexamethasone on the prevention of fat embolism syndrome (FES) in high-risk patients with long bone shaft fractures. According to the different preventive medication, a total of 1837 cases of long bone shaft fracture patients with injury severity score (ISS) > 16 were divided into four groups: dextran plus dexamethasone group, dextran group, dexamethasone group and control group. The morbidity and mortality of FES in each group were analyzed with pairwise comparison analysis. There were totally 17 cases of FES and 1 case died. The morbidity of FES was 0.33% in dextran plus dexamethasone group and significantly lowers than that of other groups (P < 0.05). There was no significant difference among other groups (P > 0.05). Conclusion from our data is dextran 40 plus dexamethasone can effectively prevent long bone shaft fractures occurring in high-risk patients with FES.
    [Show full text]
  • Underestimated Traumatic Brain Injury in Multiple Injured Patients; Is the Glasgow Coma Scale a Reliable Tool?
    Research Artice iMedPub Journals Trauma & Acute Care 2017 http://www.imedpub.com/ Vol.2 No.2:42 Underestimated Traumatic Brain Injury in Multiple Injured Patients; Is the Glasgow Coma Scale a Reliable Tool? Ladislav Mica1*, Kai Oliver Jensen1, Catharina Keller2, Stefan H. Wirth3, Hanspeter Simmen1 and Kai Sprengel1 1Division of Trauma Surgery, University Hospital of Zürich, 8091 Zürich, Switzerland 2LVR-Klinik, 51109 Köln, Germany 3Orthopädische Universitätsklink Balgrist, 8008 Zürich, Switzerland *Corresponding author: Ladislav Mica, Division of Trauma Surgery, University Hospital of Zürich, 8091 Zürich, Switzerland, Tel: +41 44 255 41 98; E- mail: [email protected] Received date: March 16, 2017; Accepted date: April 12, 2017; Published date: April 20, 2017 Citation: Mica L, Jensen KO, Keller C, Wirth SH, Simmen H, et al. (2017) Underestimated Traumatic Brain Injury in Multiple Injured Patients, is the Glasgow Coma Scale a Reliable Tool? Trauma Acute Care 2: 42. Copyright: © 2017 Mica L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: Abstract AIS: Abbreviated Injury Severity Score; ANOVA: Analysis of Variance; APACHE II: Acute Physiology and Chronic Health Background: Traumatic brain injuries are common in Evaluation; ATLS: Advanced Trauma Life Support; AUC: Area multiple injured patients. Here, the impact of traumatic under the Curve; CT: Computed Tomography; GCS: Glasgow brain injuries according age and mortality and predictive Coma Scale; IBM: International Business Machines Corporation; value was investigated. ISS: Injury Severity Score; NISS: New Injury Severity Score; ROC: Methods: Totally 2952 patients were included into this Receiver Operating Curve; SAPS: Simplified Acute Physiology sample.
    [Show full text]
  • Injury Severity Scoring
    INJURY SEVERITY SCORING Injury Severity Scoring is a process by which complex and variable patient data is reduced to a single number. This value is intended to accurately represent the patient's degree of critical illness. In truth, achieving this degree of accuracy is unrealistic and information is always lost in the process of such scoring. As a result, despite a myriad of scoring systems having been proposed, all such scores have both advantages and disadvantages. Part of the reason for such inaccuracy is the inherent anatomic and physiologic differences that exist between patients. As a result, in order to accurately estimate patient outcome, we need to be able to accurately quantify the patient's anatomic injury, physiologic injury, and any pre-existing medical problems which negatively impact on the patient's physiologic reserve and ability to respond to the stress of the injuries sustained. Outcome = Anatomic Injury + Physiologic Injury + Patient Reserve GLASGOW COMA SCORE The Glasgow Coma Score (GCS) is scored between 3 and 15, 3 being the worst, and 15 the best. It is composed of three parameters : Best Eye Response, Best Verbal Response, Best Motor Response, as given below: Best Eye Response (4) Best Verbal Response (5) Best Motor Response (6) 1. No eye opening 1. No verbal response 1. No motor response 2. Eye opening to pain 2. Incomprehensible sounds 2. Extension to pain 3. Eye opening to verbal 3. Inappropriate words 3. Flexion to pain command 4. Confused 4. Withdrawal from pain 4. Eyes open spontaneously 5. Orientated 5. Localising pain 6. Obeys Commands Note that the phrase 'GCS of 11' is essentially meaningless, and it is important to break the figure down into its components, such as E3 V3 M5 = GCS 11.
    [Show full text]
  • Diagnosing and Managing Concussion Tool
    Sections: A B C D References Diagnosing and Managing Concussion Tool This tool has been developed to support family physicians and nurse practitioners in consistently diagnosing and managing concussion in adult patients (≥ 18 years). Section A: Concussion overview Section C: Patient encounter forms pg.1 Clinical definition pg.5 Form: Diagnostic assessment pg.1 Common misconceptions about concussion pg.7 Form: Return to activities Section B: General treatment approach pg.9 Form: Symptom monitoring log (patient resource) pg.2 Assessment and diagnosis Section D: Additional resources pg.3 Management and recovery planning pg.10 Patient resources pg.4 Monitoring and follow-up pg.11 Provider resources Appendices Appendix A: Pharmacotherapy guidance Appendix B: Clinical symptom management guidance Section A: Concussion overview A concussion is an acute neurophysiological event related to blunt impact or mechanical injury applied to the head, neck, or body, with transmitting forces to the brain.1,2,3,4,5 • Although complex, concussion is manageable in a primary care setting. • There is no perfect diagnostic test or marker for concussion.3 • Although the terms concussion and mild traumatic brain injury (mTBI) are often used interchangeably, they are different conditions along a continuum.3 Evidence of intracranial injury or a persistent neurologic deficit are indicative of a mTBI.1,4 Clarifying common misconceptions about concussions • A concussion does not require a direct blow to the head. Concussion can be caused by impulsive forces acting elsewhere on the body transmitting to the head – such as sudden acceleration, rotation, deceleration (whiplash) or by multiple sub-concussive hits.1,3,4 • A concussion may or may not involve a loss of consciousness.
    [Show full text]
  • How Emergency Physicians Choose Chest Tube Size for Traumatic Pneumothorax Or Hemothorax: a Comparison Between 28Fr and Smaller Tube
    Nagoya J. Med. Sci. 82. 59–68, 2020 doi:10.18999/nagjms.82.1.59 How emergency physicians choose chest tube size for traumatic pneumothorax or hemothorax: a comparison between 28Fr and smaller tube Takafumi Terada1, Tetsuro Nishimura2, Kenichiro Uchida2, Naohiro Hagawa2, Maiko Esaki2 and Yasumitsu Mizobata2 1JA Aichi Koseiren Toyota Kosei Hospital, Department of Cardiac Surgery, Aichi, Japan 2Department of Traumatology and Critical Care Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan ABSTRACT Most traumatic pneumothoraxes and hemothoraxes can be managed non-operatively by means of chest tube thoracostomy. This study aimed to investigate how emergency physicians choose chest tube size and whether chest tube size affects patient outcome. We reviewed medical charts of patients who underwent chest tube insertion for chest trauma within 24 hours of admission in this retrospective, single-institution study. Patient characteristics, inserted tube size, risk of additional tube, and complications were evaluated. Eighty-six chest tubes were placed in 64 patients. Sixty-seven tubes were placed initially, and 19 addition- ally, which was significantly smaller than the initial tube. Initial tube size was 28 Fr in 38 and <28 Fr in 28 patients. Indications were pneumothorax (n=24), hemothorax (n=7), and hemopneumothorax (n=36). Initial tube size was not related to sex, BMI, BSA, indication, ISS, RTS, chest AIS, or respiratory status. An additional tube was placed in the same thoracic cavity for residual pneumothorax (n=13), hemothorax (n=1), hemopneumothorax (n=1), and inappropriate extrapleural placement (n=3). Risk of additional tube placement was not significantly different depending on tube size.
    [Show full text]
  • Incidence of Fat Embolism Syndrome in Femur Fractures and Its Associated Risk Factors Over Time—A Systematic Review
    Journal of Clinical Medicine Review Incidence of Fat Embolism Syndrome in Femur Fractures and Its Associated Risk Factors over Time—A Systematic Review Maximilian Lempert 1,* , Sascha Halvachizadeh 1 , Prasad Ellanti 2, Roman Pfeifer 1, Jakob Hax 1, Kai O. Jensen 1 and Hans-Christoph Pape 1 1 Department of Trauma, University Hospital Zurich, Raemistr. 100, 8091 Zürich, Switzerland; [email protected] (S.H.); [email protected] (R.P.); [email protected] (J.H.); [email protected] (K.O.J.); [email protected] (H.-C.P.) 2 Department of Trauma and Orthopedics, St. James’s Hospital, Dublin-8, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-255-27-55 Abstract: Background: Fat embolism (FE) continues to be mentioned as a substantial complication following acute femur fractures. The aim of this systematic review was to test the hypotheses that the incidence of fat embolism syndrome (FES) has decreased since its description and that specific injury patterns predispose to its development. Materials and Methods: Data Sources: MEDLINE, Embase, PubMed, and Cochrane Central Register of Controlled Trials databases were searched for articles from 1 January 1960 to 31 December 2019. Study Selection: Original articles that provide information on the rate of FES, associated femoral injury patterns, and therapeutic and diagnostic recommendations were included. Data Extraction: Two authors independently extracted data using a predesigned form. Statistics: Three different periods were separated based on the diagnostic and treatment changes: Group 1: 1 January 1960–12 December 1979, Group 2: 1 January 1980–1 December 1999, and Group 3: 1 January 2000–31 December 2019, chi-square test, χ2 test for group comparisons of categorical Citation: Lempert, M.; p n Halvachizadeh, S.; Ellanti, P.; Pfeifer, variables, -value < 0.05.
    [Show full text]
  • Injury Severity Score As a Predictor for Requirement of Surgical Exploration in Surgery Section High Grade Renal Trauma
    DOI: 10.7860/JCDR/2019/40379.12778 Original Article Injury Severity Score as a Predictor for Requirement of Surgical Exploration in Surgery Section High Grade Renal Trauma BHUSHAN R VISPUTE1, PRAKASH W PAWAR2, AJIT S SAWANT3, AMANDEEP M ARORA4, GAURAV V KASAT5, ASHWIN S TAMHANKAR6 ABSTRACT Results: Fifteen (39.47%) patients required intervention and Introduction: With the current advances in intensive care 23 (60.5%) were managed conservatively. In the conserved protocols, conservative management is successful in a large Group A, 39.1%, 47.8% and 13% had injury grades 1, 2 and 3 proportion of renal trauma patients who are haemodynamically respectively. Seven patients (18.4%) required ureteric stenting stable. In spite of the current trend towards conservative or pigtailing of perinephric collection (Group B) for urinary management of renal trauma, there still remains a dilemma extravasation. All 7 had grade 4 injury. Eight patients (21.8%) regarding need for surgery in patients with grade IV renal trauma. were explored (Group C), out of which five had grade 4 injuries Various predictors of failure of conservative management for while three had grade 5 injuries. Average ISS in the 3 groups high grade renal trauma have been studied. were 12.3, 11 and 19 respectively. Group C had significantly higher ISS than A (p=0.005) and B (p=0.0002). Of the grade 4 Aim: To assess the utility of the Injury Severity Score (ISS) in injuries, those who required surgical exploration had a higher predicting the need for surgical exploration in patients with high ISS (17.80) compared to those who could be managed with grade renal trauma.
    [Show full text]
  • Management of Diaphragmatic Rupture from Blunt Trauma Tan K K, Yan Z Y, Vijayan A, Chiu M T
    Original Article Singapore Med J 2009; 50(12) : 1150 Management of diaphragmatic rupture from blunt trauma Tan K K, Yan Z Y, Vijayan A, Chiu M T ABSTRACT raised ISS were associated with mortality. Introduction: Diagnosis of diaphragmatic rupture is difficult, and delays could result Conclusion: An accurate diagnosis of in a catastrophic outcome. We reviewed our diaphragmatic rupture in trauma patients is institution's management of patients with difficult, and a thorough examination of both the diaphragmatic rupture after blunt trauma. hemidiaphragms is mandatory during emergency laparotomy for these patients. Those with more Methods: All patients in this study were treated at severe injuries and decreased physiological Tan Tock Seng Hospital, Singapore, from March reserves usually fare worse. 2002 to October 2008. Patients with penetrating injuries were excluded. The parameters included Keywords: blunt abdominal injuries, diaphragm, age, mechanism of injury, haemodynamic status diaphragmatic rupture, emergency laparotomy, at admission, Glasgow coma scale (GCS) score, surgical emergency injury severity score (ISS), imaging studies, Singapore Medi 2009; 50(12): 1150-1153 location of diaphragmatic injuries, associated injuries and outcome. INTRODUCTION Diagnosis of a diaphragmatic rupture after blunt trauma Results:14 patients with a median age of 38 can be difficult and requires a high index of suspicion. years formed the study group. Vehicular -related Any delay could result in a catastrophic outcome.'" To incidents accounted for 71.4 percent of the complicate matters, diaphragmatic rupture is usually injuries. The median GCS score on admission was associated with other significant injuries. The aim of 14 (range 3-15), while the median systolic blood this retrospective study was to review the surgical pressure and heart rate were 94 (range 50-164) management of patients with diaphragmatic rupture after mmHg and 110 (range 76-140) beats per minute, blunt trauma in our institution.
    [Show full text]
  • Brain Injury in Children and Youth: a Manual
    Brain Injury in Children and Youth A Manual for Educators Revised 2018 ACKNOWLEDGMENTS In 2001, the Traumatic Brain injury (TBI) Manual was written as a joint effort between the Colorado Depart- ment of Education, the New Start Project within the Center for Community Participation at Colorado State University in Fort Collins, Colorado, and the Children’s Hospital Colorado. Since 2001, brain injury research and practice has changed significantly. In 2012, the Colorado Brain Injury Steering Committee, led by Karen McAvoy and Judy Dettmer, was instrumental in updating the TBI Manual and creating the stand alone spe- cial education eligibility category and criteria for TBI, which was formally adopted into the Colorado Rules for the Exceptional Children’s Educational Act (ECEA). The newest version of this manual was revised in 2018 by: Judy Dettmer, B.S.W., Director, MINDSOURCE Brain Injury Network, Colorado Department of Human Services Jeanne E. Dise-Lewis (†), Ph.D., Psychologist, Rehabilitative Medicine, Children’s Hospital Colorado, Died September 18, 2014 † Deceased. Patricia W. Colella, M.A., C.A.G.S., School Psychologist Nicole Crawford, Ph.D., Psychologist, Brain Injury Specialist, Colorado Department of Education Heather Hotchkiss, M.S.W., Principal Brain Injury Specialist, Exceptional Student Services Unit, Colorado Department of Education Karen McAvoy, Psy.D., Psychologist, Brain Injury Specialist, Colorado Department of Education Peter Thompson, Ph.D., School Psychologist, Douglas County School District Janet Tyler, Ph.D., Senior
    [Show full text]