Crosstalk Between Hydrogen Sulfide and Other Signal Molecules

Total Page:16

File Type:pdf, Size:1020Kb

Crosstalk Between Hydrogen Sulfide and Other Signal Molecules International Journal of Molecular Sciences Review Crosstalk between Hydrogen Sulfide and Other Signal Molecules Regulates Plant Growth and Development Lijuan Xuan y, Jian Li y, Xinyu Wang and Chongying Wang * Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; [email protected] (L.X.); [email protected] (J.L.); [email protected] (X.W.) * Correspondence: [email protected]; Tel./Fax: +86-093-1891-4155 These authors contributed equally to this work. y Received: 31 May 2020; Accepted: 24 June 2020; Published: 28 June 2020 Abstract: Hydrogen sulfide (H2S), once recognized only as a poisonous gas, is now considered the third endogenous gaseous transmitter, along with nitric oxide (NO) and carbon monoxide (CO). Multiple lines of emerging evidence suggest that H2S plays positive roles in plant growth and development when at appropriate concentrations, including seed germination, root development, photosynthesis, stomatal movement, and organ abscission under both normal and stress conditions. H2S influences these processes by altering gene expression and enzyme activities, as well as regulating the contents of some secondary metabolites. In its regulatory roles, H2S always interacts with either plant hormones, other gasotransmitters, or ionic signals, such as abscisic acid (ABA), ethylene, auxin, 2+ CO, NO, and Ca . Remarkably, H2S also contributes to the post-translational modification of proteins to affect protein activities, structures, and sub-cellular localization. Here, we review the functions of H2S at different stages of plant development, focusing on the S-sulfhydration of proteins mediated by H2S and the crosstalk between H2S and other signaling molecules. Keywords: hydrogen sulfide; reactive oxygen species; S-sulfhydration; plant hormone; gasotransmitter 1. Introduction Sulfur (S) is an essential element and is involved in the synthesis and metabolism of the sulfur-containing amino acids cysteine (Cys) and methionine (Met), as well as co-enzyme A, thiamine, biotin, iron-sulfur clusters, and nitrogenase. Only plants, algae, fungi, and some prokaryotes can 2 take advantage of the inorganic sulfur (sulfate, SO4 −) naturally found in soils and incorporate it into 2 organic forms [1]. During sulfur assimilation in plants, the SO4 − absorbed by roots is first reduced to hydrogen sulfide (H2S) under the catalysis of adenosine-50-phosphoryl sulfate reductase (APSR) and sulfite reductase (SIR) and then transformed into Cys under the catalysis of O-Acetylserine (thiol) lyase (OAS-TL). Therefore, H2S is an extremely important intermediate in the thio-metabolism pathway. H2S can also be generated from chloroplasts and mitochondria through the reduction of Cys by β-cyanoalanine synthase (CAS) and cysteine desulfhydrase (CDes) [2–5]. CAS can transform cyanide (CN−) and L-Cys into β–cyanoalanine and H2S to degrade the toxin cyanogen (Figure1)[ 3,6,7]. CDes, such as L-cysteine desulfhydrase (LCD, at3g62130) [2], L-cysteine desulfhydrase 1 (DES1, at5g28030) [4], D-cysteine desulfhydrase 1 (DCD1, at1g48420), and D-cysteine desulfhydrase 2 (DCD2, at3g26115) in Arabidopsis, catalyze both L-Cys and D-Cys into H2S, pyruvate, and ammonia. LCD and DES1 use L-Cys as substrate and are the two pivotal enzymes in the process of endogenous H2S production [2]. Int. J. Mol. Sci. 2020, 21, 4593; doi:10.3390/ijms21134593 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 4593 2 of 21 (DES1, at5g28030) [4], D-cysteine desulfhydrase 1 (DCD1, at1g48420), and D-cysteine desulfhydrase 2 (DCD2, at3g26115) in Arabidopsis, catalyze both L-Cys and D-Cys into H2S, pyruvate, and ammonia. LCD and DES1 use L-Cys as substrate and are the two pivotal enzymes in the process of endogenousInt. J. Mol. Sci. 2020 H2S, 21production, 4593 [2]. 2 of 22 Figure 1. The synthesis and metabolism of H2S in higher plants. H2S is generated coincident with sulfate reduction in the plant cell. The key enzymes in H2S biosynthesis and metabolism include sulfite Figurereductase 1. (SIR),The synthesis L-cysteine and desulfhydrase metabolism (L-CDes), of H2S in D-cysteine higher plants. desulfhydrase H2S is generated (D-CDes), coincidentβ-cyanoalanine with sulfatesynthase reduction (CAS), andin the O-acetylserine(thiol)lyase plant cell. The key enzymes (OAS-TL). in H2 PlantsS biosynthesis are capable and of metabolism reducing activated include sulfite reductase2 (SIR), L-cysteine2 desulfhydrase (L-CDes), 2D-cysteine desulfhydrase (D-CDes), β- sulfate (SO4 −) to sulfite (SO3 −), after that SIR catalyzes SO3 − to H2S, with ferredoxin (Fdred) as the cyanoalanine synthase (CAS), and O-acetylserine(thiol)lyase (OAS-TL). Plants are capable of reducing electron donor. In the presence of OAS-TL, the generated H2S is reversibly reduced to L-cysteine by 2− 2− 2- activatedreacting withsulfate O-acetylserine (SO4 ) to sulfite (OAS). (SO L-CDes3 ), after and that D-CDes SIR catalyzes catalyze SO3 the to degradation H2S, with ferredoxin of L/D-cysteine (Fdred) as the electron donor. In the presence of OAS-TL, the generated H2S is reversibly reduced to L-cysteine to produce H2S, amine (NH3) and pyruvate to maintain H2S homeostasis. CAS, located in the by reacting with O-acetylserine (OAS). L-CDes and D-CDes catalyze the degradation of L/D-cysteine mitochondria, can also catalyze the production of H2S, using cyanide (CN−) and cysteine as substrates, toremoving produce the H toxin2S, amine cyanogen. (NH3) and pyruvate to maintain H2S homeostasis. CAS, located in the mitochondria, can also catalyze the production of H2S, using cyanide (CN−) and cysteine as substrates, removingH2S is a toxicthe toxin gaseous cyanogen. molecule with the pungent odor of rotten eggs and has serious impacts on animals and plants [8]. Just 30 µmol/LH2S can inhibit the activity of mitochondrial cytochrome c oxidaseH2S is and a toxic reduce gaseous the intensitymolecule ofwith mitochondrial the pungent respirationodor of rotten by eggs 50% and [9]. has Surprisingly, serious impacts H2S also on animalsfunctions and as aplants gasotransmitter, [8]. Just 30 μ withmol/L essential H2S can roles inhibit at dithefferent activity stages of mitochondrial of plant development. cytochrome H2 Sc oxidaseinteracts and with reduce other signals, the intensity such as of plant mitochondrial hormones, other respiration gasotransmitters, by 50% [9]. and Surprisingly, ionic signals. H H2S2S also can functionsalso post-translationally as a gasotransmitter, modify proteinswith essential or affect roles secondary at different metabolism stages [of10 ].plant During development. seed imbibition, H2S interactsthe endogenous with other H2 Ssignals, level increases such as plant in Arabidopsis hormones, underother gasotransmitters, normal growth conditions and ionic signals. [11]. When H2S canthe germinationalso post-translationally of wheat seed modi is inhibitedfy proteins under or copperaffect secondar (Cu) stress,y metabolism treatment with [10]. an During appropriate seed imbibition,concentration the of endogenous exogenous H H22SS level (1.4 mM)increases promotes in Arabidopsis germination under by reducingnormal growth oxidative conditions damage [11]. [12]. WhenIn addition, the germination H2S induces of stomatalwheat seed movement is inhibit ofed guard under cells copper and (Cu) serves stress, as a switchtreatment in stomatalwith an appropriateopening [13 ].concentration The application of exogenous of an exogenous H2S (1.4 H2 mM)S donor promotes (sodium germination hydrosulfide by (NaHS) reducing or oxidative GYY4137 damage(morpholine-4-4-methoxyphenyl)) [12]. In addition, H2S induces reduces stomatal the nitricmovement oxide (NO)of guar accumulationd cells and serves induced as a by switch abscisic in stomatalacid (ABA) opening and promotes [13]. The guardapplication cell movement of an exogenous to allow H stomatal2S donor opening(sodium inhydrosulfide light or darkness (NaHS) [14 or]. GYY4137In Arabidopsis, (morpholine-4-4-methoxyphenyl)) mutation of des1 leads to premature reduces th senescencee nitric oxide of leaves(NO) accumulation [15]. In many induced fruits and by abscisicvegetables, acid H 2(ABA)S treatment and promotes delays premature guard cell leaf movement senescence to and allow the decaystomatal of fruits opening after harvestin light viaor darknessreducing the[14]. accumulation In Arabidopsis, of reactive mutation oxygen of des1 species leads to (ROS) premature [16,17] andsenescence inhibits of the leaves abscission [15]. In of many plant fruitsorgans and via increasingvegetables, the H2 contentS treatment of auxin delays in abscission premature zone leaf tissues senescence [18]. A and recent the report decay has of shownfruits after that harvestthere is avia significant reducing increase the accumulation in the S-sulfhydration of reactive level oxygen of the species actin proteins (ROS) in[16,17] an H 2andS-overproducing inhibits the abscissionline, created of byplant the organs over-expression via increasing of LCD thein content the Arabidopsis of auxin O-acetylserine(thiol)lyasein abscission zone tissues isoform [18]. a1A recent(oasa1) reportmutant has (OE shown LCD-5 that/oas-a1 there). Thisis a si increasegnificant in increase S-sulfhydration in the S-sulfhydration decreased the level distribution of the actin of theproteins actin cytoskeleton, which directly weakened actin polymerization and impaired root hair growth [19]. Here, we comprehensively review the functions of H2S in plant growth and development under normal or adverse
Recommended publications
  • Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
    Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy.
    [Show full text]
  • Plant Physiology
    PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant .....................................................................................................
    [Show full text]
  • Auxins and Cytokinins in Plant Development 2018
    International Journal of Molecular Sciences Meeting Report Auxins and Cytokinins in Plant Development 2018 Jan Petrasek 1, Klara Hoyerova 1, Vaclav Motyka 1 , Jan Hejatko 2 , Petre Dobrev 1, Miroslav Kaminek 1 and Radomira Vankova 1,* 1 Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502 Prague 6, Czech Republic; [email protected] (J.P.); [email protected] (K.H.); [email protected] (V.M.); [email protected] (P.D.); [email protected] (M.K.) 2 CEITEC–Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-225-106-427 Received: 15 February 2019; Accepted: 18 February 2019; Published: 20 February 2019 Abstract: The international symposium “Auxins and Cytokinins in Plant Development” (ACPD), which is held every 4–5 years in Prague, Czech Republic, is a meeting of scientists interested in the elucidation of the action of two important plant hormones—auxins and cytokinins. It is organized by a group of researchers from the Laboratory of Hormonal Regulations in Plants at the Institute of Experimental Botany, the Czech Academy of Sciences. The symposia already have a long tradition, having started in 1972. Thanks to the central role of auxins and cytokinins in plant development, the ACPD 2018 symposium was again attended by numerous experts who presented their results in the opening, two plenary lectures, and six regular sessions, including two poster sessions. Due to the open character of the research community, which is traditionally very well displayed during the meeting, a lot of unpublished data were presented and discussed.
    [Show full text]
  • Glossary of Seed Biology and Technology
    Glossary of seed biology and technology Jøker, Dorthe Publication date: 2001 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Jøker, D. (2001). Glossary of seed biology and technology. Danida Forest Seed Centre. Technical Note no. 59 Download date: 29. Sep. 2021 TECHNICAL NOTE NO. 59 August 2001 GLOSSARY OF SEED BIOLOGY AND TECHNOLOGY compiled by Lars Schmidt and Dorthe Jøker Titel Glossary of seed biology and technology Authors Lars Schmidt and Dorthe Jøker Publisher Danida Forest Seed Centre Series - title and no. Technical Note no. 59 DTP Melita Jørgensen Citation Schmidt. L. and D. Jøker. 2001. Glossary of seed biology and technology Citation allowed with clear source indication Written permission is required if you wish to use Forest & Landscape's name and/or any part of this report for sales and advertising purposes. The report is available free of charge [email protected] Electronic Version www.SL.kvl.dk PREFACE This glossary was compiled to meet an expressed need for a concise, precise glossary of terms of seed biology and practical seed handling to be used, e.g. during translation of technical papers. This glossary is based on the glossary of a new seed handbook published by Danida Forest Seed Centre. A number of terms, specifically related to the text of that book (e.g. ecological terms), have however been omitted in the present glossary in order to keep it strictly to seed biology and seed technology. In order to avoid too much overlap with the already existing Tree Improvement Glossary (published as DFSC Technical Note No.
    [Show full text]
  • Formation of the Secondary Abscission Zone Induced by the Interaction of Methyl Jasmonate and Auxin in Bryophyllum Calycinum: Relevance to Auxin Status and Histology
    International Journal of Molecular Sciences Article Formation of the Secondary Abscission Zone Induced by the Interaction of Methyl Jasmonate and Auxin in Bryophyllum calycinum: Relevance to Auxin Status and Histology Agnieszka Marasek-Ciolakowska 1,* , Marian Saniewski 1, Michał Dziurka 2 , Urszula Kowalska 1, Justyna Góraj-Koniarska 1, Junichi Ueda 3 and Kensuke Miyamoto 4,* 1 Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; [email protected] (M.S.); [email protected] (U.K.); [email protected] (J.G.-K.) 2 The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; [email protected] 3 Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan; [email protected] 4 Faculty of Liberal Arts and Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan * Correspondence: [email protected] (A.M.-C.); [email protected] (K.M.); Tel.: +48-46-8346783 (A.M.-C.); +81-72-254-9741 (K.M.) Received: 16 March 2020; Accepted: 14 April 2020; Published: 16 April 2020 Abstract: The interaction of methyl jasmonate (JA-Me) and indole-3-acetic acid (IAA) to induce the formation of the secondary abscission zone in the middle of internode segments of Bryophyllum calycinum was investigated in relation to auxin status and histology. When IAA at 0.1% (w/w, in lanolin) was applied to the segments, the formation of the secondary abscission zone at a few mm above the treatment in the apical direction was observed.
    [Show full text]
  • SAENGWILAI, P.: Effects of Root Hair Length on Potassium Acquisition
    Klinsawang et al.: Effects of root hair length on potassium acquisition in rice - 1609 - EFFECTS OF ROOT HAIR LENGTH ON POTASSIUM ACQUISITION IN RICE (ORYZA SATIVA L.) KLINSAWANG, S.1 – SUMRANWANICH, T.1 – WANNARO, A.1 – SAENGWILAI, P.1,2* 1Department of Biology, Faculty of Science, Mahidol University Rama VI Road, Bangkok 10400, Thailand 2Center of Excellence on Environmental Health and Toxicology (EHT) Bangkok, Thailand *Corresponding author e-mail: [email protected] (phone: +66-9-1725-4817) (Received 12th Oct 2017; accepted 20th Feb 2018) Abstract. Potassium (K) deficiency limits rice production worldwide. It has been shown that variation in root traits, such as root hair length, influences ion uptake in many plant species. In this study, we explored natural variation of root hair length of twelve rice varieties in a roll-up system. We found a large phenotypic variation for root hair traits ranging from 0.14 to 0.21 mm. Niaw San-pah-tawng and most upland varieties had long root hairs while lowland varieties had short root hairs. Six lowland varieties contrasting in root hair length were planted in pots under high and low K concentrations. K stress was found to decrease average biomass by 60.93% and K tissue content by 66%. Root to shoot ratio was not affected by K stress. Correlation analysis indicated that long root hair was associated with reduced percentage of leaf senescence, enhanced plant biomass, and improved tissue K content under low K condition. Our results suggest that long root hair could be a useful trait for plant breeding to improve K acquisition in rice.
    [Show full text]
  • Endogenous Levels of Cytokinins, Indole-3-Acetic Acid And
    www.nature.com/scientificreports OPEN Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics Martin Raspor 1,6*, Václav Motyka 2,6, Slavica Ninković 1, Petre I. Dobrev 2, Jiří Malbeck 3, Tatjana Ćosić 1, Aleksandar Cingel 1, Jelena Savić 1, Vojin Tadić 4 & Ivana Č. Dragićević 5 A number of scientifc reports published to date contain data on endogenous levels of various phytohormones in potato (Solanum tuberosum L.) but a complete cytokinin profle of potato tissues, that would include data on all particular molecular forms of cytokinin, has still been missing. In this work, endogenous levels of all analytically detectable isoprenoid cytokinins, as well as the auxin indole- 3-acetic acid (IAA), and abscisic acid (ABA) have been determined in shoots and roots of 30 day old in vitro grown potato (cv. Désirée). The results presented here are generally similar to other data reported for in vitro grown potato plants, whereas greenhouse-grown plants typically contain lower levels of ABA, possibly indicating that in vitro grown potato is exposed to chronic stress. Cytokinin N-glucosides, particularly N7-glucosides, are the dominant cytokinin forms in both shoots and roots of potato, whereas nucleobases, as the bioactive forms of cytokinins, comprise a low proportion of cytokinin levels in tissues of potato. Diferences in phytohormone composition between shoots and roots of potato suggest specifc patterns of transport and/or diferences in tissue-specifc metabolism of plant hormones. These results represent a contribution to understanding the hormonomics of potato, a crop species of extraordinary economic importance.
    [Show full text]
  • Auxins Cytokinins and Gibberellins TD-I Date: 3/4/2019 Cell Enlargement in Young Leaves, Tissue Differentiation, Flowering, Fruiting, and Delay of Aging in Leaves
    Informational TD-I Revision 2.0 Creation Date: 7/3/2014 Revision Date: 3/4/2019 Auxins, Cytokinins and Gibberellins Isolation of the first Cytokinin Growing cells in a tissue culture medium composed in part of coconut milk led to the realization that some substance in coconut milk promotes cell division. The “milk’ of the coconut is actually a liquid endosperm containing large numbers of nuclei. It was from kernels of corn, however, that the substance was first isolated in 1964, twenty years after its presence in coconut milk was known. The substance obtained from corn is called zeatin, and it is one of many cytokinins. What is a Growth Regulator? Plant Cell Growth regulators (e.g. Auxins, Cytokinins and Gibberellins) - Plant hormones play an important role in growth and differentiation of cultured cells and tissues. There are many classes of plant growth regulators used in culture media involves namely: Auxins, Cytokinins, Gibberellins, Abscisic acid, Ethylene, 6 BAP (6 Benzyladenine), IAA (Indole Acetic Acid), IBA (Indole-3-Butyric Acid), Zeatin and trans Zeatin Riboside. The Auxins facilitate cell division and root differentiation. Auxins induce cell division, cell elongation, and formation of callus in cultures. For example, 2,4-dichlorophenoxy acetic acid is one of the most commonly added auxins in plant cell cultures. The Cytokinins induce cell division and differentiation. Cytokinins promote RNA synthesis and stimulate protein and enzyme activities in tissues. Kinetin and benzyl-aminopurine are the most frequently used cytokinins in plant cell cultures. The Gibberellins is mainly used to induce plantlet formation from adventive embryos formed in culture.
    [Show full text]
  • Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris Richardii
    G C A T T A C G G C A T genes Article Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris richardii Alejandro Aragón-Raygoza 1,2 , Alejandra Vasco 3, Ikram Blilou 4, Luis Herrera-Estrella 2,5 and Alfredo Cruz-Ramírez 1,* 1 Molecular and Developmental Complexity Group at Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 2 Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 3 Botanical Research Institute of Texas (BRIT), Fort Worth, TX 76107-3400, USA; [email protected] 4 Laboratory of Plant Cell and Developmental Biology, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 5 Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 26 November 2020; Published: 4 December 2020 Abstract: Ferns are a representative clade in plant evolution although underestimated in the genomic era. Ceratopteris richardii is an emergent model for developmental processes in ferns, yet a complete scheme of the different growth stages is necessary. Here, we present a developmental analysis, at the tissue and cellular levels, of the first shoot-borne root of Ceratopteris.
    [Show full text]
  • Morphological Description of Plants: New Perspectives in Development and Evolution
    ® International Journal of Plant Developmental Biology ©2010 Global Science Books Morphological Description of Plants: New Perspectives in Development and Evolution 1* 2 Emilio Cervantes • Juana G . de Diego 1 IRNASA-CSIC. Apartado 257. 37080. Salamanca. Spain 2 Dept Bioquímica y Biología Molecular. Campus Miguel de Unamuno. Universidad de Salamanca. Spain Corresponding author : * [email protected] ABSTRACT The morphological description of plants has been fundamental in the history of botany and provided the keys for taxonomy. Nevertheless, in biology, a discipline governed by the interest in function and based on reductionist approaches, the analysis of forms has been relegated to second place. Plants contain organs and structures that resemble geometrical forms. Plant ontogeny may be seen as a sequence of growth processes including periods of continuous growth with modification that stop at crucial points often represented by structures of remarkable similarity to geometrical figures. Instead of the tradition in developmental studies giving more importance to animal models, we propose that the modular type of plant development may serve to remark conceptual aspects in that may be useful in studies with animals and contribute to original views of evolution. _____________________________________________________________________________________________________________ Keywords: concepts, description, geometry, structure INTRODUCTION: PLANTS OFFER NEW reflects a more general situation in Biology, a discipline APPROACHES TO DEVELOPMENT that has matured from the experimental protocols and views of biochemistry, where the predominant role of experimen- The study of development is today a major biological disci- tation has contributed to a decline in basic aspects that need pline. Although it was traditionally more focused in animal to be more descriptive, such as those related with mor- systems, increased emphasis in plant development may phology.
    [Show full text]
  • Leaf Senescence & Abscission Pub 08-33.Pdf
    Tree Leaf Color Series WSFNR08-33 Sept. 2008 Leaf Senescence & Abscission by Dr. Kim D. Coder, Warnell School of Forestry & Natural Resources, University of Georgia Spring flower colors are raised in fall to crown the trees. Many of the pigments are the same but the colored containers have changed from dainty petals to coarse, broad leaves. It is living leaves that reveal in their decline and fall last summer’s results and next spring’s promise. The living process in a tree generating autumn colors is called senescence. Designer Colors Senescence is the pre-planned and orderly dismantling of light gathering structures and machinery inside a leaf. Part of senescence is the development of a structurally weak zone at the base of a leaf stock or petiole. Live cells are needed in the leaf to unmask, manufacture, and maintain the tree pigments we appreciate as autumn colors. Fall coloration is a result of this positive life process in a tree. Freezing temperatures kill leaves and stop the senescence process with only decay remaining. Endings & Beginnings Senescence is a planned decommissioning process established with leaf formation. Inside the leaf, as photosynthesis began to generate food from carbon-dioxide, light, water and a few soil elements, a growth regulation timer was started that would end in Winter dormancy. The fullness of Summer production helps establish dormancy patterns as dormancy processes establish allocations for the next growing season. In senescence, a tree recalls valuable resources on-loan to the leaves, and then enter a resting life stage. The roots continue at a slower pace to colonize and control space, and gather resources, waiting for better conditions.
    [Show full text]
  • Learning List 1. Eukaryotic Cells (Plant and Animal Cells) Have a Cell Membrane, Cytoplasm and Genetic Material Enclosed in a Nucleus
    Learning List 1. Eukaryotic cells (plant and animal cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus. 2. Prokaryotic cells contain cytoplasm, cell membrane and a cell wall. The genetic material is not in a nucleus but a single loop. 3. Prokaryotic cells can contain plasmids. 4. Prokaryotic cells are much smaller than eukaryotic cells. 5. Animal cells contain nucleus, cytoplasm, cell membrane, mitochondria and ribosomes. 6. Plant cells also contain chloroplasts, a vacuole and a cell wall. 7. Plant cell walls are made of cellulose. 8. Most animal cells differentiate at an early stage (become specialised) 9. Most plant cells retain the ability to differentiate throughout their life. 10. Cells can be specialised to carry out a particular function e.g. sperm cells, nerve cells, muscle cells, root hair cells, xylem and phloem cells. Cells All living things are made of ________________. Cells can either be ____________________ or ________________________. Plants and animal cells are _________________________. Label the diagram of a plant and animal cell. Compare the structure of a plant and animal cell Bacteria are _______________________ cells. Label the diagram of a bacterial cell. Complete the Venn Diagram to compare eukaryotic and prokaryotic cells Eukaryotic Prokaryotic Function of cell organelles Learning List – Microscopes 1. Light microscopes use light and lenses to form an image of a specimen. 2. Light microscopes are used to se nuclei, chloroplasts, cell wall, cell membrane and mitochondria. Electron microscopes use electrons to form an image. 3. Stains are used to make the specimen visible. 4. Electron microscopes have a higher magnification.
    [Show full text]