Cognitive Architecture and Second-Order

Total Page:16

File Type:pdf, Size:1020Kb

Cognitive Architecture and Second-Order Cognitive architecture and second-order systematicity: categorical compositionality and a (co)recursion model of systematic learning Steven Phillips ([email protected]) Mathematical Neuroinformatics Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 JAPAN William H. Wilson ([email protected]) School of Computer Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052 AUSTRALIA Abstract each other. An example that is pertinent to the classical ex- planation is the learning (or memorization) of arbitrary asso- Systematicity commonly means that having certain cognitive capacities entails having certain other cognitive capacities. ciations. For instance, if one has the capacity to learn (mem- Learning is a cognitive capacity central to cognitive science, orize) that the first day of the Japanese financial year is April but systematic learning of cognitive capacities—second-order 1st, then one also has the capacity to learn (memorize) that systematicity—has received little investigation. We proposed associative learning as an instance of second-order systematic- the atomic number of carbon is 6. This example is a legiti- ity that poses a paradox for classical theory, because this form mate instance of systematicity (at the second level) given that of systematicity involves the kinds of associative constructions systematicity has been characterized as equivalence classes that were explicitly rejected by the classical explanation. In fact, both first and second-order forms of systematicity can of cognitive capacities (McLaughlin, 2009). be derived from the formal, category-theoretic concept of uni- Elsewhere (Phillips & Wilson, submitted), we argue that versal morphisms to address this problem. In this paper, we associative learning is problematic for classical theory, be- derived a model of systematic associative learning based on (co)recursion, which is another kind of universal construction. cause it involves the kinds of associative constructions that This result increases the extent to which category theory pro- were explicitly rejected by the classical explanation. Our vides a foundation for cognitive architecture. category theoretic explanation of systematicity resolves this Keywords: cognitive architecture; systematicity; composi- problem, because both first and second-order forms of sys- tionality; learning; category theory; coalgebra tematicity are derived from the same categorical construction: universal morphisms. Here, we derive a model of systematic Introduction associative learning based on (co)recursion, which is another The problem of systematicity for theories of cognitive sci- kind of universal construction. ence is to explain why certain cognitive capacities typically co-exist (Fodor & Pylyshyn, 1988); why, for example, having Outline of paper the ability to identify square as the top object in a scene con- The remaining four sections of this paper are outlined as fol- sisting of a square above a triangle implies having the ability lows. The second section provides the basic category theory to identify triangle as the top object in a scene consisting of definitions and motivating examples needed for our model. a triangle above a square. More formally, an instance of sys- The third section provides concrete examples of anamor- tematicity occurs when one has cognitive capacity c1 if and phisms (corecursion) as a conceptual guide to the model given only if c2 (McLaughlin, 2009): thus, systematicity is the par- in the fourth section. Discussion of this work is in the last titioning of cognitive capacities into equivalence classes. The section. Readers already familiar with the category theory ap- problem is to provide an explanation for systematicity that proach to corecursion may prefer to skip straight to the fourth does not rely on ad hoc assumptions: i.e., auxiliary assump- section, since the category theory employed here is already tions that are motivated only to fit the data, cannot be verified well known, with the possible exception of the recently de- independently of verifying the theory, and are unconnected to veloped adjoint extensions (Hinze, 2013). Readers not famil- the theory’s core principles (Aizawa, 2003). iar with a category theory approach may prefer to skip to the Learning is another cognitive capacity. Hence, using the third section for simple concrete examples as a way of orient- characterization of systematicity as equivalence classes of ing themselves for the model that follows. The second sec- cognitive capacities (McLaughlin, 2009), we have another tion, then, provides points of reference for technical details form of systematicity: i.e., the capacity to learn cognitive ca- and motivating examples when needed. pacity c1 if and only if the capacity to learn cognitive capac- ity c2, which is sometimes referred to as second-order sys- Basic category theory tematicity (Aizawa, 2003). Aizawa (2003), citing Chomsky In this section, we provide the basic category theory needed (1980), provides an example from language: a person has the for our model. In the interests of brevity and clarity, we only capacity to learn one natural language (say, Chinese) if they provide definitions and examples directly pertaining to the have the capacity to learn another (say, German). Importantly, model, omitting the (albeit, well known) theorems and lem- the learned capacities need not be systematically related to mas that justify statements. Deeper and broader introductions 1877 to category theory and categorical treatments of (co)recursion Example 2 (Right product functor). The right product func- can be found in many textbooks on the topic (e.g., Mac Lane, tor PB : Set ! Set sends each set X to the Cartesian product 1998; Bird & de Moor, 1997). In the context of systematic- X ×B and each function f : X ! Y to the product of functions ity, this paper builds upon our earlier work (see Phillips & f × 1B : X × B ! Y × B;(x;b) 7! ( f (x);b), i.e., f × 1B maps Wilson, 2010), and particularly in the context of recursive ca- (x;b) to ( f (x);b). pacities (Phillips & Wilson, 2012), where the theoretical prin- ciples of first-order systematicity and other technical details Example 3 (Right exponential functor). The right exponen- L ! can be found. tial functor B : Set Set sends each set X to the function set XB, which is the set of functions f f : B ! Xg, and each Definition 1 (Category). A category C consists of: function g : X ! Y to the function L(g) : XB ! Y B; f 7! g◦ f . • a collection of objects (A, B, ...); Example 4 (List). List-related constructions built from a set • a collection of morphisms ( f , g, ...), written f : A ! B of elements A are obtained from an endofunctor on the cate- 7! × 7! × to indicate that A and B are respectively the domain and gory Set: i.e., FA : X 1 + A X; f 11 + 1A f , where 1 × codomain of f , including an identity morphism, denoted corresponds to the empty list, and + and are (respectively) the disjoint union and Cartesian product of sets or functions. 1A : A ! A, for each object A in C; and • a composition operation that sends a pair of compatible Definition 5 (Natural transformation). A natural transforma- morphisms f : A ! B and g : B ! C, i.e., where the tion h from a functor F : C ! D to a functor G : C ! D, writ- h !: fh ! codomain of f equals the domain of g, to their composite ten : F G, is a family of D-morphisms A : F(A) morphism, denoted g ◦ f : A ! C, G(A)jA is an object in Cg such that for each morphism f : A ! B in C we have G( f )◦hA = hB ◦F( f ), i.e., the following that satisfy the axioms of: associativity—h◦(g◦ f ) = (h◦g)◦ diagram is commutative (equational): f ; and identity— f ◦ 1A = f = 1B ◦ f for each f in C. h Example 1 Set . Set A ( ) The category has sets for objects, func- F(A) / G(A) (1) tions between sets for morphisms, and composition is compo- sition of functions. F( f ) G( f ) Definition 2 (Terminal object). In a category C, a terminal / F(B) h G(B) object is an object, denoted 1, such that for every object Z B there exists a unique morphism u : Z ! 1. Remark. In Set, a singleton set is a terminal object, whose Definition 6 (Final morphism). A final morphism from a only element is denoted ∗ when its identity is not required. functor F : C ! D to an object X in D is a pair (A;f) con- Other categories may have terminal objects with further inter- sisting of an object A in C and an morphism f : F(A) ! X nal structure, as we shall see for categories of (co)algebras. in D such that for every object Z in Z and every morphism f : F(Z) ! X in C there exists a unique morphism u : Z ! A Definition 3 (Isomorphism). An isomorphism is a morphism such that f = f◦F(u), as indicated by the following commu- f : A ! B such that their exists a morphism g : B ! A sat- tative diagram (dashed arrows indicate unique existence): isfying f ◦ g = 1B and g ◦ f = 1A. Morphism g is called the inverse of f , and denoted f −1. Z F(Z) (2) Remark. In a category C, the collection of morphisms with BB B domain object A and codomain object B is called a hom-set, BBf u F(u) BB denoted Hom (A;B). As we shall see, hom-sets play an im- B C / portant role in category theory. A F(A) f X Definition 4 (Functor). A functor F from a category C to a ! category D is a structure-preserving map, written F : C D, Remark. The dual of final morphism is initial morphism, that maps each object A in C to the object F(A) in D and each whose definition is obtained by reversing the directions of the ! ! morphism f : A B in C to the arrow F( f ) : F(A) F(B) morphisms in the definition of final morphism.
Recommended publications
  • NICOLAS WU Department of Computer Science, University of Bristol (E-Mail: [email protected], [email protected])
    Hinze, R., & Wu, N. (2016). Unifying Structured Recursion Schemes. Journal of Functional Programming, 26, [e1]. https://doi.org/10.1017/S0956796815000258 Peer reviewed version Link to published version (if available): 10.1017/S0956796815000258 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ ZU064-05-FPR URS 15 September 2015 9:20 Under consideration for publication in J. Functional Programming 1 Unifying Structured Recursion Schemes An Extended Study RALF HINZE Department of Computer Science, University of Oxford NICOLAS WU Department of Computer Science, University of Bristol (e-mail: [email protected], [email protected]) Abstract Folds and unfolds have been understood as fundamental building blocks for total programming, and have been extended to form an entire zoo of specialised structured recursion schemes. A great number of these schemes were unified by the introduction of adjoint folds, but more exotic beasts such as recursion schemes from comonads proved to be elusive. In this paper, we show how the two canonical derivations of adjunctions from (co)monads yield recursion schemes of significant computational importance: monadic catamorphisms come from the Kleisli construction, and more astonishingly, the elusive recursion schemes from comonads come from the Eilenberg-Moore construction. Thus we demonstrate that adjoint folds are more unifying than previously believed. 1 Introduction Functional programmers have long realised that the full expressive power of recursion is untamable, and so intensive research has been carried out into the identification of an entire zoo of structured recursion schemes that are well-behaved and more amenable to program comprehension and analysis (Meijer et al., 1991).
    [Show full text]
  • Practical Coinduction
    Math. Struct. in Comp. Science: page 1 of 21. c Cambridge University Press 2016 doi:10.1017/S0960129515000493 Practical coinduction DEXTER KOZEN† and ALEXANDRA SILVA‡ †Computer Science, Cornell University, Ithaca, New York 14853-7501, U.S.A. Email: [email protected] ‡Intelligent Systems, Radboud University Nijmegen, Postbus 9010, 6500 GL Nijmegen, the Netherlands Email: [email protected] Received 6 March 2013; revised 17 October 2014 Induction is a well-established proof principle that is taught in most undergraduate programs in mathematics and computer science. In computer science, it is used primarily to reason about inductively defined datatypes such as finite lists, finite trees and the natural numbers. Coinduction is the dual principle that can be used to reason about coinductive datatypes such as infinite streams or trees, but it is not as widespread or as well understood. In this paper, we illustrate through several examples the use of coinduction in informal mathematical arguments. Our aim is to promote the principle as a useful tool for the working mathematician and to bring it to a level of familiarity on par with induction. We show that coinduction is not only about bisimilarity and equality of behaviors, but also applicable to a variety of functions and relations defined on coinductive datatypes. 1. Introduction Perhaps the single most important general proof principle in computer science, and argu- ably in all of mathematics, is induction. There is a valid induction principle corresponding to any well-founded relation, but in computer science, it is most often seen in the form known as structural induction, in which the domain of discourse is an inductively-defined datatype such as finite lists, finite trees, or the natural numbers.
    [Show full text]
  • A Category Theory Explanation for the Systematicity of Recursive Cognitive
    Categorial compositionality continued (further): A category theory explanation for the systematicity of recursive cognitive capacities Steven Phillips ([email protected]) Mathematical Neuroinformatics Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 JAPAN William H. Wilson ([email protected]) School of Computer Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052 AUSTRALIA Abstract together afford cognition) whereby cognitive capacity is or- ganized around groups of related abilities. A standard exam- Human cognitive capacity includes recursively definable con- cepts, which are prevalent in domains involving lists, numbers, ple since the original formulation of the problem (Fodor & and languages. Cognitive science currently lacks a satisfactory Pylyshyn, 1988) has been that you don’t find people with the explanation for the systematic nature of recursive cognitive ca- capacity to infer John as the lover from the statement John pacities. The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamor- loves Mary without having the capacity to infer Mary as the phism provide a formal, systematic treatment of recursion in lover from the related statement Mary loves John. An in- computer science. Here, we use this formalism to explain the stance of systematicity is when a cognizer has cognitive ca- systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., why the capacity for some recursive cogni- pacity c1 if and only if the cognizer has cognitive capacity tive abilities implies the capacity for certain others, to the same c2 (see McLaughlin, 2009). So, e.g., systematicity is evident explanatory standard used in our account of systematicity for where one has the capacity to remove the jokers if and only if non-recursive capacities).
    [Show full text]
  • 301669474.Pdf
    Centrum voor Wiskunde en Informatica Centre for Mathematics and Computer Science L.G.L.T. Meertens Paramorphisms Computer Science/ Department of Algorithmics & Architecture Report CS-R9005 February Dib'I( I, 1fle.'1 Cootrumvoor ~', ;""'" ,,., tn!o.-1 Y.,'~• Am.,t,..-(,';if'! The Centre for Mathematics and Computer Science is a research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, com­ puter science, and their applications. It is sponsored by the Dutch Govern­ ment through the Netherlands Organization for the Advancement of Research (N.W.O.). Copyright © Stichting Mathematisch Centrum, Amsterdam Paramorphisms Lambert Meertens CWI, Amsterdam, & University of Utrecht 0 Context This paper is a small contribution in the context of an ongoing effort directed towards the design of a calculus for constructing programs. Typically, the development of a program contains many parts that are quite standard, re­ quiring no invention and posing no intellectual challenge of any kind. If, as is indeed the aim, this calculus is to be usable for constructing programs by completely formal manipulation, a major concern is the amount of labour currently required for such non-challenging parts. On one level this concern can be addressed by building more or less spe­ cialised higher-level theories that can be drawn upon in a derivation, as is usual in almost all branches of mathematics, and good progress is being made here. This leaves us still with much low-level laboriousness, like admin­ istrative steps with little or no algorithmic content. Until now, the efforts in reducing the overhead in low-level formal labour have concentrated on using equational reasoning together with specialised notations to avoid the introduction of dummy variables, in particular for "canned induction" in the form of promotion properties for homomorphisms- which have turned out to be ubiquitous.
    [Show full text]
  • The Method of Coalgebra: Exercises in Coinduction
    The Method of Coalgebra: exercises in coinduction Jan Rutten CWI & RU [email protected] Draft d.d. 8 July 2018 (comments are welcome) 2 Draft d.d. 8 July 2018 Contents 1 Introduction 7 1.1 The method of coalgebra . .7 1.2 History, roughly and briefly . .7 1.3 Exercises in coinduction . .8 1.4 Enhanced coinduction: algebra and coalgebra combined . .8 1.5 Universal coalgebra . .8 1.6 How to read this book . .8 1.7 Acknowledgements . .9 2 Categories { where coalgebra comes from 11 2.1 The basic definitions . 11 2.2 Category theory in slogans . 12 2.3 Discussion . 16 3 Algebras and coalgebras 19 3.1 Algebras . 19 3.2 Coalgebras . 21 3.3 Discussion . 23 4 Induction and coinduction 25 4.1 Inductive and coinductive definitions . 25 4.2 Proofs by induction and coinduction . 28 4.3 Discussion . 32 5 The method of coalgebra 33 5.1 Basic types of coalgebras . 34 5.2 Coalgebras, systems, automata ::: ....................... 34 6 Dynamical systems 37 6.1 Homomorphisms of dynamical systems . 38 6.2 On the behaviour of dynamical systems . 41 6.3 Discussion . 44 3 4 Draft d.d. 8 July 2018 7 Stream systems 45 7.1 Homomorphisms and bisimulations of stream systems . 46 7.2 The final system of streams . 52 7.3 Defining streams by coinduction . 54 7.4 Coinduction: the bisimulation proof method . 59 7.5 Moessner's Theorem . 66 7.6 The heart of the matter: circularity . 72 7.7 Discussion . 76 8 Deterministic automata 77 8.1 Basic definitions . 78 8.2 Homomorphisms and bisimulations of automata .
    [Show full text]
  • A Note on the Under-Appreciated For-Loop
    A Note on the Under-Appreciated For-Loop Jos´eN. Oliveira Techn. Report TR-HASLab:01:2020 Oct 2020 HASLab - High-Assurance Software Laboratory Universidade do Minho Campus de Gualtar – Braga – Portugal http://haslab.di.uminho.pt TR-HASLab:01:2020 A Note on the Under-Appreciated For-Loop by Jose´ N. Oliveira Abstract This short research report records some thoughts concerning a simple algebraic theory for for-loops arising from my teaching of the Algebra of Programming to 2nd year courses at the University of Minho. Interest in this so neglected recursion- algebraic combinator grew recently after reading Olivier Danvy’s paper on folding over the natural numbers. The report casts Danvy’s results as special cases of the powerful adjoint-catamorphism theorem of the Algebra of Programming. A Note on the Under-Appreciated For-Loop Jos´eN. Oliveira Oct 2020 Abstract This short research report records some thoughts concerning a sim- ple algebraic theory for for-loops arising from my teaching of the Al- gebra of Programming to 2nd year courses at the University of Minho. Interest in this so neglected recursion-algebraic combinator grew re- cently after reading Olivier Danvy’s paper on folding over the natural numbers. The report casts Danvy’s results as special cases of the pow- erful adjoint-catamorphism theorem of the Algebra of Programming. 1 Context I have been teaching Algebra of Programming to 2nd year courses at Minho Uni- versity since academic year 1998/99, starting just a few days after AFP’98 took place in Braga, where my department is located.
    [Show full text]
  • Friends with Benefits: Implementing Corecursion in Foundational
    Friends with Benefits Implementing Corecursion in Foundational Proof Assistants Jasmin Christian Blanchette1;2, Aymeric Bouzy3, Andreas Lochbihler4, Andrei Popescu5;6, and Dmitriy Traytel4 1 Vrije Universiteit Amsterdam, the Netherlands 2 Inria Nancy – Grand Est, Nancy, France 3 Laboratoire d’informatique, École polytechnique, Palaiseau, France 4 Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland 5 Department of Computer Science, Middlesex University London, UK 6 Institute of Mathematics Simion Stoilow of the Romanian Academy, Bucharest, Romania Abstract. We introduce AmiCo, a tool that extends a proof assistant, Isabelle/ HOL, with flexible function definitions well beyond primitive corecursion. All definitions are certified by the assistant’s inference kernel to guard against in- consistencies. A central notion is that of friends: functions that preserve the pro- ductivity of their arguments and that are allowed in corecursive call contexts. As new friends are registered, corecursion benefits by becoming more expressive. We describe this process and its implementation, from the user’s specification to the synthesis of a higher-order definition to the registration of a friend. We show some substantial case studies where our approach makes a difference. 1 Introduction Codatatypes and corecursion are emerging as a major methodology for programming with infinite objects. Unlike in traditional lazy functional programming, codatatypes support total (co)programming [1, 8, 30, 68], where the defined functions have a simple set-theoretic semantics and productivity is guaranteed. The proof assistants Agda [19], Coq [12], and Matita [7] have been supporting this methodology for years. By contrast, proof assistants based on higher-order logic (HOL), such as HOL4 [64], HOL Light [32], and Isabelle/HOL [56], have traditionally provided only datatypes.
    [Show full text]
  • Abstract Nonsense and Programming: Uses of Category Theory in Computer Science
    Bachelor thesis Computing Science Radboud University Abstract Nonsense and Programming: Uses of Category Theory in Computer Science Author: Supervisor: Koen Wösten dr. Sjaak Smetsers [email protected] [email protected] s4787838 Second assessor: prof. dr. Herman Geuvers [email protected] June 29, 2020 Abstract In this paper, we try to explore the various applications category theory has in computer science and see how from this application of category theory numerous concepts in computer science are analogous to basic categorical definitions. We will be looking at three uses in particular: Free theorems, re- cursion schemes and monads to model computational effects. We conclude that the applications of category theory in computer science are versatile and many, and applying category theory to programming is an endeavour worthy of pursuit. Contents Preface 2 Introduction 4 I Basics 6 1 Categories 8 2 Types 15 3 Universal Constructions 22 4 Algebraic Data types 36 5 Function Types 43 6 Functors 52 7 Natural Transformations 60 II Uses 67 8 Free Theorems 69 9 Recursion Schemes 82 10 Monads and Effects 102 11 Conclusions 119 1 Preface The original motivation for embarking on the journey of writing this was to get a better grip on categorical ideas encountered as a student assistant for the course NWI-IBC040 Functional Programming at Radboud University. When another student asks ”What is a monad?” and the only thing I can ex- plain are its properties and some examples, but not its origin and the frame- work from which it comes. Then the eventual answer I give becomes very one-dimensional and unsatisfactory.
    [Show full text]
  • Strong Functional Pearl: Harper's Regular-Expression Matcher In
    Strong Functional Pearl: Harper’s Regular-Expression Matcher in Cedille AARON STUMP, University of Iowa, United States 122 CHRISTOPHER JENKINS, University of Iowa, United States of America STEPHAN SPAHN, University of Iowa, United States of America COLIN MCDONALD, University of Notre Dame, United States This paper describes an implementation of Harper’s continuation-based regular-expression matcher as a strong functional program in Cedille; i.e., Cedille statically confirms termination of the program on all inputs. The approach uses neither dependent types nor termination proofs. Instead, a particular interface dubbed a recursion universe is provided by Cedille, and the language ensures that all programs written against this interface terminate. Standard polymorphic typing is all that is needed to check the code against the interface. This answers a challenge posed by Bove, Krauss, and Sozeau. CCS Concepts: • Software and its engineering ! Functional languages; Recursion; • Theory of compu- tation ! Regular languages. Additional Key Words and Phrases: strong functional programming, regular-expression matcher, programming with continuations, recursion schemes ACM Reference Format: Aaron Stump, Christopher Jenkins, Stephan Spahn, and Colin McDonald. 2020. Strong Functional Pearl: Harper’s Regular-Expression Matcher in Cedille. Proc. ACM Program. Lang. 4, ICFP, Article 122 (August 2020), 25 pages. https://doi.org/10.1145/3409004 1 INTRODUCTION Constructive type theory requires termination of programs intended as proofs under the Curry- Howard isomorphism [Sørensen and Urzyczyn 2006]. The language of types is enriched beyond that of traditional pure functional programming (FP) to include dependent types. These allow the expression of program properties as types, and proofs of such properties as dependently typed programs.
    [Show full text]
  • Recursion Patterns As Hylomorphisms
    Recursion Patterns as Hylomorphisms Manuel Alcino Cunha [email protected] Techn. Report DI-PURe-03.11.01 2003, November PURe Program Understanding and Re-engineering: Calculi and Applications (Project POSI/ICHS/44304/2002) Departamento de Inform´atica da Universidade do Minho Campus de Gualtar — Braga — Portugal DI-PURe-03.11.01 Recursion Patterns as Hylomorphisms by Manuel Alcino Cunha Abstract In this paper we show how some of the recursion patterns typically used in algebraic programming can be defined using hylomorphisms. Most of these def- initions were previously known. However, unlike previous approaches that use fixpoint induction, we show how to derive the standard laws of each recursion pattern by using just the basic laws of hylomorphisms. We also define the accu- mulation recursion pattern introduced by Pardo using a hylomorphism, and use this definition to derive the strictness conditions that characterize this operator in the presence of partiality. All definitions are implemented and exemplified in Haskell. 1 Introduction The exponential growth in the use of computers in the past decades raised important questions about the correctness of software, specially in safety critical systems. Compared to other areas of engineering, software engineers are still very unfamiliar with the mathematical foundations of computation, and tend to approach programming more as (black) art and less as a science [5]. Ideally, final implementations should be calculated from their specifications, using simple laws that relate programs, in the same way we calculate with mathematical expressions in algebra. The calculational approach is particular appealing in the area of functional programming, since referential transparency ensures that expressions in func- tional programs behave as ordinary expressions in mathematics.
    [Show full text]
  • Some New Approaches in Functional Programming Using Algebras and Coalgebras
    Available online at www.sciencedirect.com Electronic Notes in Theoretical Computer Science 279 (3) (2011) 41–62 www.elsevier.com/locate/entcs Some New Approaches in Functional Programming Using Algebras and Coalgebras Viliam Slodiˇc´ak1,2 Pavol Macko3 Department of Computers and Informatics Technical University of Koˇsice Koˇsice, Slovak Republic Abstract In our paper we deal with the expressing of recursion and corecursion in functional programming. We discuss about the morphisms which express the recursion or corecursion, respectively. Here we consider especially the catamorphisms, anamorphisms and their composition called the hylomorphisms. The main essence of this work is to describe a new method of programming the function for calculating the factorial by using hylomorphism. We show that using of hylomorphism is an alternative method for the computation of factorial to recursive methods programmed classically. Our new method we describe in action semantics which is a new formal method for the program description. Keywords: Recursion, duality, hylomorphism, algebra, recursive coalgebras, action semantics. 1 Introduction Recursion is a very useful tool in modern programming languages, in particular when we deal with inductive data structures such as lists, trees, etc. [9]. The theory of recursive functions was developed by Kurt G¨odeland Stephen Kleene in the 1930s. Now the recursion has the great importance in mathematics and in computer science. The recursion method presents very interesting solution of many computational algorithms. It is an inherent part of functional programming. On the other hand, the dual method called corecursion brings the new opportunities in programming. In section 2 we formulate basic notions from the category the- ory, the mathematical tool which importance for theoretical informatics growth in last decade.
    [Show full text]
  • Corecursive Algebras: a Study of General Structured Corecursion (Extended Abstract)
    Corecursive Algebras: A Study of General Structured Corecursion (Extended Abstract) Venanzio Capretta1, Tarmo Uustalu2, and Varmo Vene3 1 Institute for Computer and Information Science, Radboud University Nijmegen 2 Institute of Cybernetics, Tallinn University of Technology 3 Department of Computer Science, University of Tartu Abstract. We study general structured corecursion, dualizing the work of Osius, Taylor, and others on general structured recursion. We call an algebra of a functor corecursive if it supports general structured corecur- sion: there is a unique map to it from any coalgebra of the same functor. The concept of antifounded algebra is a statement of the bisimulation principle. We show that it is independent from corecursiveness: Neither condition implies the other. Finally, we call an algebra focusing if its codomain can be reconstructed by iterating structural refinement. This is the strongest condition and implies all the others. 1 Introduction A line of research started by Osius and Taylor studies the categorical foundations of general structured recursion. A recursive coalgebra (RCA) is a coalgebra of a functor F with a unique coalgebra-to-algebra morphism to any F -algebra. In other words, it is an algebra guaranteeing unique solvability of any structured recursive diagram. The notion was introduced by Osius [Osi74] (it was also of interest to Eppendahl [Epp99]; we studied construction of recursive coalgebras from coalgebras known to be recursive with the help of distributive laws of functors over comonads [CUV06]). Taylor introduced the notion of wellfounded coalgebra (WFCA) and proved that, in a Set-like category, it is equivalent to RCA [Tay96a,Tay96b],[Tay99, Ch.
    [Show full text]