ROADMAP for the EXPLORATION of DWARF PLANET CERES. J. C. Castillo-Rogez1, C

Total Page:16

File Type:pdf, Size:1020Kb

ROADMAP for the EXPLORATION of DWARF PLANET CERES. J. C. Castillo-Rogez1, C Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8077.pdf ROADMAP FOR THE EXPLORATION OF DWARF PLANET CERES. J. C. Castillo-Rogez1, C. A. Ray- 1 2 3 4 1 mond , C. T. Russell , A. S. Rivkin , M. Neveu , Ceres afficionados all over the world. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA ([email protected]), 2 Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA. 3Applied Physics Laboratory, John Hopkins Universi- ty, Laurel, MD. 4School of Earth and Space Exploration, Arizona State University, Tempe, AZ. Introduction: Ceres, the largest asteroid, and only was identified prior to Dawn’s arrival [1] and have led dwarf planet found in the inner solar system, offers a Ceres to turn from a “credible” possible ocean world to playground for testing hypotheses pertaining to the a “candidate” ocean world [9]. Specifically, in the early Solar system evolution as well as the habitability frame of the Roadmap for Ocean Worlds Goals, Dawn potential of large volatile-rich bodies. The Dawn mis- brought positive answers to the following questions: sion has revolutionized our undertanding of Ceres in a Goal 1 (Identify Ocean Worlds), A.1 Is there remnant decade that has also seen major breakthroughs in solar radiogenic heating? B.1 Do signatures of geologic system dynamical modeling, cosmochemistry, and the activity indicate the possible presence of a subsurface rise of ocean worlds. Probably the most significant ocean? B.7 Can the surface composition be linked with finding from the Dawn mission is unambiguous evi- the presence of a sub-surface ocean? dence for oceanic material right on Ceres’ surface as- sociated at least in one place with a recent cryovolcan- Dawn’s discoveries at Ceres also introduced new ic feature. This goes above and beyond pre-Dawn pre- evidence (or context) for addressing questions of broad dictions. This and other discoveries from the Dawn interest. First, the presence of ammonia adds to the mission are raising new questions and setting the stage story of early Solar system migration although alterna- for future exploration, as described in this presentation. tive scenarios are possible [10]. Also the nature of oce- anic material on Ceres’ surface, including sodium car- Post-Dawn State of Knowledge of Ceres: Ceres is bonate [11], a species found only on Earth and Encela- one of the best explored solar system bodies thanks to dus’ plumes [12], can help better understand the geo- the extensive observation campaign achieved by the chemical processes ongoing in other ice rich bodies. Dawn Mission. The combination of mineralogical, Indeed, per its size and water abundance, Ceres be- elemental, geological, and geophysical observations set longs to a class of objects that could host relatively standards for future missions. These led to key find- alkaline conditions as was suggested for Europa [13] ings, including the confirmation that Ceres has been and inferred from Cassini observations of Enceladus subjected to the hydrothermal processing of its materi- [14]. It has been suggested that the deep oceanic mate- als at the global scale, likely fueled by short-lived ra- rial could be exposed via the removal of an ice shell dioiostope heat [1]; the discovery that that environment via impact-induced sublimation [15]. This combined involved ammonia- and carbon-rich compounds, point- with clues for carbon suggests that the study of Ceres’ ing to an origin of Ceres’ materials from the outer solar surface directly addresses the ROW Goal II B.3 system; a geology driven in part by volatile abundance “Characterize the ice-ocean interface” and offers a in multiple forms, including ground ice, persistently playground for testing hypotheses aboud the chemical shadowed regions, and icy regolith toward high lati- evolution and habitability potential of Ocean Worlds. tudes [2, 3, 4]; the likely role of brines in driving cry- ovolcanism in the form of several outstanding features Key Open Questions: Workings and Life: The (Ahuna mons and Occator bright spots, as well as po- next step in the assessment of Ceres’ astrobiology sig- tential ancient features in the same vein) [5]; and the nificance is to evaluate the extent of liquid in its interi- signature of volatile activity driven by solar wind [6]. or. This is a difficult endeavor for bodies that are not Dawn’s observations have been complemented subject to tidal deformation and sources of seismologi- over the past years by investigations with the Hubble cal activity. This question might be addressed by stud- Space Telescope leading to the finding of abundant ying the interaction of Ceres with the solar wind alt- carbon on Ceres’ surface, as well as, potentially, sulfur hough this remains to be quantified. Comparison be- rich species [7]. The discovery of water vapor by the tween images returned by Dawn and a future mission Herschel Space Observatory [8] is consistent with the could be used to search for the signature of a deep liq- detection of many ice-rich sites, suggesting that ice is uid layer in Ceres’ rotation [16] and possibly also re- present below a thin regolith and regularly exposed via veal telling changes in surface properties. Indeed the landslides and small impacts. key to evaluating Ceres’ internal structure might come These pieces of information allow for a fresh as- from the long-term observation of the faculae (bright sessment of Ceres’ astrobiological significance, which deposits) observed in the Occator crater. The exposure Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8077.pdf age of those deposits appears inconsistent with the The answers to these questions would drive the ~100My age of the crater and may indicate that the third step in Ceres’ exploration, with regard to better reservoir involved in the formation of these features is understanding “how life might exist at each ocean not yet at thermal equilibrium. world and search for life” [ROW Goal IV]. Explora- If pursuing the exploration of Ceres in the context tion strategies developed for Mars may be applicable of the Roadmap for Ocean Worlds, a future mission to there, in particular planetary protection technologies. Ceres could address the following questions, e.g., Finally, the exploration of Ceres and large icy sat- Goal II (Characterize the Ocean), A.1 What is the ellites requires a theoretical framework and experi- thickness, salinity, density and composition of the mental progress to assess, e.g., the stability and ther- ocean? How do these properties vary spatially and /or mophysical properties of salt-rich materials, the phys- temporally? Goal III. (Characterize the Habitability), ics driving endogenic processes in a (relatively) small A.1 What environments possess redox disequilibria, in gravity body, exogenic processes altering its surface, what forms, in what magnitude, how rapidly dissipated and the development, thriving, and preservation of life by abiotic reactions, and how rapidly replenished by and biosignatures in salt-rich environments. local processes? B.1 What is the inventory of organic compounds, what are their sources and sinks, and Ceres as a Stepping Stone for the Exploration of what is their stability with respect to the local envi- Ocean Worlds: Ceres represents a critical data point ronment? B.2 What is the abundance and chemical for understanding the chemical evolution of volatile- form of nitrogen, oxygen, phosphorus, sulfur, and in- rich worlds and especially their potential for forming organic carbon, what are their sources and sinks, and and preserving organic compounds. With it low gravity are there processes of irreversible loss or sequestra- and relative begnin environment, Ceres also offers tion relative to the liquid environment? easy surface access (in comparison to Mars or Europa) whereas the roundtrip light-time to/from Ceres requires Origins: Despite the evidence for ammonia and the introduction of semi-autonomous techniques for carbon compounds the origin of Ceres remains uncer- advanced surface operations. Hence a long-term explo- tain; several competing theories can explain an origin ration program of Ceres is compelling, not just for the of Ceres at its current location with supplies of solar anticipated science return, but also because it will system planetesimals [17] or even from ammonia-rich help us practice and hone new technologies of rele- organics formed in the inner solar system [18] These vance to the future exploration of ocean worlds, such various hypotheses may be addressed via isotopic as surface operations, planetary protection, and end-to- chemistry of low-z elements, and especially hydrogen, end sample collection and return to Earth. oxygen, and nitrogen isotopes. However, the extensive hydrogeochemistry that modified Ceres’ materials also Acknowledgements: This work is being carried out at likely altered their original isotopic signature. Hence the Jet Propulsion Laboratory, California Institute of Tech- nology, under contract to NASA. answers to volatile migration might be better addressed References: [1] Castillo-Rogez, J. C., McCord, T. at more primordial objects (e.g., comets, smaller C- B. (2010) Icarus 205, 443-459; [2] Schmidt, B., et al., type asteroids, main-belt comets). submitted to Nat. Geosc.; [3] Schorghofer, N., et al. (2016) GRL 13, 6783-6789; [4] Prettyman, T., et al. A Roadmap for Ceres Exploration: The in situ (2016) Nature, in press; [5] Ruesch, O., et al. (2016) investigation of outstanding landmarks is an obvious Science 353, 6303; [6] Russell, C. T., et al. (2016) Sci- next step in the exploration of Ceres and might be ac- ence 353, 6303; [7] Hendrix, A. R., et al. (2016) GRL complished within the constraints of the Discovery 17, 8920-8927; [8] Kueppers, M., et al. (2014) Nature program. Key objectives could focus on assessing hab- 505, 525-527; [9] Hendrix, A. R., Hurford, T. A., and itability (the natural next step in the ROW framework) the ROW Team (2016), Planetary Visions 2050 Work- by investigating the chemical fingerprints contained in shop; [10] De Sanctis, C., et al.
Recommended publications
  • Ahuna Mons on Ceres 29 July 2019
    Image: Ahuna Mons on Ceres 29 July 2019 More recently, a study of Dawn data led by ESA research fellow Ottaviano Ruesch and Antonio Genova (Sapienza Università di Roma), published in Nature Geoscience in June, suggests that a briny, muddy 'slurry' exists below Ceres' surface, surging upwards towards and through the crust to create Ahuna Mons. Another recent study, led by Javier Ruiz of Universidad Complutense de Madrid and published in Nature Astronomy in July, also indicates that the dwarf planet has a surprisingly dynamic geology. Ceres was also the focus of an earlier study by Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA ESA's Herschel space observatory, which detected water vapour around the dwarf planet. Published in Nature in 2014, the result provided a strong indication that Ceres has ice on or near its surface. This image, based on observations from NASA's Dawn confirmed Ceres' icy crust via direct Dawn spacecraft, shows the largest mountain on observation in 2016, however, the contribution of the dwarf planet Ceres. the ice deposits to Ceres' exosphere turned out to be much lower than that inferred from the Herschel Dawn was the first mission to orbit an object in the observations. asteroid belt between Mars and Jupiter, and spent time at both large asteroid Vesta and dwarf planet The perspective view depicted in this image uses Ceres. Ceres is one of just five recognised dwarf enhanced-color combined images taken using blue planets in the Solar System (Pluto being another). (440 nm), green (750 nm), and infrared (960 nm) Dawn entered orbit around this rocky world on 6 filters, with a resolution of 35 m/pixel.
    [Show full text]
  • Dwarf Planet Ceres
    Dwarf Planet Ceres drishtiias.com/printpdf/dwarf-planet-ceres Why in News As per the data collected by NASA’s Dawn spacecraft, dwarf planet Ceres reportedly has salty water underground. Dawn (2007-18) was a mission to the two most massive bodies in the main asteroid belt - Vesta and Ceres. Key Points 1/3 Latest Findings: The scientists have given Ceres the status of an “ocean world” as it has a big reservoir of salty water underneath its frigid surface. This has led to an increased interest of scientists that the dwarf planet was maybe habitable or has the potential to be. Ocean Worlds is a term for ‘Water in the Solar System and Beyond’. The salty water originated in a brine reservoir spread hundreds of miles and about 40 km beneath the surface of the Ceres. Further, there is an evidence that Ceres remains geologically active with cryovolcanism - volcanoes oozing icy material. Instead of molten rock, cryovolcanoes or salty-mud volcanoes release frigid, salty water sometimes mixed with mud. Subsurface Oceans on other Celestial Bodies: Jupiter’s moon Europa, Saturn’s moon Enceladus, Neptune’s moon Triton, and the dwarf planet Pluto. This provides scientists a means to understand the history of the solar system. Ceres: It is the largest object in the asteroid belt between Mars and Jupiter. It was the first member of the asteroid belt to be discovered when Giuseppe Piazzi spotted it in 1801. It is the only dwarf planet located in the inner solar system (includes planets Mercury, Venus, Earth and Mars). Scientists classified it as a dwarf planet in 2006.
    [Show full text]
  • What Is the Color of Pluto? - Universe Today
    What is the Color of Pluto? - Universe Today space and astronomy news Universe Today Home Members Guide to Space Carnival Photos Videos Forum Contact Privacy Login NASA’s New Horizons spacecraft captured this high-resolution enhanced color view of http://www.universetoday.com/13866/color-of-pluto/[29-Mar-17 13:18:37] What is the Color of Pluto? - Universe Today Pluto on July 14, 2015. Credit: NASA/JHUAPL/SwRI WHAT IS THE COLOR OF PLUTO? Article Updated: 28 Mar , 2017 by Matt Williams When Pluto was first discovered by Clybe Tombaugh in 1930, astronomers believed that they had found the ninth and outermost planet of the Solar System. In the decades that followed, what little we were able to learn about this distant world was the product of surveys conducted using Earth-based telescopes. Throughout this period, astronomers believed that Pluto was a dirty brown color. In recent years, thanks to improved observations and the New Horizons mission, we have finally managed to obtain a clear picture of what Pluto looks like. In addition to information about its surface features, composition and tenuous atmosphere, much has been learned about Pluto’s appearance. Because of this, we now know that the one-time “ninth planet” of the Solar System is rich and varied in color. Composition: With a mean density of 1.87 g/cm3, Pluto’s composition is differentiated between an icy mantle and a rocky core. The surface is composed of more than 98% nitrogen ice, with traces of methane and carbon monoxide. Scientists also suspect that Pluto’s internal structure is differentiated, with the rocky material having settled into a dense core surrounded by a mantle of water ice.
    [Show full text]
  • New Studies Provide Unexpected Insights Into Dwarf Planet Ceres 1 September 2016
    New studies provide unexpected insights into dwarf planet Ceres 1 September 2016 Mons. The dome-shaped mountain has an elliptical base and a concave top, as well as other properties that indicate cryovolcanism. The authors applied models to determine the age of Ahuna Mons, finding it to have formed after the craters surrounding it, which suggests that it came into existence relatively recently. There is no evidence for compressional tectonism, nor for erosional features, the authors say; it appears that extrusion is a main driver behind the formation of Ahuna Mons. Although the exact material driving the cryovolcano cannot be determined without further data, the authors propose that chlorine salts, which have been previously detected in a different region of Ceres, could have been present with water ice below Ceres' surface and driven the chemical activity that formed Ahuna Mons. In a second study, Jean-Philippe Combe et al. A high resolution Dawn framing camera image of Ahuna describe the detection of water ice - exposed on the Mons. Image width is 30 km. Credit: NASA/JPL- surface of Ceres. The dwarf planet was known to Caltech/UCLA/MPS/DLR/IDA contain water ice, but water ice is also expected to be unstable on its surface, so scientists were unsure whether it could be detected there. They used the Visible and InfraRed (VIR) mapping Six studies published today in Science highlight spectrometer onboard the Dawn spacecraft to new and unexpected insights into Ceres, a dwarf analyze a highly reflective zone in a young crater planet and the largest object in the asteroid belt called Oxo, on five occasions during 2015.
    [Show full text]
  • The Solar System Cause Impact Craters
    ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • International Astronomical Union Union Astronomique Internationale
    INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE ************ IAU0806: FOR IMMEDIATE RELEASE ************ http://www.iau.org/public_press/news/release/iau0806/ Fourth dwarf planet named Makemake 17 July 2008, Paris: The International Astronomical Union (IAU) has given the name Makemake to the newest member of the family of dwarf planets — the object formerly known as 2005 FY9 —after the Polynesian creator of humanity and the god of fertility. Members of the International Astronomical Union’s Committee on Small Body Nomenclature (CSBN) and the IAU Working Group for Planetary System Nomenclature (WGPSN) have decided to name the newest member of the plutoid family Makemake, and have classified it as the fourth dwarf planet in our Solar System and the third plutoid. Makemake (pronounced MAH-keh MAH-keh) is one of the largest objects known in the outer Solar System and is just slightly smaller and dimmer than Pluto, its fellow plutoid. The dwarf planet is reddish in colour and astronomers believe the surface is covered by a layer of frozen methane. Like other plutoids, Makemake is located in a region beyond Neptune that is populated with small Solar System bodies (often referred to as the transneptunian region). The object was discovered in 2005 by a team from the California Institute of Technology led by Mike Brown and was previously known as 2005 FY9 (or unofficially “Easterbunny”). It has the IAU Minor Planet Center designation (136472). Once the orbit of a small Solar System body or candidate dwarf planet is well determined, its provisional designation (2005 FY9 in the case of Makemake) is superseded by its permanent numerical designation (136472) in the case of Makemake.
    [Show full text]
  • 16. Ice in the Martian Regolith
    16. ICE IN THE MARTIAN REGOLITH S. W. SQUYRES Cornell University S. M. CLIFFORD Lunar and Planetary Institute R. O. KUZMIN V.I. Vernadsky Institute J. R. ZIMBELMAN Smithsonian Institution and F. M. COSTARD Laboratoire de Geographie Physique Geologic evidence indicates that the Martian surface has been substantially modified by the action of liquid water, and that much of that water still resides beneath the surface as ground ice. The pore volume of the Martian regolith is substantial, and a large amount of this volume can be expected to be at tem- peratures cold enough for ice to be present. Calculations of the thermodynamic stability of ground ice on Mars suggest that it can exist very close to the surface at high latitudes, but can persist only at substantial depths near the equator. Impact craters with distinctive lobale ejecta deposits are common on Mars. These rampart craters apparently owe their morphology to fluidhation of sub- surface materials, perhaps by the melting of ground ice, during impact events. If this interpretation is correct, then the size frequency distribution of rampart 523 524 S. W. SQUYRES ET AL. craters is broadly consistent with the depth distribution of ice inferred from stability calculations. A variety of observed Martian landforms can be attrib- uted to creep of the Martian regolith abetted by deformation of ground ice. Global mapping of creep features also supports the idea that ice is present in near-surface materials at latitudes higher than ± 30°, and suggests that ice is largely absent from such materials at lower latitudes. Other morphologic fea- tures on Mars that may result from the present or former existence of ground ice include chaotic terrain, thermokarst and patterned ground.
    [Show full text]
  • Surface Residence Times of Regolith on the Lunar Maria
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1652.pdf 1 1 SURFACE RESIDENCE TIMES OF REGOLITH ON THE LUNAR MARIA. P. O’Brien and S. Byrne ,​ 1 ​ ​ L​ unar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 ([email protected]) Introduction: The surfaces of airless bodies like Our model simulates mare-like surfaces evolving the Moon undergo microscopic chemical changes as a over time from flat surfaces to cratered landscapes. result of energetic processes operating in the space Impacts are randomly sampled from the present-day environment, collectively known as space weathering lunar impact flux [5] and the global population of [1,2]. Despite returned lunar soil samples, the rate of secondary craters produced by these impacts is space weathering on the Moon is not well understood. generated following empirical observations of The amount of chemical weathering incurred in the secondary production on airless bodies [6,7]. At each lunar regolith depends critically on the rate at which timestep, we compute the downslope flux of regolith regolith is excavated, transported, and buried by by solving the 2D diffusion equation [8]. The rate of macroscopic impact processes. These physical diffusion is calibrated by matching the average processes control how long regolith spends on the roughness of the model landscapes to the observed surface where it is exposed to the space environment. roughness of the lunar maria, as measured by the We have developed a Monte Carlo model that median bidirectional slope at 4 m baselines [9]. Figure simulates the evolution of lunar maria landscapes 1 shows how model surfaces subject to these physical under topographic relief-creation from impact cratering processes become rougher and more heavily-cratered and relief-reduction from micrometeorite gardening over time.
    [Show full text]
  • Solar System Planet and Dwarf Planet Fact Sheet
    Solar System Planet and Dwarf Planet Fact Sheet The planets and dwarf planets are listed in their order from the Sun. Mercury The smallest planet in the Solar System. The closest planet to the Sun. Revolves the fastest around the Sun. It is 1,000 degrees Fahrenheit hotter on its daytime side than on its night time side. Venus The hottest planet. Average temperature: 864 F. Hotter than your oven at home. It is covered in clouds of sulfuric acid. It rains sulfuric acid on Venus which comes down as virga and does not reach the surface of the planet. Its atmosphere is mostly carbon dioxide (CO2). It has thousands of volcanoes. Most are dormant. But some might be active. Scientists are not sure. It rotates around its axis slower than it revolves around the Sun. That means that its day is longer than its year! This rotation is the slowest in the Solar System. Earth Lots of water! Mountains! Active volcanoes! Hurricanes! Earthquakes! Life! Us! Mars It is sometimes called the "red planet" because it is covered in iron oxide -- a substance that is the same as rust on our planet. It has the highest volcano -- Olympus Mons -- in the Solar System. It is not an active volcano. It has a canyon -- Valles Marineris -- that is as wide as the United States. It once had rivers, lakes and oceans of water. Scientists are trying to find out what happened to all this water and if there ever was (or still is!) life on Mars. It sometimes has dust storms that cover the entire planet.
    [Show full text]
  • NASA Spacecraft Nears Encounter with Dwarf Planet Ceres 4 March 2015
    NASA spacecraft nears encounter with dwarf planet Ceres 4 March 2015 of 590 miles (950 kilometers), makes a full rotation every nine hours, and NASA is hoping for a wealth of data once the spacecraft's orbit begins. "Dawn is about to make history," said Robert Mase, project manager for the Dawn mission at NASA JPL in Pasadena, California. "Our team is ready and eager to find out what Ceres has in store for us." Experts will be looking for signs of geologic activity, via changes in these bright spots, or other features on Ceres' surface over time. The latest images came from Dawn when it was 25,000 miles (40,000 kilometers) away on February 25. This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on February 19, 2015 from a The celestial body was first spotted by Sicilian distance of nearly 29,000 miles astronomer Father Giuseppe Piazzi in 1801. "Ceres was initially classified as a planet and later called an asteroid. In recognition of its planet-like A NASA spacecraft called Dawn is about to qualities, Ceres was designated a dwarf planet in become the first mission to orbit a dwarf planet 2006, along with Pluto and Eris," NASA said. when it slips into orbit Friday around Ceres, the most massive body in the asteroid belt. Ceres is named after the Roman goddess of agriculture and harvests. The mission aims to shed light on the origins of the solar system 4.5 billion years ago, from its "rough The spacecraft on its way to circle it was launched and tumble environment of the main asteroid belt in September 2007.
    [Show full text]
  • Soil, Regolith, and Weathered Rock Theoretical Concepts and Evolution
    Geoderma 368 (2020) 114261 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Soil, regolith, and weathered rock: Theoretical concepts and evolution in T old-growth temperate forests, Central Europe ⁎ Pavel Šamonila,b, , Jonathan Phillipsa,c, Pavel Daněka,d, Vojtěch Beneše, Lukasz Pawlika,f a Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, 602 00 Brno, Czech Republic b Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic c Earth Surface Systems Program, Department of Geography, University of Kentucky, Lexington, KY 40506, USA d Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic e G IMPULS Praha Ltd., Czech Republic f University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland ARTICLE INFO ABSTRACT Handling Editor: Alberto Agnelli Evolution of weathering profiles (WP) is critical for landscape evolution, soil formation, biogeochemical cycles, Keywords: and critical zone hydrology and ecology. Weathering profiles often include soil or solum (O, A, E, and Bhor- Soil evolution izons), non-soil regolith (including soil C horizons, saprolite), and weathered rock. Development of these is a Saprolite function of weathering at the bedrock weathering front to produce weathered rock; weathering at the boundary Weathering front between regolith and weathered rock to produce saprolite, and pedogenesis to convert non-soil regolith to soil. Hillslope processes Relative thicknesses of soil (Ts), non-soil regolith (Tr) and weathered rock (Tw) can provide insight into the Geophysical research relative rates of these processes at some sites with negligible surface removals or deposition.
    [Show full text]