Hipparion Macedonicum Revisited: New Data on Evolution of Hipparionine Horses from the Late Miocene of Greece

Total Page:16

File Type:pdf, Size:1020Kb

Hipparion Macedonicum Revisited: New Data on Evolution of Hipparionine Horses from the Late Miocene of Greece Hipparion macedonicum revisited: New data on evolution of hipparionine horses from the Late Miocene of Greece GEORGE D. KOUFOS Koufos, G.D. 2016. Hipparion macedonicum revisited: New data on evolution of hipparionine horses from the Late Miocene of Greece. Acta Palaeontologica Polonica 61 (3): 519–536. The new expeditions to the Axios Valley (Macedonia, Greece) provided a new set of fossils from the various localities. Among the material collected from the Late Miocene hominoid bearing mammal locality Ravin de la Pluie (RPl) were some remains of Hipparion macedonicum, which was originally described from this locality. The most important is the skull and associated mandible, the first from the type locality. The new material is compared with the previously collected material of the taxon from the Vallesian and Turolian levels of Greece, as well as with corresponding material from Eurasia. The RPl skull is compared with the type skull of H. matthwei, a taxon, which several times has been re- ferred as synonym to H. macedonicum. The comparison indicated several differences which distinguish the two species. Hipparion macedonicum has a continuous stratigraphic range from the Vallesian to middle Turolian and it is possibly present in the late Turolian. The comparison of the chronologically different samples of H. macedonicum indicates that the Vallesian form of H. macedonicum has larger size, shorter narial opening, longer tooth rows, rich enamel plication, more elongated and narrow plis, more robust metapodials and less running legs than the Turolian form. Some of the mor- phological changes are related to the habitat, which was more closed, warmer and wetter in the Vallesian than Turolian. Key words: Mammalia, Equidae, systematic, evolution, palaeoecology, Miocene, Greece. George D. Koufos [[email protected]], Aristotle University of Thessaloniki, Department of Geology, Laboratory of Geology and Palaeontology, GR-54124 Thessaloniki, Greece. Received 20 April 2015, accepted 5 June 2015, available online 12 June 2015. Copyright © 2016 G.D. Koufos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. new material of H. macedonicum from RPl is described and Introduction compared with the known material of the taxon from other localities in this article, providing information for its mor- The Late Miocene mammal locality Ravin de la Pluie (RPl, phology, relationships, evolution, as well as its stratigraphic Axios Valley, Macedonia, Greece) is well-known because and geographic distribution. of the presence of the hominoid primate Ouranopithecus macedoniensis. The RPl fauna is quite rich including mainly Institutional abbreviations.—AMNH, American Museum of mammals (Koufos 2006b, 2012a, b, and references cited Natural History, New York; LGPUT, Laboratory of Geology therein) and suggesting correlation to the late Vallesian (MN and Palaeontology, University of Thessaloniki, Greece. 10) with a magnetostratigraphically estimated age of ~9.3 Ma (Koufos 2013 and references cited therein). The hippar- Locality abbreviations.—AKK, Akkaşdağı, Turkey; DYTI, ions, in comparison to the Turolian localities, are rare in the localities of Dytiko 1, 2, 3, Axios Valley, Greece; DKO, Dytiko RPl sample and classified to two species: H. cf. H. sebas- 3, Axios Valley, Greece; KTA-B, Kemiklitepe-A, B, Turkey; topolitanum Borissiak, 1914 and H. macedonicum Koufos, KRY, Kryopigi, Greece; MTLA, Mytilinii-1A, Samos, 1984. The first taxon was described earlier as a form of H. Greece; MYT, Mytilinii-3, Samos, Greece; NIK, Nikiti-2, primigenium by Koufos (1986, 2000) but recently Vlachou Greece; NKT, Nikiti-1, Greece; PER, Perivolaki, Greece; PIK, (2013) transferred it to H. cf. H. sebastopolitamum; the other Pikermi, Greece; PXM, Prochoma 1, Axios Valley, Greece; taxon, H. macedonicum, was originally described from RPl Q1, Quarry 1, Samos, Greece; Q5, Quarry 5, Samos, Greece; (Koufos 1984, 1986). During the last expeditions in Axios RPl, Ravin de la Pluie, Axios Valley, Greece; RZ1, Ravin des Valley new material of H. macedonicum has been unearthed Zouaves 1 , Axios Valley, Greece; RZO, Ravin des Zouaves from RPl, including mainly mandibular remains but also 5, Axios Valley, Greece; SIN, Sinap, Turkey; TAR, Taraklia, the first skull, providing new information about the cranial Ukraine; PAV, Pavlodar, Kazakhstan; PNT, Pentalophos 1, morphology of H. macedonicum from the type locality. The Greece; VATH, localities of Vathylakkos, Greece. Acta Palaeontol. Pol. 61 (3): 519–536, 2016 http://dx.doi.org/10.4202/app.00169.2015 520 ACTA PALAEONTOLOGICA POLONICA 61 (3), 2016 Other abbreviations.—DAP, antero-posterior diameter; mal part of McIII, LGPUT RPl-285; proximal part of tibia, HS, habitat score; KI, Keel Index; McIII , third metacarpal; LGPUT RPl-284; distal epiphysis of tibia, LGPUT RPl-288; MtIII, third metatarsal; PCA, principal component analysis; distal part of MtIII, LGPUT RPl-292. POF, preorbital fossa; POB, preorbital bar (length preorbital Emended diagnosis.—Small size; relatively elongated and fossa–anterior orbit); SI, Slenderness Index. narrow muzzle; shallow narial opening, the nasal notch is retracted above the middle of the C-P2 diastema; el- liptical, shallow, antero-posteriorly oriented, not pocketed Material and methods posteriorly with moderately developed margin, and open anteriorly POF; moderate POB; infraorbital foramen en- The studied material, except the new collection, includes croaches upon the antero-ventral border of the POF; mod- also the old one described earlier (Koufos, 1984, 1986); all erate enamel plication in the upper cheek teeth with narrow studied material is housed in the Laboratory of Geology and and deep plis; simple-double pli caballin; elliptical-oval Palaeontology, University of Thessaloniki (LGPUT). The and isolated protocone; often connection of the fossettes; biometric study of the material follows the recommenda- very rare presence of a weak lingual hypoconal groove; tions of Eisenmann et al. (1988); all the measurements are often presence of functional dP1; elongated and slender given in mm with an accuracy of 0.1 mm. Upper and lower metapodials. case letters denote upper and lower teeth, respectively. The Hipparion matthewi differs from H. macedonicum hav- software PAST (Hammer et al. 2001) used for the princi- ing smaller size, shorter muzzle, deeper narial opening (na- pal component analysis (PCA) and box-plot diagrams and sal notch is retracted above the mesial half of P2), ovoid Office Excell 2010 for Simpson’s log-ratio diagrams. All with well-defined borders, deeper, dorso-ventrally oriented metrical data for the Greek material, as well as for those POF and infraorbital foramen situated in front but outside from Kemiklitepe A–B and Akkaşdağı are from author’s of POF. Hipparion nikosi differs from H. macedonicum database; those for Hipparion elegans and H. moldavicum are taken from www.vera-eisenmann.com. Hipparion med- having smaller size (similar to H. matthewi) and remarkably iterraneum from Pikermi was used as reference species deeper narial opening (nasal notch is retracted above the in the Simpson’s log-ratio diagrams and the measurements P3–P4) distinguishing it well from all known small hip- were taken from Koufos (1987). parions of the Eastern Mediterranean region. Hipparion moldavicum with larger size, longer muzzle, wider incisive row, deeper narial opening (nasal notch is retracted above or in front of P2), larger, deeper and posteriorly pocketed Systematic palaeontology POF, infraorbital foramen situated below the antero-ventral rim of POF and larger metapodials differs from H. mace- Family Equidae Gray, 1821 donicum. Hipparion sithonis Koufos and Vlachou, 2016 is Genus Hipparion de Christol, 1832 different in the slightly larger size, the deeper narial open- Hipparion macedonicum Koufos, 1984 ing (nasal notch is retracted above the mesostyle of P2), the Figs. 1–3. presence of canine fossa, the antero-ventrally oriented and with well-defined borders POF, and the relatively shorter 1980 Hipparion sp.; Koufos 1980: 292. 1984 H. macedonicum; Koufos 1984: 386, figs. 2, 3. and robust metapodials. Hipparion uzunagizli differs from 1986 H. macedonicum Koufos, 1984; Koufos 1986: 71, pls. 1–3. H. macedonicum in the longer and wider muzzle, the deeper 2013 H. macedonicum Koufos, 1984; Vlachou 2013: 318. narial opening (nasal notch is retracted above the mesial Type material: Holotype: mandible with i1–m3 dex and i1–m2 sin, margin of P2), the longer POB, the larger, subtriangular, LGPUT RPl-21 (Fig. 3A). Paratype: skull and associated mandible, antero-ventrally oriented and posteriorly pocketed POF. LGPUT RPl-125 (Figs. 1, 3C). Hipparion kecigibi with larger size, short and wider muzzle, Type locality: Ravin de la Pluie (RPl), Axios Valley, Macedonia, Greece. subtriangular, deeply pocketed posteriorly and larger POF is Type horizon: Late Vallesian, MN 10; Late Miocene; GPTS = ~9.3 Ma separated from H. macedonicum. Hipparion elegans differs (Koufos 2013 and references cited therein). in the larger size, the subtriangular with well-defined bor- Material.—The given list includes only the new unde- ders POF, the longer and wider snout, the longer tooth rows, scribed previously specimens. Skull and associated mandi- and the large and slenderer metapodials. ble,
Recommended publications
  • Chronology, Causes and Progression of the Messinian Salinity Crisis
    letters to nature the cause, and the effects, of the isolation of the Mediterranean; the two basic explanations are (1) a large glacio-eustatic sea-level drop, Chronology, causes and related to expanding polar ice volume6, and (2) orogenic uplift accompanied by gravity-driven sliding of large nappe complexes in progression of the the Gibraltar arc7. Until now, correlations of stable-isotope (d18O and d13C) records from open-ocean sequences to the Messinian Messinian salinity crisis event stratigraphy of the Mediterranean have been ambiguous because of the absence of a reliable time frame for the MSC. The W. Krijgsman*, F. J. Hilgen², I. Raf®³, F. J. Sierro§ establishment of astronomical polarity timescales for the past & D. S. Wilsonk 10 Myr (refs 3, 11) provided a signi®cant advance in dating the * Paleomagnetic Laboratory ``Fort Hoofddijk'', Utrecht University, geological record and promised a solution for the MSC controver- Budapestlaan 17, 3584 CD Utrecht, The Netherlands sies. Unfortunately, the Mediterranean-based astronomical polarity ² Department of Geology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, timescale showed a gap during much of the Messinian (6.7±5.3 Myr The Netherlands ago)3, related to the presence of less-favourable sediments and the ³ Dipartimento di Scienze della Terra, UniversitaÁ ``G. D'Annunzio'', notoriously complex geological history of the Mediterranean in Campus Universitario, Via dei Vestini 31, 66013 Chieti Scalo, Italy this time interval. However, the classic Messinian sediments § Department de
    [Show full text]
  • Unit-V Evolution of Horse
    UNIT-V EVOLUTION OF HORSE Horses (Equus) are odd-toed hooped mammals belong- ing to the order Perissodactyla. Horse evolution is a straight line evolution and is a suitable example for orthogenesis. It started from Eocene period. The entire evolutionary sequence of horse history is recorded in North America. " Place of Origin The place of origin of horse is North America. From here, horses migrated to Europe and Asia. By the end of Pleis- tocene period, horses became extinct in the motherland (N. America). The horses now living in N. America are the de- scendants of migrants from other continents. Time of Origin The horse evolution started some 58 million years ago, m the beginning of Eocene period of Coenozoic era. The modem horse Equus originated in Pleistocene period about 2 million years ago. Evolutionary Trends The fossils of horses that lived in different periods, show that the body parts exhibited progressive changes towards a particular direction. These directional changes are called evo- lutionary trends. The evolutionary trends of horse evolution are summarized below: 1. Increase in size. 2. Increase in the length of limbs. 3. Increase in the length of the neck. 4. Increase in the length of preorbital region (face). 5. Increase in the length and size of III digit. 6. Increase in the size and complexity of brain. 7. Molarization of premolars. Olfactory bulb Hyracotherium Mesohippus Equus Fig.: Evolution of brain in horse. 8. Development of high crowns in premolars and molars. 9. Change of plantigrade gait to unguligrade gait. 10. Formation of diastema. 11. Disappearance of lateral digits.
    [Show full text]
  • Barren Ridge FEIS-Volume IV Paleo Tech Rpt Final March
    March 2011 BARREN RIDGE RENEWABLE TRANSMISSION PROJECT Paleontological Resources Assessment Report PROJECT NUMBER: 115244 PROJECT CONTACT: MIKE STRAND EMAIL: [email protected] PHONE: 714-507-2710 POWER ENGINEERS, INC. PALEONTOLOGICAL RESOURCES ASSESSMENT REPORT Paleontological Resources Assessment Report PREPARED FOR: LOS ANGELES DEPARTMENT OF WATER AND POWER 111 NORTH HOPE STREET LOS ANGELES, CA 90012 PREPARED BY: POWER ENGINEERS, INC. 731 EAST BALL ROAD, SUITE 100 ANAHEIM, CA 92805 DEPARTMENT OF PALEOSERVICES SAN DIEGO NATURAL HISTORY MUSEUM PO BOX 121390 SAN DIEGO, CA 92112 ANA 032-030 (PER-02) LADWP (MARCH 2011) SB 115244 POWER ENGINEERS, INC. PALEONTOLOGICAL RESOURCES ASSESSMENT REPORT TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................................... 1 1.1 STUDY PERSONNEL ....................................................................................................................... 2 1.2 PROJECT DESCRIPTION .................................................................................................................. 2 1.2.1 Construction of New 230 kV Double-Circuit Transmission Line ........................................ 4 1.2.2 Addition of New 230 kV Circuit ......................................................................................... 14 1.2.3 Reconductoring of Existing Transmission Line .................................................................. 14 1.2.4 Construction of New Switching Station .............................................................................
    [Show full text]
  • La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
    La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles.
    [Show full text]
  • Hipparion” Cf
    ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont., 30:15-24, Wien 2006 Hooijer’s Hypodigm for “ Hipparion” cf. ethiopicum (Equidae, Hipparioninae) from Olduvai, Tanzania and comparative Material from the East African Plio-Pleistocene by Miranda A rmour -Chelu 1}, Raymond L. Bernor 1} & Hans-Walter Mittmann * 2) A rmour -C helu , M., Bernor , R.L. & M ittmann , H.-W., 2006. Hooijer’s Hypodigm for “ Hipparion” cf. ethiopicum (Equidae, Hipparioninae) from Olduvai, Tanzania and comparative Material from the East African Plio-Pleistocene. — Beitr. Palaont., 30:15-24, Wien. Abstract cranialen Elemente die Hooijer zu diesem Taxon gestellt hat, auf die er sich bezogen hat oder die in irgendeiner We review here the problematic history of the nomen Beziehung dazu stehen, haben wir wiedergefunden. Selbst “Hipparion”cf. ethiopicum and Hooijer’s efforts to bring zusätzliche Fundstücke aus zeitgleichen Horizonten haben some taxonomic sense to the later Pliocene - Pleistocene wir miteinbezogen, in der Absicht, die Gültigkeit von Eu­ hipparion record. We review his reasoning, and the shifts rygnathohippus cf.“ethiopicum" und seines Verwandten in taxonomic allocation made by him and other equid Eurygnathohippus cornelianus und weiterer Formen, von researchers during the 1970’s. We have relocated many denen Hooijer geglaubt hat, dass sie in einem evolutionären of the postcranial specimens attributed by Hooijer to Zusammenhang mit „ Hipparion“ cf. ethiopicum stehen, “Hipparion” cf. ethiopicum, as well as other specimens zu testen. Wir machen statistische und vergleichende which he referred to, or related to this species. We have Analysen um dieses Hypodigma zu klären. also considered additional specimens from contempo­ raneous horizons, in order to reevaluate the efficacy of Eurygnathohippus cf “ethiopicum” and its apparent rela­ 1.
    [Show full text]
  • Updated Chronology for the Miocene Hominoid Radiation in Western Eurasia
    Updated chronology for the Miocene hominoid radiation in Western Eurasia Isaac Casanovas-Vilara,1, David M. Albaa, Miguel Garcésb, Josep M. Roblesa,c, and Salvador Moyà-Solàd aInstitut Català de Paleontologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; bGrup Geomodels, Departament d’Estratigrafia, Paleontologia i Geociències Marines, Facultat de Geologia, Universitat de Barcelona, 08028 Barcelona, Spain; cFOSSILIA Serveis Paleontològics i Geològics, 08470 Sant Celoni, Barcelona, Spain; and dInstitució Catalana de Recerca i Estudis Avançats, Institut Català de Paleontologia i Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal, i Ecologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain Edited* by David Pilbeam, Harvard University, Cambridge, MA, and approved February 25, 2011 (received for review December 10, 2010) Extant apes (Primates: Hominoidea) are the relics of a group that Results and Discussion was much more diverse in the past. They originated in Africa Oldest Eurasian Hominoid? A partial upper third molar from around the Oligocene/Miocene boundary, but by the beginning of Engelswies (Bavarian Molasse Basin, Germany), previously ten- the Middle Miocene they expanded their range into Eurasia, where tatively attributed to Griphopithecus (a discussion of the taxonomy they experienced a far-reaching evolutionary radiation. A Eurasian of Miocene Eurasian hominoids is provided in SI Appendix, Text origin of the great ape and human clade (Hominidae) has been 1), has been considered to be the oldest Eurasian hominoid (10) favored by several authors, but the assessment of this hypothesis (Fig. 1). An age of ca. 17 Ma was favored for Engelswies on the has been hampered by the lack of accurate datings for many basis of associated mammals and lithostratigraphic correlation with Western Eurasian hominoids.
    [Show full text]
  • A New Collection of Hipparionine from the Type Locality of the Dhok Pathan Formation of the Middle Siwaliks
    Khan et al. The Journal of Animal & Plant Sciences, 21(1): 2011, Page:J. Anim.83-89 Plant Sci. 21(1):2011 ISSN: 1018-7081 A NEW COLLECTION OF HIPPARIONINE FROM THE TYPE LOCALITY OF THE DHOK PATHAN FORMATION OF THE MIDDLE SIWALIKS M. A. Khan, F. Manzoor, M. Ali**, Z. H. Bhatti**, and M. Akhtar** Zoology Department, GC University, Faisalabad *Zoology Department, Government College Science, Wahdat Road, Lahore **Zoology Department, Quaid-e-Azam Campus, Punjab University, Lahore Corresponding author e-mail: ABSTRACT The new discovered material found from the Dhok Pathan type locality identifies two species of Hipparionine, Sivalhippus cf. theobaldi and Hipparion sp. The described material consists of the isolated upper cheek teeth and reflects all morphological features of Sivalhippus cf. theobaldi and Hipparion sp. Sivalhippus cf. theobaldi comprises two well preserved specimens and Hipparion sp. comprises four well preserved specimens. Sivalhippus cf. theobaldi is a large species with less complicated enamel plications whereas Hipparion sp. is moderate in size with more complicated enamel plications. Key words: Hipparion, Middle Siwaliks, Mammals, Dhok Pathan Formation. INTRODUCTION the late Miocene to Pliocene in age (Fig. 1). The Dhok Pathan Formation is composed of sand stones with In the Siwaliks, Hipparion first appeared by a alternate clay and minor layers of conglomerate in lower single migration, recorded in lithologic boundary of the part and more conglomerates with sandstone and clay in Nagri Formation (Pilbeam et al., 1997). Hipparion sp. upper part. The clays are orange brown in colour (Barry was found abundantly in the Middle Siwaliks and et al., 2002). considered to be as one of the faunal members of the Siwalik Late Miocene sediments (Hussain, 1971; Naseem MATERIALS AND METHODS et al., 2009).
    [Show full text]
  • Actual Problems of Protection and Sustainable Use of the Animal World Diversity
    ACADEMY OF SCIENCES OF MOLDOVA DEPARTMENT OF NATURE AND LIFE SCIENCES INSTITUTE OF ZOOLOGY Actual problems of protection and sustainable use of ThE animal world diversity International Conference of Zoologists dedicated to the 50th anniversary from the foundation of Institute of Zoology of ASM Chisinau – 2011 ACTUAL PRObLEMS OF PROTECTION AND SUSTAINAbLE USE OF ThE ANIMAL wORLD DIVERSITY Content CZU 59/599:502.74 (082) D 53 Dumitru Murariu. READING ABOUT SPECIES CONCEPT IN BIOLOGY.......................................................................10 Dan Munteanu. AChievements Of Romania in ThE field Of nature The materials of International Conference of Zoologists „Actual problems of protection and protection and implementation Of European Union’S rules concerning ThE biodiversity conservation (1990-2010)...............................................................................11 sustainable use of animal world diversity” organized by the Institute of Zoology of the Aca- demy of Sciences of Moldova in celebration of the 50th anniversary of its foundation are a gene- Laszlo Varadi. ThE protection and sustainable use Of Aquatic resources.....................................13 ralization of the latest scientific researches in the country and abroad concerning the diversity of aquatic and terrestrial animal communities, molecular-genetic methods in systematics, phylo- Terrestrial Vertebrates.................................................................................................................................................15
    [Show full text]
  • The First Occurrence of Eurygnathohippus Van Hoepen, 1930 (Mammalia, Perissodactyla, Equidae) Outside Africa and Its Biogeograph
    TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 58 (2), 2019, 171-179. Modena C N O A S S. P. I. The frst occurrence of Eurygnathohippus Van Hoepen, 1930 (Mammalia, Perissodactyla, Equidae) outside Africa and its biogeographic signifcance Advait Mahesh Jukar, Boyang Sun, Avinash C. Nanda & Raymond L. Bernor A.M. Jukar, Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013, USA; [email protected] B. Sun, Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100039, China; College of Medicine, Department of Anatomy, Laboratory of Evolutionary Biology, Howard University, Washington D.C. 20059, USA; [email protected] A.C. Nanda, Wadia Institute of Himalayan Geology, Dehra Dun 248001, India; [email protected] R.L. Bernor, College of Medicine, Department of Anatomy, Laboratory of Evolutionary Biology, Howard University, Washington D.C. 20059, USA; [email protected] KEY WORDS - South Asia, Pliocene, Biogeography, Dispersal, Siwalik, Hipparionine horses. ABSTRACT - The Pliocene fossil record of hipparionine horses in the Indian Subcontinent is poorly known. Historically, only one species, “Hippotherium” antelopinum Falconer & Cautley, 1849, was described from the Upper Siwaliks. Here, we present the frst evidence of Eurygnathohippus Van Hoepen, 1930, a lineage hitherto only known from Africa, in the Upper Siwaliks during the late Pliocene. Morphologically, the South Asian Eurygnathohippus is most similar to Eurygnathohippus hasumense (Eisenmann, 1983) from Afar, Ethiopia, a species with a similar temporal range.
    [Show full text]
  • The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection - 4
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Paläontologie Jahr/Year: 2009 Band/Volume: 31 Autor(en)/Author(s): Vasileiadou Katerina, Sylvestrou Ioanna A. Artikel/Article: The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection - 4. Micromammals 37-55 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont., 31:37-55, Wien 2009 The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection 4. Micromammals by Katerina Vasileiadou1) & Ioanna A. Sylvestrou2) V a s i l e i a d o u , K. &S y l v e s t r o u , I. A., 2009. The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection. 4. Micromammals. — Beitr. Palaont., 31:37-55, Wien. Abstract S chilisselworte: Obermiozan, Samos, Griechenland, Kleinsauger, Systematik. The small number of micromammalian fossils found in the Samos Middle Turolian localities M T L A and MTLB are identified as Pseudomeriones pythagorasi, ‘Karnimata’ 1. Introduction provocator, Spermophilinus cf. bredai and Pliospalax cf. sotirisi. The presence of these species on Samos gives ad­ Samos Island has some of the richest known late Miocene ditional information on the size and morphological varia­ mammal localities of Greece and Europe. Even though tion within the species, which are known only from a few the Samos collection of macromammals is extremely large, localities {Spermophilinus bredai excepted). Additionally, the micromammalian fossils are certainly underrepre­ three of them suggest a dry, open environment for Samos sented.
    [Show full text]
  • Geological Society, London, Memoirs
    Geological Society, London, Memoirs The Neogene: Part 2 Neogene geochronology and chronostratigraphy W. A. Berggren, D. V. Kent and J. A. van Couvering Geological Society, London, Memoirs 1985; v. 10; p. 211-260 doi: 10.1144/GSL.MEM.1985.010.01.18 Email alerting click here to receive free e-mail alerts when new articles cite this article service Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Memoirs or the Lyell Collection Notes Downloaded by on January 17, 2012 © 1985 The Geological Society. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by The Geological Society for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that a base fee of $02.00 per copy is paid directly to CCC, 21 Congress Street, Salem, MA 01970, USA. The Neogene: Part 2 Neogene geochronology and chronostratigraphy W. A. Berggren, D. V. Kent and J. A. van Couvering S U M M A R Y: We present a revised Neogene geochronology based upon a best fit to selected high temperature radiometric dates on a number of identified magnetic polarity chrons (within the late Cretaceous, Paleogene, and Neogene) which minimizes apparent accelerations in sea-floor spreading. An assessment of first order correlations of calcareous plankton biostratigraphic datum events to magnetic polarity stratigraphy yields the following estimated magnetobiochronology of major chron- ostratigraphic boundaries: Oligocene/Miocene (Chron C6CN): 23.7 Ma; Miocene/Pliocene (slightly younger than Gilbert/Chron 5 boundary): 5.3 Ma; Pliocene/Pleistocene (slightly younger than Olduvai Subchron): 1.6 Ma.
    [Show full text]
  • Eastern Georgia and Western Azerbaijan, South Caucasus)
    Synopsis of the terrestrial vertebrate faunas from the Middle Kura Basin (Eastern Georgia and Western Azerbaijan, South Caucasus) MAIA BUKHSIANIDZE and KAKHABER KOIAVA Bukhsianidze, M. and Koiava, K. 2018. Synopsis of the terrestrial vertebrate faunas from the Middle Kura Basin (Eastern Georgia and Western Azerbaijan, South Caucasus). Acta Palaeontologica Polonica 63 (3): 441–461. This paper summarizes knowledge on the Neogene–Quaternary terrestrial fossil record from the Middle Kura Basin accumulated over a century and aims to its integration into the current research. This fossil evidence is essential in understanding the evolution of the Eurasian biome, since this territory is located at the border of Eastern Mediterranean and Central Asian regions. The general biostratigraphic framework suggests existence of two major intervals of the terrestrial fossil record in the area, spanning ca. 10–7 Ma and ca. 3–1 Ma, and points to an important hiatus between the late Miocene and late Pliocene. General aspects of the paleogeographic history and fossil record suggest that the biogeographic role of the Middle Kura Basin has been changing over geological time from a refugium (Khersonian) to a full-fledged part of the Greco-Iranian province (Meotian–Pontian). The dynamic environmental changes during the Quaternary do not depict this territory as a refugium in its general sense. The greatest value of this fossil record is the potential to understand a detailed history of terrestrial life during demise of late Miocene Hominoidea in Eurasia and early Homo dispersal out of Africa. Late Miocene record of the Middle Kura Basin captures the latest stage of the Eastern Paratethys regression, and among other fossils counts the latest and the easternmost occurence of dryopithecine, Udabnopithecus garedziensis, while the almost uninterrupted fossil record of the late Pliocene–Early Pleistocene covers the time interval of the early human occupation of Caucasus and Eurasia.
    [Show full text]