View Program Book

Total Page:16

File Type:pdf, Size:1020Kb

View Program Book NPDN Fifth NationalBugwood.org Manoa, at Hawaii of MeetingUniversity Brooks, Fred © AGENDA AT A GLANCE Monday Tuesday Wednesday Thursday Registration opens 7:30 am Registration opens 7:30 am The importance of diagnostics General sessions 8:00–9:30 8:00–10:00 Workshops 8:00–noon Refreshment & networking break Tours Fungal workshop, part 1 Refreshment & networking break 8:00–1:00 Bacterial workshop, part 1 Diagnostic impacts of Meet in the hotel lobby Strategic planning revised taxonomy Box lunch provided Reporting and discussion 10:00–noon 10:30–noon Lunch & poster/exhibit Lunch Lunch & NPDN awards noon-1:00 viewing noon–1:15 noon–1:15 Regional meetings* Techniques, taxonomy and 1:30–3:00 technology *see detailed agenda for more Workshops 1:30–3:00 1:00–5:00 information Fungal workshop, part 2 Refreshment & networking break Refreshment & networking break Bacterial workshop, part 2 Breakout session Validation and verification Discussions and problem solving 3:30–4:30 3:30–5:00 Meeting wrap up Operations Committee meeting* Reception 5:00–7:30 5:30–7:30 *committee members only Exhibitor presentations, networking & poster viewing 8 am 9 am 10 am 11 am noon 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 7 pm agenda at a glance_2019.indd 1 3/29/2019 12:50:11 PM NPDN Fifth National Meeting AGENDA AT A GLANCE Monday Tuesday Wednesday Thursday Registration opens 7:30 am Registration opens 7:30 am The importance of diagnostics General sessions 8:00–9:30 8:00–10:00 Workshops 8:00–noon Refreshment & networking break Tours Fungal workshop, part 1 Refreshment & networking break 8:00–1:00 Bacterial workshop, part 1 Diagnostic impacts of Meet in the hotel lobby Strategic planning revised taxonomy Box lunch provided Reporting and discussion 10:00–noon 10:30–noon Lunch & poster/exhibit Lunch Lunch & NPDN awards noon-1:00 viewing noon–1:15 noon–1:15 Regional meetings* Techniques, taxonomy and 1:30–3:00 technology *see detailed agenda for more Workshops 1:30–3:00 1:00–5:00 information Fungal workshop, part 2 Refreshment & networking break Refreshment & networking break Bacterial workshop, part 2 Breakout session Validation and verification Discussions and problem solving 3:30–4:30 3:30–5:00 Meeting wrap up Operations Committee meeting* Reception 5:00–7:30 5:30–7:30 *committee members only Exhibitor presentations, networking & poster viewing agenda at a glance_2019.indd 1 3/29/2019 12:50:11 PM DIAGNOSTICS PAST, PRESENT & FUTURE & PRESENT PAST, © Fred Brooks, University of Hawaii at Manoa, Bugwood.org Manoa, at Hawaii of University Brooks, Fred © Executive Director, National Plant Diagnostic Network Diagnostic Plant National Director, Executive Stack Jim meeting! your andenjoy WELCOME planthealthlocallyandnationally. toprotect manycontributions your of NPDNandfor doinsupport allyou for appreciation oursincere Iextendtoyou Committee, behalfoftheNPDNExecutive On Conferences). (Purdue Amanda Shields coordinator andtheconference Goswami(NIFA) Rubella (CERIS), Hill (WPDN),Mike Brenes-Arguedas Tania (NEPDN), Snover-Clift Karen, (GPDN), ChristianWebb (NCPDN), Byrne (SPDN),Jan Chairs, CarrieHarmon Committee Special thankstothe for everyone. experience toensuringanexcellent given effort the tremendous for pages 48–49) (see committees Meeting thetimetothank membersoftheNPDNNational take Please valuetoNPDNdiagnosticians. and providing amongNPDNlabs diversity thegreat for whileaccounting andperformance, documentsprogress improvement, constant facilitates that inaframework NIFA USDA from therequirements addresses that future NPDN’s for avision Plan offers Strategic TheNPDN oftheSP. comments tohelpguidetheimplementation your offer Please Groups. the SPWorking from postersandreports SPthrough onthat andcomment an opportunitytoreview willhave thismeeting,you At planningtoimplementation. nowtransitioningfrom are than tobequick.We importanttogetitright itismore longerthanimagined,butthedrivingsentimenthasbeenthat has taken in2016.TheSPprocess planning(SP)process undertookastrategic we NIFA, ofUSDA theencouragement At YOU! groups—THANK working committees and attitude amongallNPDN isthe identified.That andresolutions which eachissuewasaddressed ofengagementandtheseriousnesswith bythelevel nothelpbutbeimpressed meeting, Icould Diagnosticians IT- themostrecent At oftheNPDNmembership—allyou. dedication andcontinued work ofthehard result adirect ofNPDNare andthesolidreputation criticalrelationships thestrong The manyaccomplishments, pestsandpathogens. emerging,andintroduced recurrent, plantsystemsfrom joint goalofprotecting agencieswiththe regulatory andfederal withstate relationships working strong forged have NPDN.We emulate lookingto nations withseveral andinternationally nationally respected NPDNiswell biosecurity infrastructure. toournational andcontributions toaccomplishments ofwithrespect the NPDNerawithmuchtobeproud years into 17 now We are regions today. five similartoNPDN’s remarkably were activities; thosesixregions andoutreach research coordinate regions to systems.Theyidentifiedsix production ourfood to safeguard U.S. inthe theleadershipofAPSfirst suggestedaplanthealthnetwork since 100years isapproximately It Network. Diagnostic Plant National Meeting ofthe National tothefifth Welcome NPDN fifth national meeting fifthnational NPDN WELCOME Diagnostics: Past, Present & Future Present Past, Diagnostics: 3 8 am 9 am 10 am 11 am noon 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 7 pm THANK YOU TO OUR SPONSORS! platinum sponsors gold sponsors silver sponsors non-profit sponsors 4 National Plant Diagnostic Network • Fifth National Meeting NPDN fifth national meeting TABLE OF CONTENTS 2 agenda at a glance 3 welcome letter 6 program agenda 10 oral abstracts 17 award recepients 21 poster abstracts 48 meeting committees 50 author index 55 hotel map The 2019 program book was designed and edited by Rachel McCarthy & Dawn Dailey O’Brien, Cornell University. The front cover design was done by Matt Bertone, North Carolina State University. FRONT COVER LEGEND 1. Advanced laboratory, top floor of Agronomy Building, Cornell University (CU) ©Plant Pathology Herbarium 2.Tomato spotted wilt virus (TSWV) infection in Lysimachia procumbens ©Mike Munster, North Carolina State University (NCSU) 3. Gypsy moth caterpillar (Lymantria dispar) ©Matt Bertone, NCSU 4. Hyperspectral image sensing of regions of interest (ROI) for chlorophyll content (REIP) and the xanthophyll cycle (PRI) in non-stress acclimated and stress acclimated Arapidopsis plants ©Behmann et al. (2018) Sensors, 18, 441; doi:10.3390/s18020441 5. Gloeosporium fructigenum circa 1892–1918 ©Atkinson, George Francis, 1854– 1918, CU. Plant Pathology Herbarium, G.F. Atkinson Herbarium 6. Galleries made by emerald ash borer (Agrilus planipennis) in ash (Fraxinus) ©Matt Bertone, NCSU 7. Cedar apple rust (Gymnosporangium juniperi-virginianae) ©Matt Bertone, NCSU 8. Dutch elm disease (Ophiostoma novo-ulmi) fruiting bodies ©Sandra Jensen, CU 9. Flatid planthopper nymph (Flatidae) on wild blackberry (Rubus) ©Matt Bertone, NCSU 10. Powdery mildew on red clover ©Matt Bertone, NCSU 11. Confocal laser scanning microscopy (CLSM) image showing the site of attachments of mandibular muscles trough the larval head cuticle of the fall armyworm (Spodoptera frugiperda) ©Flor Edith Acevedo & István Mikó 12. Illustration of codling moth (Cydia pomonella) life history in apple ©Saunders (1883) Insects Injurious to Fruits 13. Botryosphaeria dothidea canker in maple (Acer) stem ©Matt Bertone, NCSU 14. Whitefly pupa (Trialeurodes ruborum) on blackberry (Rubus) leaf ©Matt Bertone, NCSU 15. Nun moth (Lymantria monacha) and pine-tree lappet (Dendrolimus pini) ©Rachel McCarthy, CU Diagnostics: Past, Present & Future 5 NPDN fifth national meeting PROGRAM AGENDA Monday, April 15 WORKSHOPS 7:30am Registration LOCATION: Grand Hall Foyer 8:00 – 12noon Fungal Workshop Part 1, Megan Romberg, USDA-APHIS-PPQ-PHP-NIS LOCATION: Baltimore & Ohio (B&O) Bacterial Workshop Part 1, Jeff Jones, University of Florida LOCATION: Chesapeake & Ohio (C&O) 12noon – 1:00pm Lunch provided LOCATION: Grand Hall including Northeast and Southeast 1:00pm – 5:00pm Fungal Workshop Part 2, Megan Romberg, USDA-APHIS-PPQ-PHP-NIS LOCATION: Baltimore & Ohio (B&O) Bacterial Workshop Part 2, Sujan Timilsina, University of Florida LOCATION: Milwaukee Tuesday, April 16 7:30am Registration LOCATION: Grand Hall Foyer The importance of diagnostics LOCATION: Illinois Street Ballroom East and West Moderator: Cheryl Smith 8:00am – 8:30am Ray Hammerschmidt, NCPDN Director, Michigan State University Welcome — NPDN: building on past success and looking forward 8:30am – 9:00am Lindsay DuToit, Washington State University From diagnostician to professor and extension plant pathologist: A foundation in diagnostics for developing a research and extension program to address the Land Grant mission 9:00am – 9:30am Steve Koike, Trical Diagnostics A perspective on plant disease diagnostics in California, past-present-future considerations, and the continuing need for agricultural problem-solving in the golden state 9:30am – 10:00am Refreshment and networking break LOCATION: Grand Hall including Northeast and Southeast 6 National Plant Diagnostic Network • Fifth National Meeting Diagnostic impacts of revised taxonomy LOCATION: Illinois Street Ballroom East and West Moderator: Carrie Harmon 10:00am – 12noon Sujan Timilsina, University of Florida Updating diagnostic approach with changing bacterial taxonomy Megan Romberg, USDA-APHIS-PPQ-PHP-NIS Down the rabbit hole: the relationship between fungal taxonomy and diagnostics Judith Brown, University
Recommended publications
  • Landscape Diversity for Reduced Risk of Insect Damage: a Case Study of Spruce Bud Scale in Latvia
    Article Landscape Diversity for Reduced Risk of Insect Damage: A Case Study of Spruce Bud Scale in Latvia Endijs Baders¯ 1,* ID , Aris¯ Jansons 1, Roberts Matisons 1, Didzis Elferts 1,2 ID and Iveta Desaine 1 1 Latvian State Forest Research Institute “Silava”, R¯ıgas str. 111, LV–2169 Salaspils, Latvia; [email protected] (A.J.);¯ [email protected] (R.M.); [email protected] (D.E.); [email protected] (I.D.) 2 Faculty of Biology, University of Latvia, Jelgavas str. 1, LV–1004 R¯ıga, Latvia * Correspondence: [email protected]; Tel.: +371-27-043-293 Received: 6 August 2018; Accepted: 4 September 2018; Published: 5 September 2018 Abstract: Spruce bud scale (Physokermes piceae (Schrnk.) has gained attention due to recent outbreaks in the eastern Baltic Sea region—Poland, Lithuania, and Latvia. In the spring of 2010, it spread rapidly across Latvia, affecting large areas of Norway spruce stands. Therefore, the aim of our study was to assess the effects of landscape heterogeneity on the damage caused by spruce bud scale in Norway spruce stands. In this study, we evaluated landscape metrics for middle-aged (40 to 70 years old) Norway spruce-dominated stands (>70% of stand’s basal area) in four of the most affected forest massifs and two unaffected forest massifs. We used a binary logistic generalized linear mixed effects model (GLMMs) to assess the effect of environmental factors on the abundance of the spruce bud scale. Our results show that increased local diversity within 100 m of a forest patch apparently reduced the probability of spruce bud scale presence.
    [Show full text]
  • Thuja Plicata Has Many Traditional Uses, from the Manufacture of Rope to Waterproof Hats, Nappies and Other Kinds of Clothing
    photograph © Daniel Mosquin Culturally modified tree. The bark of Thuja plicata has many traditional uses, from the manufacture of rope to waterproof hats, nappies and other kinds of clothing. Careful, modest, bark stripping has little effect on the health or longevity of trees. (see pages 24 to 35) photograph © Douglas Justice 24 Tree of the Year : Thuja plicata Donn ex D. Don In this year’s Tree of the Year article DOUGLAS JUSTICE writes an account of the western red-cedar or giant arborvitae (tree of life), a species of conifers that, for centuries has been central to the lives of people of the Northwest Coast of America. “In a small clearing in the forest, a young woman is in labour. Two women companions urge her to pull hard on the cedar bark rope tied to a nearby tree. The baby, born onto a newly made cedar bark mat, cries its arrival into the Northwest Coast world. Its cradle of firmly woven cedar root, with a mattress and covering of soft-shredded cedar bark, is ready. The young woman’s husband and his uncle are on the sea in a canoe carved from a single red-cedar log and are using paddles made from knot-free yellow cedar. When they reach the fishing ground that belongs to their family, the men set out a net of cedar bark twine weighted along one edge by stones lashed to it with strong, flexible cedar withes. Cedar wood floats support the net’s upper edge. Wearing a cedar bark hat, cape and skirt to protect her from the rain and INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite, A grove of 80- to 100-year-old Thuja plicata in Queen Elizabeth Park, Vancouver.
    [Show full text]
  • Dying Cedar Hedges —What Is the Cause?
    Points covered in this factsheet Symptoms Planting problems Physiological effects Environmental, Soil and Climate factors Insect, Disease and Vertebrate agents Dying Cedar Hedges —What Is The Cause? Attractive and normally trouble free, cedar trees can be great additions to the landscape. Dieback of cedar hedging in the landscape is a common prob- lem. In most cases, it is not possible to pinpoint one single cause. Death is usually the result of a combination of envi- ronmental stresses, soil factors and problems originating at planting. Disease, insect or animal injury is a less frequent cause. Identifying The Host Certain species of cedar are susceptible to certain problems, so identifying the host plant can help to identify the cause and whether a symptom is an issue of concern or is normal for that plant. The most common columnar hedging cedars are Thuja plicata (Western Red Cedar - native to the West Coast) and Thuja occidentalis (American Arborvitae or Eastern White ICULTURE, PLANT HEALTH UNIT Cedar). Both species are often called arborvitae. Common varieties of Western Red ce- dar are ‘Emerald Giant’, ‘Excelsa’ and Atrovirens’. ‘Smaragd’ and ‘Pyramidalis’ are com- mon varieties of Eastern White cedar hedging. Species of Cupressus (Cypress), Chamaecyparis nootkatensis (Yellow Cedar or False Cypress) and Chamaecyparis law- soniana (Port Orford Cedar or lawsom Cypress) are also used in hedging. Symptoms The pattern of symptom development/distribution can provide a clue to whether the prob- lem is biotic (infectious) or abiotic (non-infectious). Trees often die out in a group, in one section of the hedge, or at random throughout the hedge.
    [Show full text]
  • Evidence That the Biocontrol Agent Bacillus Cereus Synthesizes Protein That Can Elicit Increased Resistance of Tomato Leaves to Corynespora Cassiicola
    Tropical Plant Pathology, vol. 35, 1, 011-015 (2010) Copyright by the Brazilian Phytopathological Society. Printed in Brazil www.sbfito.com.br RESEARCH ARTICLE / ARTIGO Evidence that the biocontrol agent Bacillus cereus synthesizes protein that can elicit increased resistance of tomato leaves to Corynespora cassiicola Reginaldo S. Romeiro1, Roberto Lanna Filho1, Dirceu Macagnan2, Flávio A.O. Garcia1 & Harllen S.A. Silva3 1Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil; 2Centro Federal de Educação Tecnológica de Rio Verde, 75901-970, Rio Verde, GO, Brazil; 3Embrapa Mandioca e Fruticultura, 44380-000, Cruz das Almas, BA, Brazil Author for correspondence: Dirceu Macagnan, e-mail: [email protected] ABSTRACT Isolate UFV-101 of Bacillus cereus was selected in previous studies for promoting growth inducing resistance in plants. In a previous study, supernatant from cultures of the microorganism in a liquid medium was found to induce resistance in tomato foliage against the pathogens Pseudomonas syringae pv. tomato, Xanthomonas vesicatoria, Alternaria solani and Corynespora cassiicola. In the present work the microorganism was grown in a minimal medium for 48 h and the cells precipitated for centrifugation. The supernatant was concentrated by lyophilization, dialyzed in a 12 kDa cut-off point membrane and fractioned in column containing Sephadex G25 balanced in PBS buffer. The fractions corresponding to a protein peak were applied to tomato seedlings. After four days leaflets were collected and inoculated with the pathogen. C. cassiicola. The numbers of lesions produced by the pathogen on leaflets exposed to the bacterial supernatant were similar to those exposed to acibenzolar-S-methyl but fewer than in those treated with water.
    [Show full text]
  • The Evolution of Inbreeding in Western Redcedar (Thuja Plicata: Cupressaceae)
    THE EVOLUTION OF INBREEDING IN WESTERN REDCEDAR (THUJA PLICATA: CUPRESSACEAE) by LISA MARIE O'CONNELL B.A. University of Ottawa, 1993 B.Sc. Dalhousie University, 1995 M.Sc. Queen's University, 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Forest Sciences) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA 2003 © Lisa Marie O'Connell, 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of forfs't Sci e rt c*5 The University of British Columbia Vancouver, Canada Date April H , 2^003 DE-6 (2/88) Abstract Long-lived woody plants usually show high levels of outcrossing, inbreeding depression and genetic diversity compared to other plants. A review of the literature showed a mean oucrossing rate of 83.5 in conifers, and a positive, but weak, correlation between outcrossing and genetic diversity. Among conifers, western redcedar (Thuja plicata, Cupressaceae) has one of the highest rates of self-fertilization and lowest amount of genetic diversity, and thus offers the opportunity to study the evolution of inbreeding in a predominantly outcrossing group of plants.
    [Show full text]
  • 1 Etiology, Epidemiology and Management of Fruit Rot Of
    Etiology, Epidemiology and Management of Fruit Rot of Deciduous Holly in U.S. Nursery Production Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Shan Lin Graduate Program in Plant Pathology The Ohio State University 2018 Dissertation Committee Dr. Francesca Peduto Hand, Advisor Dr. Anne E. Dorrance Dr. Laurence V. Madden Dr. Sally A. Miller 1 Copyrighted by Shan Lin 2018 2 Abstract Cut branches of deciduous holly (Ilex spp.) carrying shiny and colorful fruit are popularly used for holiday decorations in the United States. Since 2012, an emerging disease causing the fruit to rot was observed across Midwestern and Eastern U.S. nurseries. A variety of other symptoms were associated with the disease, including undersized, shriveled, and dull fruit, as well as leaf spots and early plant defoliation. The disease causal agents were identified by laboratory processing of symptomatic fruit collected from nine locations across four states over five years by means of morphological characterization, multi-locus phylogenetic analyses and pathogenicity assays. Alternaria alternata and a newly described species, Diaporthe ilicicola sp. nov., were identified as the primary pathogens associated with the disease, and A. arborescens, Colletotrichum fioriniae, C. nymphaeae, Epicoccum nigrum and species in the D. eres species complex were identified as minor pathogens in this disease complex. To determine the sources of pathogen inoculum in holly fields, and the growth stages of host susceptibility to fungal infections, we monitored the presence of these pathogens in different plant tissues (i.e., dormant twigs, mummified fruit, leaves and fruit), and we studied inoculum dynamics and assessed disease progression throughout the growing season in three Ohio nurseries exposed to natural inoculum over two consecutive years.
    [Show full text]
  • Mite Fauna (Arachnida: Acari) on Peach Cultivars in Presidente Prudente, São Paulo, Brazil
    Journal of Plant Studies; Vol. 1, No. 2; 2012 ISSN 1927-0461 E-ISSN 1927-047X Published by Canadian Center of Science and Education Mite Fauna (Arachnida: Acari) on Peach Cultivars in Presidente Prudente, São Paulo, Brazil Sônia Maria Nalesso Marangoni Montes1, Adalton Raga2, Aparecida Conceição Boliani3, Jeferson Luiz de Carvalho Mineiro2 & Pedro César dos Santos3 1 Sao Paulo State Agency of Technology Agribusiness-APTA, Regional Alta Sorocabana, Route Raposo Tavares km 561, Box 298, Presidente Prudente, SP 19015-970, Brazil 2 APTA- Biological Institute, Avenue Heitor Penteado km 3, Box 70 Campinas, SP 13001-970, Brazil 3 Paulist State University-UNESP, Campus de Ilha Solteira, Avenue Brasil, 56, Ilha Solteira, SP 15385-000, Brazil Correspondence: Sônia Maria Nalesso Marangoni Montes, Sao Paulo State Agency of Technology Agribusiness-APTA, Regional Alta Sorocabana Route Raposo Tavares km 561, Box 298, Presidente Prudente, SP 19015-970, Brazil. Tel: 55-18-3222-0732. E-mail: [email protected] Received: March 15, 2012 Accepted: May 20, 2012 Online Published: September 1, 2012 doi: 10.5539/jps.v1n2p173 URL: http://dx.doi.org/10.5539/jps.v1n2p173 Research supported by FAPESP (Processo nº05/55649-5) Abstract This study aimed to determine the mite diversity, population dynamics and to conduct a fauna analysis in plantations from four peach varieties established in the municipality of Presidente Prudente, SP, Brazil. The mite fauna from ‘Jóia 4’, ‘Ouromel 3’, ‘Regis’ and ‘Rei da conserva’ cultivars over the rootstock Okinawa were determined from December 2002 to February 2006. Samples composed by 72 leaves were collected fortnightly from upper, middle and lower third of each tree and four trees per cultivar.
    [Show full text]
  • Apiaceae (Pimp
    Živné rostliny Druh vlnovníka, jeho bionomie Poznámka Živné rostliny polyfágních druhů Miříkovité – Apiaceae T Eriophyes peucedani (Pimpinella, Selinum aj.) Brukvovité – Brassicaceae T Aceria drabae (Cardaria, Capsella, Lepidium aj.) Lipnicovité – Poaceae K Aceria tenuis (Avena, Bromus, Dactylis aj.) Živné rostliny ostatních (steno- a monofágních) druhů jedle K Trisetacus floricolus (Abies) javor E Aceria carinifex, P Aceria cephalonea, O Aceria heteronyx, (Acer) P Aceria macrochela, E Aceria macrocheluserinea, P Aceria macrorhyncha, P Aceria myriadeum, E Aceria platanoidea, E Aceria pseudoplatani, A Aceria vermicularis, E Aculops aceris, P Aculops acericola, E Cecidophyes gymnaspis řebříček T Aceria kiefferi (Achillea) jírovec E Aculus hippocastani (Aesculus) zběhovec T Aceria ajugae (Ajuga) česnek N Aceria tulipae (Allium) olše E Acalitus brevitarsus, P Acalitus phyllereus, (Alnus) P Acaricalus trinotus, T Aceria longirostris, E Aceria nalepai, P Eriophyes alniincanae, E Eriophyes euryporus, P Eriophyes inangulis, P Eriophyes laevis pilát K Anthocoptes aspidophorus (Anchusa) pelyněk T Aceria artemisiae, T Aceria horrida, T Aceria subtilis (Artemisia) bukvice T Aceria solida (Betonica) bříza V Acalitus calycophthirus, E Acalitus longisetosus, (Betula) P Acalitus notolius, E Acalitus rudis, P Cecidophyopsis betulae, E Eriophyes leionotus, P Eriophyes lissonotus sveřep K Aculodes dubius (Bromus) zimostráz V Eriophyes canestrinii, P Eriophyes hypophyllus (Buxus) zvonek P Aceria campanulae, T Aculus schmardae (Campanula) habr E Aceria tenella,
    [Show full text]
  • Coccidology. the Study of Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ciencia y Tecnología Agropecuaria (E-Journal) Revista Corpoica – Ciencia y Tecnología Agropecuaria (2008) 9(2), 55-61 RevIEW ARTICLE Coccidology. The study of scale insects (Hemiptera: Takumasa Kondo1, Penny J. Gullan2, Douglas J. Williams3 Sternorrhyncha: Coccoidea) Coccidología. El estudio de insectos ABSTRACT escama (Hemiptera: Sternorrhyncha: A brief introduction to the science of coccidology, and a synopsis of the history, Coccoidea) advances and challenges in this field of study are discussed. The changes in coccidology since the publication of the Systema Naturae by Carolus Linnaeus 250 years ago are RESUMEN Se presenta una breve introducción a la briefly reviewed. The economic importance, the phylogenetic relationships and the ciencia de la coccidología y se discute una application of DNA barcoding to scale insect identification are also considered in the sinopsis de la historia, avances y desafíos de discussion section. este campo de estudio. Se hace una breve revisión de los cambios de la coccidología Keywords: Scale, insects, coccidae, DNA, history. desde la publicación de Systema Naturae por Carolus Linnaeus hace 250 años. También se discuten la importancia económica, las INTRODUCTION Sternorrhyncha (Gullan & Martin, 2003). relaciones filogenéticas y la aplicación de These insects are usually less than 5 mm códigos de barras del ADN en la identificación occidology is the branch of in length. Their taxonomy is based mainly de insectos escama. C entomology that deals with the study of on the microscopic cuticular features of hemipterous insects of the superfamily Palabras clave: insectos, escama, coccidae, the adult female.
    [Show full text]
  • Ilias Saxelmwifo Universitetis Entomologiisa Da Biokontrolis Kvleviti Centri Entomology and Biocontrol Research Centre of Ilia State University
    ilias saxelmwifo universitetis entomologiisa da biokontrolis kvleviTi centri Entomology and Biocontrol Research Centre of Ilia State University თეა არაბული Tea Arabuli ვაზის მავნებელი ტეტრანიხისებრი (Acari: Tetranychoidea) ტკიპები Vitis Pest Tetranychoid (Acari: Tetranychoidea) Mites ნაშრომი დაფინანსდა შოთა რუსთაველის ეროვნული სამეცნიეერო ფონდის მიერ. გრანტი N 2-2/05 The monograph was financed by Sota Rustaveli national scientific fond SRNSF. grant N 2-2/05 გამომცემლობა ”უნივერსალი” Pulishing House “UNIVERSAL” თბილისი - Tbilisi 2011 უდკ (UDC) ე თბილისი 0179, ჭავჭავაძის გამზ. 31. ტელ. 220164 Tbilisi 0179, Chavchavadze avenieu 31. Tel.: 995 32 220164 www.iliauni.edu.ge რედაქტორი: ერისტო ყვავაძე ბიოლოგიის მეცნიერებათა დოქტორი Editor: Eristo Kvavadze Doctor of Biological Sciences © თ. არაბული გამომცემლობა ”უნივერსალი”, 2011 თბილისი, ჭავჭავაძის გამზ. 19, ტელ: 22 36 09, 8(99) 17 22 30 E-mail: [email protected] ISBN 978-9941-12-507-2 2 შ ი ნ ა ა რ ს ი 1. შესავალი 2. მავნებელი ტეტრანიხისებრი ტკიპების შესწავლის ისტორია, მრავალფეროვნება და გავრცელება 3. ვაზის კულტურა საქართველოში და ტეტრანიხისებრი ტკიპების მავნებლობა 4. მასალა და მეთოდიკა 1. საიტების დახასიათება 2. მასალის შეგროვება 3. პრეპარატების მომზადება და რკვევა 5. საკუთარი გამოკვლევები: 1. კახეთის რეგიონის ვაზის მავნებელი ტეტრანიხისებრი (Acari: Tetranychoidea) ტკიპები 2. Eotetranychus pruni - ის და მისი ბუნებრივი მტრის (Phytoseius plumifer) რიცხოვნების დინამიკა ვაზზე 3. ვაზზე აღრიცხული უხერხემლო ცხოველები და მათი როლი 6. დასკვნა 7. ციტირებული ლიტერატურა 3 შ ე ს ა ვ ა ლ ი ტეტრანიხისებრი ტკიპები (Tetranychoidea) ობობასნაირთა კლასს განეკუთვნებიან, ისინი ფართოდ არიან გავრცელებულნი მთელს დედამიწაზე, გვხვდებიან ყველგან სადაც ყვავილოვანი მცენარეები იზრდება და წარმოადგენენ ხილის, ბოსტნეულის, მარცვლოვანი კულტურების, დეკორატიული და ველურად მოზარდი მცენარეების საშიშ მავნებლებს. მცენარეების პარაზიტი ტეტრანიხისებრი ტკიპები მცირე ზომის (0,40-0,5 მმ), სუსტად ქიტინიზებული საფარველის მქონე ცხოველებია, რომელთა დანახვა ბუნებრივ პირობებში შეუიარაღებელი თვალით შეუძლებელია.
    [Show full text]
  • Colletotrichum Acutatum
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Colletotrichum acutatum IDENTITY Name: Colletotrichum acutatum Simmonds Synonyms: Colletotrichum xanthii Halsted Taxonomic position: Fungi: Ascomycetes: Polystigmatales (probable anamorph) Common names: Anthracnose, black spot (of strawberry), terminal crook disease (of pine), leaf curl (of anemone and celery), crown rot (especially of anemone and celery) (English) Taches noires du fraisier (French) Manchas negras del fresón (Spanish) Notes on taxonomy and nomenclature: The classification of the genus Colletotrichum is currently very unsatisfactory, and several species occur on the principal economic host (strawberry) which are regularly confused. As well as C. acutatum, these include the Glomerella cingulata anamorphs C. fragariae and C. gloeosporioides, all of which can be distinguished by isozyme analysis (Bonde et al., 1991). Studies are continuing. Colletotrichum xanthii appears to be an earlier name for C. acutatum, but more research is necessary before it is adopted in plant pathology circles. Bayer computer code: COLLAC EU Annex designation: II/A2 HOSTS The species has a very wide host range, but is economically most important on strawberries (Fragaria ananassa). Other cultivated hosts include Anemone coronaria, apples (Malus pumila), aubergines (Solanum melongena), avocados (Persea americana), Camellia spp., Capsicum annuum, Ceanothus spp., celery (Apium graveolens), coffee (Coffea arabica), guavas (Psidium guajava), olives (Olea europea), pawpaws (Carica papaya), Pinus (especially P. radiata and P. elliottii), tamarillos (Cyphomandra betacea), tomatoes (Lycopersicon esculentum), Tsuga heterophylla and Zinnia spp. Colletotrichum acutatum can apparently affect almost any flowering plant, especially in warm temperate or tropical regions, although its host range needs further clarification.
    [Show full text]
  • Notes on Currently Accepted Species of Colletotrichum
    Mycosphere 7(8) 1192-1260(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/si/2c/9 Copyright © Guizhou Academy of Agricultural Sciences Notes on currently accepted species of Colletotrichum Jayawardena RS1,2, Hyde KD2,3, Damm U4, Cai L5, Liu M1, Li XH1, Zhang W1, Zhao WS6 and Yan JY1,* 1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4 Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany 5State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China 6Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China. Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao WS, Yan JY 2016 – Notes on currently accepted species of Colletotrichum. Mycosphere 7(8) 1192–1260, Doi 10.5943/mycosphere/si/2c/9 Abstract Colletotrichum is an economically important plant pathogenic genus worldwide, but can also have endophytic or saprobic lifestyles. The genus has undergone numerous revisions in the past decades with the addition, typification and synonymy of many species. In this study, we provide an account of the 190 currently accepted species, one doubtful species and one excluded species that have molecular data. Species are listed alphabetically and annotated with their habit, host and geographic distribution, phylogenetic position, their sexual morphs and uses (if there are any known).
    [Show full text]