The Mathematical Work of Caucher Birkar

Total Page:16

File Type:pdf, Size:1020Kb

The Mathematical Work of Caucher Birkar The Mathematical Work of Caucher Birkar Christopher Hacon University of Utah August, 2018 Christopher Hacon The Mathematical Work of Caucher Birkar Introduction It is a great pleasure to be able celebrate some of the mathematical achievements of Caucher Birkar. Caucher Birkar is being recognized for his outstanding work in Birational Algebraic Geometry of Complex Projective Varieties and especially for: Christopher Hacon The Mathematical Work of Caucher Birkar Introduction 1 His contributions to the Minimal Model Program including the finite generation of the canonical ring and the existence of flips. 2 His proof of the BAB conjecture concerning the boundedness of Fano varieties with mild singularities. Christopher Hacon The Mathematical Work of Caucher Birkar Algebraic Geometry Algebraic Geometry is the study of solutions of polynomial equations. We consider projective varieties N X = V (P1;:::; Pr ) ⊂ PC where Pi 2 C[x0;:::; xn] are homogeneous polynomial equations and N = ( N+1 n 0)¯ = ∗ is the N-dimensional PC C C projective space. N ⊃ N is a natural compactification obtained by adding the PC C hyperplane at infinity H = N n N =∼ N−1. PC C PC Typically we will assume that X is irreducible and smooth, hence a complex manifold of dimension d = dim X . Christopher Hacon The Mathematical Work of Caucher Birkar Birational equivalence Two varieties are birational if they have isomorphic open subsets (in the Zariski topology, closed subsets are zeroes of polynomial equations). It is easy to see that two varieties are birational if they have ∼ the same field of rational functions C(X ) = C(Y ). Recall that by Hironaka's theorem on the resolution of singularities (1964), for any variety X , there is a finite sequence of blow ups along smooth subvarieties 0 X = Xn ! Xn−1 ! ::: X1 ! X such that X 0 is smooth. If Z ⊂ X are smooth varieties, then the blow up blZ (X ) ! X of X along Z replaces the subset Z ⊂ X by the codimension 1 subvariety E = P(NZ X ). We say that E is an exceptional divisor. Christopher Hacon The Mathematical Work of Caucher Birkar Christopher Hacon The Mathematical Work of Caucher Birkar Canonical ring The geometry of varieties X ⊂ N is typically studied in terms PC dim X _ of the canonical line bundle !X = ^ TX . 0 ⊗n A section s 2 H (!X ) can be written in local coordinates as ⊗m f (z1;:::; zn)(dz1 ^ ::: ^ dzn) : Of particular importance is the canonical ring M 0 ⊗n R(!X ) = H (!X ) n≥0 a birational invariant of smooth projective varieties. The Kodaira dimension of X is defined by κ(X ) := tr:deg:CR(!X ) − 1 2 {−1; 0; 1;:::; d = dim X g: Note that complex projective manifolds have no non-constant global holomorphic functions, so it is natural to consider global sections of line bundles. There is only one natural choice: the canonical line bundle! Christopher Hacon The Mathematical Work of Caucher Birkar Canonical ring of hypersurfaces N For example, if X = P then !X = O N (−N − 1). C PC If X ⊂ N is a smooth hypersurface of degree k, then k PC !Xk = O N (k − N − 1)jXk . PC Here O N (l) is the line bundle corresponding to homogeneous PC polynomials of degree l and O N (l)jXk is the line bundle PC obtained by restriction to X ⊂ N . k PC ∼ It is easy to see that if k ≤ N then R(!Xk ) = C and so κ(Xk ) = −1, ∼ if k = N + 1, then R(!Xk ) = C[t] and so κ(Xk ) = 0, and if k ≥ N + 2, then κ(Xk ) = dim Xk . Christopher Hacon The Mathematical Work of Caucher Birkar Canonical ring of curves When d = dim X = 1 we say that X is a curve and we have 3 cases: ∼ 1 κ(X ) = −1: Then X = P is a rational curve. Note that ∼ C ∼ !P1 = OP1 (−2) and so R(!X ) = C. ∼ κ(X ) = 0: Then !X = OX and X is an elliptic curve. There is a one parameter family of these given by the equations x2 = y(y − 1)(y − s): ∼ In this case R(!X ) = C[t]. Christopher Hacon The Mathematical Work of Caucher Birkar Canonical ring of curves If κ(X ) = 1, then we say that X is a curve of general type. These are Riemann surfaces of genus g ≥ 2. For any g ≥ 2 they belong to a 3g − 3 dimensional algebraic family. We have deg(!X ) = 2g − 2 > 0. ⊗m By Riemann Roch, it is easy to see that !X is very ample for m ≥ 3. This means that if s0;:::; sN are a basis of 0 ⊗m H (!X ), then N φm : X ! P ; x ! [s0(x): s1(x): ::: : sN (x)] is an embedding. ⊗m ∼ ∗ Thus !X = φmOPN (1) and in particular R(!X ) is finitely generated. Christopher Hacon The Mathematical Work of Caucher Birkar Christopher Hacon The Mathematical Work of Caucher Birkar Birational equivalence One would like to prove similar results in higher dimensions. If dim X ≥ 2, the birational equivalence relation is non-trivial. In dimension 2, any two smooth birational surfaces become isomorphic after finitely many blow ups of smooth points (Zariski, 1931). In dimension ≥ 3 the situation is much more complicated, however it is known by work of Wlodarczyk (1999) and Abramovich-Karu-Matsuki-Wlodarczyk (2002), that the birational equivalence relation is generated by blow ups along smooth centers. It is easy to see that if X ; X 0 are birational smooth varieties, ∼ 0 ∼ then π1(X ) = π1(X ) and R(!X ) = R(!X 0 ). However, typically, they have different Betti numbers eg. 0 b2(X ) 6= b2(X ). Christopher Hacon The Mathematical Work of Caucher Birkar Christopher Hacon The Mathematical Work of Caucher Birkar Higher dimensions One of the main goals of birational geometry is to produce a distinguished representative with good geometric properties in any birational equivalence class. In dimension 2 this was achieved by the Italian school of algebraic geometry at the beginning of the 20-th century. In dimension 3, this was finally proven by Mori and others in the 1980's. Around the same time, the minimal model program (MMP), was established by work of Kawamata, Koll´ar,Mori, Reid, Shokhurov and others. The MMP is a general framework for the birational classification of higher dimensional projective varieties. In arbitrary dimension the program has not yet been completed but there has been some spectacular progress. Christopher Hacon The Mathematical Work of Caucher Birkar Finite generation Theorem (Birkar-Cascini-Hacon-McKernan, Siu 2010) If X is a smooth complex projective variety, then the canonical ring R(!X ) is finitely generated. Corollary (Birkar-Cascini-Hacon-McKernan) If X is of general type (κ(X ) = dim X ), then X has a canonical model Xcan and a minimal model Xmin. Christopher Hacon The Mathematical Work of Caucher Birkar Canonical models The canonical model Xcan := Proj(R(!X )) is a distinguished "canonical" (unique) representative of the birational equivalence class of X which is defined by the generators and relations in the finitely generated ring R(!X ). Xcan may be singular, but its singularities are mild (canonical). In particular they are cohomologically insignificant so that e.g. i ∼ i H (OX ) = H (OXcan ) for 0 ≤ i ≤ dim X . The "canonical line bundle" is now a Q-line bundle which means that !⊗n is a line bundle for some n > 0. Xcan ⊗m ! is ample so that ! = O N (1)j for some m > 0. Xcan Xcan P Xcan This result has lead to the proof of the existence of projective moduli spaces for canonically polarized (stable) varieties. In particular, for any fixed dimension d = dim X and volume d v = c1(!Xcan ) there is an algebraic variety parametrizing all canonical models of dimension d and volume v. Christopher Hacon The Mathematical Work of Caucher Birkar Varieties of intermediate Kodaira dimension When 0 ≤ κ(X ) ≤ dim X − 1 it is still expected that X has a minimal model Xmin which has mild (terminal) singularities, is not unique, and such that c1(!Xmin ) · C ≥ 0 for any curve C ⊂ Xmin. It is conjectured that minimal models X 99K Xmin are obtained by a finite sequence of well understood elementary birational transformations (known as flips and divisorial contractions) that remove certain !X negative curves and replace them with points or with !X positive curves. The existence of flips is another result of fundamental importance proved by Birkar-Cascini-Hacon-McKernan (2010). In order to prove the existence of minimal models it then suffices to prove the termination of flips i.e. that any sequence of flips (and divisorial contractions) is finite. This is an important conjecture and Birkar has proven some of the strongest results towards this conjecture. Christopher Hacon The Mathematical Work of Caucher Birkar Christopher Hacon The Mathematical Work of Caucher Birkar Termination Theorem (Birkar) Assume the non-vanishing conjecture. Then certain sequences of flips (known as flips with scaling) terminate. In particular if X is not uniruled then it has a minimal model X 99K Xmin. Uniruled varieties are varieties covered by rational curves. Since H0(!⊗m) = 0 for all m > 0, it follows easily that if X is P1 0 ⊗m uniruled, then H (!X ) = 0 for all m > 0. The non-vanishing conjecture asserts that if X is a smooth 0 ⊗m projective variety which is not uniruled then H (!X ) 6= 0 for some m 2 N. This is closely related to the famous abundance conjecture. Actually, there is a more precise structure theorem for uniruled varieties. Christopher Hacon The Mathematical Work of Caucher Birkar Mori Fiber Spaces Theorem (Birkar-Cascini-Hacon-McKernan) Let X be a uniruled variety.
Recommended publications
  • REMARKS on the ABUNDANCE CONJECTURE 3 Log flips for Log Canonical Pairs Is Known for All Dimensions (Cf
    REMARKS ON THE ABUNDANCE CONJECTURE KENTA HASHIZUME Abstract. We prove the abundance theorem for log canonical n- folds such that the boundary divisor is big assuming the abundance conjecture for log canonical (n − 1)-folds. We also discuss the log minimal model program for log canonical 4-folds. Contents 1. Introduction 1 2. Notations and definitions 3 3. Proof of the main theorem 5 4. Minimal model program in dimension four 9 References 10 1. Introduction One of the most important open problems in the minimal model theory for higher-dimensional algebraic varieties is the abundance con- jecture. The three-dimensional case of the above conjecture was com- pletely solved (cf. [KeMM] for log canonical threefolds and [F1] for semi log canonical threefolds). However, Conjecture 1.1 is still open in dimension ≥ 4. In this paper, we deal with the abundance conjecture in relative setting. arXiv:1509.04626v2 [math.AG] 3 Nov 2015 Conjecture 1.1 (Relative abundance). Let π : X → U be a projective morphism of varieties and (X, ∆) be a (semi) log canonical pair. If KX + ∆ is π-nef, then it is π-semi-ample. Hacon and Xu [HX1] proved that Conjecture 1.1 for log canonical pairs and Conjecture 1.1 for semi log canonical pairs are equivalent (see also [FG]). If (X, ∆) is Kawamata log terminal and ∆ is big, then Date: 2015/10/30, version 0.21. 2010 Mathematics Subject Classification. Primary 14E30; Secondary 14J35. Key words and phrases. abundance theorem, big boundary divisor, good minimal model, finite generation of adjoint ring. 1 2 KENTAHASHIZUME Conjecture 1.1 follows from the usual Kawamata–Shokurov base point free theorem in any dimension.
    [Show full text]
  • Caucher Birkar — from Asylum Seeker to Fields Medal Winner at Cambridge
    MATHS, 1 Caucher Birkar, 41, at VERSION Cambridge University, photographed by Jude Edginton REPR O OP HEARD THE ONE ABOUT THE ASYLUM SEEKER SUBS WHO WANDERED INTO A BRITISH UNIVERSITY... A RT AND CAME OUT A MATHS SUPERSTAR? PR ODUCTION CLIENT Caucher Birkar grew up in a Kurdish peasant family in a war zone and arrived in Nottingham as a refugee – now he has received the mathematics equivalent of the Nobel prize. By Tom Whipple BLACK YELLOW MAGENTA CYAN 91TTM1940232.pgs 01.04.2019 17:39 MATHS, 2 VERSION ineteen years ago, the mathematics Caucher Birkar in Isfahan, Receiving the Fields Medal If that makes sense, congratulations: you department at the University of Iran, in 1999 in Rio de Janeiro, 2018 now have a very hazy understanding of Nottingham received an email algebraic geometry. This is the field that from an asylum seeker who Birkar works in. wanted to talk to someone about The problem with explaining maths is REPR algebraic geometry. not, or at least not always, the stupidity of his They replied and invited him in. listeners. It is more fundamental than that: O OP N So it was that, shortly afterwards, it is language. Mathematics is not designed Caucher Birkar, the 21-year-old to be described in words. It is designed to be son of a Kurdish peasant family, described in mathematics. This is the great stood in front of Ivan Fesenko, a professor at triumph of the subject. It was why a Kurdish Nottingham, and began speaking in broken asylum seeker with bad English could convince SUBS English.
    [Show full text]
  • Birational Geometry of Algebraic Varieties
    Proc. Int. Cong. of Math. – 2018 Rio de Janeiro, Vol. 1 (563–588) BIRATIONAL GEOMETRY OF ALGEBRAIC VARIETIES Caucher Birkar 1 Introduction This is a report on some of the main developments in birational geometry in recent years focusing on the minimal model program, Fano varieties, singularities and related topics, in characteristic zero. This is not a comprehensive survey of all advances in birational geometry, e.g. we will not touch upon the positive characteristic case which is a very active area of research. We will work over an algebraically closed field k of characteristic zero. Varieties are all quasi-projective. Birational geometry, with the so-called minimal model program at its core, aims to classify algebraic varieties up to birational isomorphism by identifying “nice” elements in each birational class and then classifying such elements, e.g study their moduli spaces. Two varieties are birational if they contain isomorphic open subsets. In dimension one, a nice element in a birational class is simply a smooth and projective element. In higher dimension though there are infinitely many such elements in each class, so picking a rep- resentative is a very challenging problem. Before going any further lets introduce the canonical divisor. 1.1 Canonical divisor. To understand a variety X one studies subvarieties and sheaves on it. Subvarieties of codimension one and their linear combinations, that is, divisors play a crucial role. Of particular importance is the canonical divisor KX . When X is smooth this is the divisor (class) whose associated sheaf OX (KX ) is the canonical sheaf !X := det ΩX where ΩX is the sheaf of regular differential forms.
    [Show full text]
  • Moving Codimension-One Subvarieties Over Finite Fields
    Moving codimension-one subvarieties over finite fields Burt Totaro In topology, the normal bundle of a submanifold determines a neighborhood of the submanifold up to isomorphism. In particular, the normal bundle of a codimension-one submanifold is trivial if and only if the submanifold can be moved in a family of disjoint submanifolds. In algebraic geometry, however, there are higher-order obstructions to moving a given subvariety. In this paper, we develop an obstruction theory, in the spirit of homotopy theory, which gives some control over when a codimension-one subvariety moves in a family of disjoint subvarieties. Even if a subvariety does not move in a family, some positive multiple of it may. We find a pattern linking the infinitely many obstructions to moving higher and higher multiples of a given subvariety. As an application, we find the first examples of line bundles L on smooth projective varieties over finite fields which are nef (L has nonnegative degree on every curve) but not semi-ample (no positive power of L is spanned by its global sections). This answers questions by Keel and Mumford. Determining which line bundles are spanned by their global sections, or more generally are semi-ample, is a fundamental issue in algebraic geometry. If a line bundle L is semi-ample, then the powers of L determine a morphism from the given variety onto some projective variety. One of the main problems of the minimal model program, the abundance conjecture, predicts that a variety with nef canonical bundle should have semi-ample canonical bundle [15, Conjecture 3.12].
    [Show full text]
  • Arxiv:1609.05543V2 [Math.AG] 1 Dec 2020 Ewrs Aovreis One Aiis Iersystem Linear Families, Bounded Varieties, Program
    Singularities of linear systems and boundedness of Fano varieties Caucher Birkar Abstract. We study log canonical thresholds (also called global log canonical threshold or α-invariant) of R-linear systems. We prove existence of positive lower bounds in different settings, in particular, proving a conjecture of Ambro. We then show that the Borisov- Alexeev-Borisov conjecture holds, that is, given a natural number d and a positive real number ǫ, the set of Fano varieties of dimension d with ǫ-log canonical singularities forms a bounded family. This implies that birational automorphism groups of rationally connected varieties are Jordan which in particular answers a question of Serre. Next we show that if the log canonical threshold of the anti-canonical system of a Fano variety is at most one, then it is computed by some divisor, answering a question of Tian in this case. Contents 1. Introduction 2 2. Preliminaries 9 2.1. Divisors 9 2.2. Pairs and singularities 10 2.4. Fano pairs 10 2.5. Minimal models, Mori fibre spaces, and MMP 10 2.6. Plt pairs 11 2.8. Bounded families of pairs 12 2.9. Effective birationality and birational boundedness 12 2.12. Complements 12 2.14. From bounds on lc thresholds to boundedness of varieties 13 2.16. Sequences of blowups 13 2.18. Analytic pairs and analytic neighbourhoods of algebraic singularities 14 2.19. Etale´ morphisms 15 2.22. Toric varieties and toric MMP 15 arXiv:1609.05543v2 [math.AG] 1 Dec 2020 2.23. Bounded small modifications 15 2.25. Semi-ample divisors 16 3.
    [Show full text]
  • Number-Theory Prodigy Among Winners of Coveted Maths Prize Fields Medals Awarded to Researchers in Number Theory, Geometry and Differential Equations
    NEWS IN FOCUS nature means these states are resistant to topological states. But in 2017, Andrei Bernevig, Bernevig and his colleagues also used their change, and thus stable to temperature fluctua- a physicist at Princeton University in New Jersey, method to create a new topological catalogue. tions and physical distortion — features that and Ashvin Vishwanath, at Harvard University His team used the Inorganic Crystal Structure could make them useful in devices. in Cambridge, Massachusetts, separately pio- Database, filtering its 184,270 materials to find Physicists have been investigating one class, neered approaches6,7 that speed up the process. 5,797 “high-quality” topological materials. The known as topological insulators, since the prop- The techniques use algorithms to sort materi- researchers plan to add the ability to check a erty was first seen experimentally in 2D in a thin als automatically into material’s topology, and certain related fea- sheet of mercury telluride4 in 2007 and in 3D in “It’s up to databases on the basis tures, to the popular Bilbao Crystallographic bismuth antimony a year later5. Topological insu- experimentalists of their chemistry and Server. A third group — including Vishwa- lators consist mostly of insulating material, yet to uncover properties that result nath — also found hundreds of topological their surfaces are great conductors. And because new exciting from symmetries in materials. currents on the surface can be controlled using physical their structure. The Experimentalists have their work cut out. magnetic fields, physicists think the materials phenomena.” symmetries can be Researchers will be able to comb the databases could find uses in energy-efficient ‘spintronic’ used to predict how to find new topological materials to explore.
    [Show full text]
  • Public Recognition and Media Coverage of Mathematical Achievements
    Journal of Humanistic Mathematics Volume 9 | Issue 2 July 2019 Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Sepulcre, J. "Public Recognition and Media Coverage of Mathematical Achievements," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 93-129. DOI: 10.5642/ jhummath.201902.08 . Available at: https://scholarship.claremont.edu/jhm/vol9/iss2/8 ©2019 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre Department of Mathematics, University of Alicante, Alicante, SPAIN [email protected] Synopsis This report aims to convince readers that there are clear indications that society is increasingly taking a greater interest in science and particularly in mathemat- ics, and thus society in general has come to recognise, through different awards, privileges, and distinctions, the work of many mathematicians.
    [Show full text]
  • Strictly Nef Vector Bundles and Characterizations of P
    Complex Manifolds 2021; 8:148–159 Research Article Open Access Jie Liu, Wenhao Ou, and Xiaokui Yang* Strictly nef vector bundles and characterizations of Pn https://doi.org/10.1515/coma-2020-0109 Received September 8, 2020; accepted February 10, 2021 Abstract: In this note, we give a brief exposition on the dierences and similarities between strictly nef and ample vector bundles, with particular focus on the circle of problems surrounding the geometry of projective manifolds with strictly nef bundles. Keywords: strictly nef, ample, hyperbolicity MSC: 14H30, 14J40, 14J60, 32Q57 1 Introduction Let X be a complex projective manifold. A line bundle L over X is said to be strictly nef if L · C > 0 for each irreducible curve C ⊂ X. This notion is also called "numerically positive" in literatures (e.g. [25]). The Nakai-Moishezon-Kleiman criterion asserts that L is ample if and only if Ldim Y · Y > 0 for every positive-dimensional irreducible subvariety Y in X. Hence, ample line bundles are strictly nef. In 1960s, Mumford constructed a number of strictly nef but non-ample line bundles over ruled surfaces (e.g. [25]), and they are tautological line bundles of stable vector bundles of degree zero over smooth curves of genus g ≥ 2. By using the terminology of Hartshorne ([24]), a vector bundle E ! X is called strictly nef (resp. ample) if its tautological line bundle OE(1) is strictly nef (resp. ample). One can see immediately that the strictly nef vector bundles constructed by Mumford are actually Hermitian-at. Therefore, some functorial properties for ample bundles ([24]) are not valid for strictly nef bundles.
    [Show full text]
  • Bimeromorphic Geometry of K'́ahler Threefolds
    Bimeromorphic geometry of K’́ahler threefolds Andreas Höring, Thomas Peternell To cite this version: Andreas Höring, Thomas Peternell. Bimeromorphic geometry of K’́ahler threefolds. 2015 Summer Institute on Algebraic Geometry, Jul 2015, Salt Lake City, United States. hal-01428621 HAL Id: hal-01428621 https://hal.archives-ouvertes.fr/hal-01428621 Submitted on 6 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bimeromorphic geometry of K¨ahler threefolds Andreas H¨oring and Thomas Peternell Abstract. We describe the recently established minimal model program for (non-algebraic) K¨ahler threefolds as well as the abundance theorem for these spaces. 1. Introduction Given a complex projective manifold X, the Minimal Model Program (MMP) predicts that either X is covered by rational curves (X is uniruled) or X has a ′ - slightly singular - birational minimal model X whose canonical divisor KX′ is nef; and then the abundance conjecture says that some multiple mKX′ is spanned by global sections (so X′ is a good minimal model). The MMP also predicts how to achieve the birational model, namely by a sequence of divisorial contractions and flips. In dimension three, the MMP is completely established (cf.
    [Show full text]
  • NEWSLETTER Issue: 481 - March 2019
    i “NLMS_481” — 2019/2/13 — 11:04 — page 1 — #1 i i i NEWSLETTER Issue: 481 - March 2019 HILBERT’S FRACTALS CHANGING SIXTH AND A-LEVEL PROBLEM GEOMETRY STANDARDS i i i i i “NLMS_481” — 2019/2/13 — 11:04 — page 2 — #2 i i i EDITOR-IN-CHIEF COPYRIGHT NOTICE Iain Moatt (Royal Holloway, University of London) News items and notices in the Newsletter may [email protected] be freely used elsewhere unless otherwise stated, although attribution is requested when reproducing whole articles. Contributions to EDITORIAL BOARD the Newsletter are made under a non-exclusive June Barrow-Green (Open University) licence; please contact the author or photog- Tomasz Brzezinski (Swansea University) rapher for the rights to reproduce. The LMS Lucia Di Vizio (CNRS) cannot accept responsibility for the accuracy of Jonathan Fraser (University of St Andrews) information in the Newsletter. Views expressed Jelena Grbic´ (University of Southampton) do not necessarily represent the views or policy Thomas Hudson (University of Warwick) of the Editorial Team or London Mathematical Stephen Huggett (University of Plymouth) Society. Adam Johansen (University of Warwick) Bill Lionheart (University of Manchester) ISSN: 2516-3841 (Print) Mark McCartney (Ulster University) ISSN: 2516-385X (Online) Kitty Meeks (University of Glasgow) DOI: 10.1112/NLMS Vicky Neale (University of Oxford) Susan Oakes (London Mathematical Society) David Singerman (University of Southampton) Andrew Wade (Durham University) NEWSLETTER WEBSITE The Newsletter is freely available electronically Early Career Content Editor: Vicky Neale at lms.ac.uk/publications/lms-newsletter. News Editor: Susan Oakes Reviews Editor: Mark McCartney MEMBERSHIP CORRESPONDENTS AND STAFF Joining the LMS is a straightforward process.
    [Show full text]
  • Mathematics People
    NEWS Mathematics People or up to ten years post-PhD, are eligible. Awardees receive Braverman Receives US$1 million distributed over five years. NSF Waterman Award —From an NSF announcement Mark Braverman of Princeton University has been selected as a Prizes of the Association cowinner of the 2019 Alan T. Wa- terman Award of the National Sci- for Women in Mathematics ence Foundation (NSF) for his work in complexity theory, algorithms, The Association for Women in Mathematics (AWM) has and the limits of what is possible awarded a number of prizes in 2019. computationally. According to the Catherine Sulem of the Univer- prize citation, his work “focuses on sity of Toronto has been named the Mark Braverman complexity, including looking at Sonia Kovalevsky Lecturer for 2019 by algorithms for optimization, which, the Association for Women in Math- when applied, might mean planning a route—how to get ematics (AWM) and the Society for from point A to point B in the most efficient way possible. Industrial and Applied Mathematics “Algorithms are everywhere. Most people know that (SIAM). The citation states: “Sulem every time someone uses a computer, algorithms are at is a prominent applied mathemati- work. But they also occur in nature. Braverman examines cian working in the area of nonlin- randomness in the motion of objects, down to the erratic Catherine Sulem ear analysis and partial differential movement of particles in a fluid. equations. She has specialized on “His work is also tied to algorithms required for learning, the topic of singularity development in solutions of the which serve as building blocks to artificial intelligence, and nonlinear Schrödinger equation (NLS), on the problem of has even had implications for the foundations of quantum free surface water waves, and on Hamiltonian partial differ- computing.
    [Show full text]
  • NEWSLETTER Issue: 478 - September 2018
    i “NLMS_478” — 2018/8/17 — 16:44 — page 1 — #1 i i i NEWSLETTER Issue: 478 - September 2018 APOLLONIUS GRAPH THEORY MATHEMATICS CIRCLE AND BOVINE OF LANGUAGE COUNTING EPIDEMIOLOGY AND GRAMMAR i i i i i “NLMS_478” — 2018/8/17 — 16:44 — page 2 — #2 i i i EDITOR-IN-CHIEF COPYRIGHT NOTICE Iain Moatt (Royal Holloway, University of London) News items and notices in the Newsletter may [email protected] be freely used elsewhere unless otherwise stated, although attribution is requested when reproducing whole articles. Contributions to EDITORIAL BOARD the Newsletter are made under a non-exclusive June Barrow-Green (Open University) licence; please contact the author or photog- Tomasz Brzezinski (Swansea University) rapher for the rights to reproduce. The LMS Lucia Di Vizio (CNRS) cannot accept responsibility for the accuracy of Jonathan Fraser (University of St Andrews) information in the Newsletter. Views expressed Jelena Grbin´ (University of Southampton) do not necessarily represent the views or policy Thomas Hudson (University of Warwick) of the Editorial Team or London Mathematical Stephen Huggett (University of Plymouth) Society. Adam Johansen (University of Warwick) Bill Lionheart (University of Manchester) ISSN: 2516-3841 (Print) Mark McCartney (Ulster University) ISSN: 2516-385X (Online) Kitty Meeks (University of Glasgow) DOI: 10.1112/NLMS Vicky Neale (University of Oxford) Susan Oakes (London Mathematical Society) David Singerman (University of Southampton) Andrew Wade (Durham University) NEWSLETTER WEBSITE The Newsletter is freely available electronically Early Career Content Editor: Vicky Neale at lms.ac.uk/publications/lms-newsletter. News Editor: Susan Oakes Reviews Editor: Mark McCartney MEMBERSHIP CORRESPONDENTS AND STAFF Joining the LMS is a straightforward process.
    [Show full text]