METEOR SHOWERS VALIDATED by the CAMERAS for ALLSKY METEOR SURVEILLANCE (CAMS). P. Jenniskens1. 1SETI Institute, 189 Bernardo

Total Page:16

File Type:pdf, Size:1020Kb

METEOR SHOWERS VALIDATED by the CAMERAS for ALLSKY METEOR SURVEILLANCE (CAMS). P. Jenniskens1. 1SETI Institute, 189 Bernardo Asteroids, Comets, Meteors (2012) 6339.pdf METEOR SHOWERS VALIDATED BY THE CAMERAS FOR ALLSKY METEOR SURVEILLANCE (CAMS). P. Jenniskens1. 1SETI Institute, 189 Bernardo Ave, Mountain View, CA 94043 ([email protected]). Introduction: The International Astronomical Union tium of tens of amateur astronomers in Japan, using typically has a working list containing 369 meteor showers (per Feb- wider field of view cameras and thus targeting brighter me- ruary 28, 2012), of which only 64 are considered established. teors. Also, results are derived automatically, without human The showers in need of validation were often extracted from validation of each detection. This initially raised some ques- photographic surveys prone to low-number statistics, or from tions as to the accuracy of the results, but comparison to the radar observations plagued by a strong sporadic background. CAMS data shows good agreement in radiant positions. Some are known only from visual observations. Figure 1 compares one year of CAMS data for August CAMS: The Cameras for Allsky Meteor Surveillance 10-12 with three years of published SonotaCo results on project (CAMS) is a video surveillance of the night sky to those same dates. The Perseids and delta Aquariids are read- validate as many as possible of these meteor showers. It tar- ily detected in both surveys. The kappa Cygnids (lower right) gets meteors of a brightness where the sporadic background were not active when CAMS observations were made in is relatively weak, but which occur at sufficient numbers for 2011. The eta Eridanids are well detected in the CAMS data good statistical results. and are now validated. CAMS is a three-station 60-camera meteor surveillance using Watec Wat902 H2 Ultimate video cameras, equipped with 12-mm focal length lenses. The CAMS network stations are located at Fremont Peak Observatory (operated by P. Jenniskens and R. Morales), Lick Observatory (operated by B. Grigsby), and a nearby third site currently in Sunnyvale (operated by J. Albers). The CAMS methods have been de- scribed in detail in [1]. The strength of CAMS lies in hard- ware and software, the latter developed by P. S. Gural, that is able to handle a large number of participating cameras, by working with relatively small 20ºx30º field of view, by keep- ing the astrometric accuracy of star images in tact, by work- Figure 1: Orbital element data for Aug 10-12, from ing at 60 fields/s, by nightly re-calibration against the star CAMS (left) and from the SonotaCo network [6]. background, by careful photometry of the meteor images, and by a careful quality control from a visual inspection of Ongoing work: We will present an overview of what each coincident meteor . meteor showers CAMS is able to validate after one year of First results: As of February 28, 2012, about operation. The validated showers will be proposed to receive 30,000 meteoroid orbits have been reduced. Each clear the predicate “established” at the upcoming 2012 IAU Gen- night, some 100-300 meteoroid orbits are measured from eral Assembly in Beijing. CAMS is projected to operate for mostly +3 to +0 magnitude meteors, which create a detailed at least two more years to obtain data in nights that were picture of that night’s orbital element distribution. Major previously clouded. showers are readily detected and many minor showers are References: [1] Jenniskens P., Gural P. S., Dynne- evident in the data. So far, we have reported on the validation son L., Grigsby B. J., Newman K. E., Borden M., of the theta Aurigids (THA, IAU#390), the chi Taurids Koop M., Holman D. (2011) Icarus 216, 40-61; [2] (CTA, IAU#388), and the omicron Eridanids (OER, Jenniskens P., Gural P. S. (2011) JIMO 37, 98-121; [3] IAU#338) [1]. We also reported on the discovery of the Feb- Phillips M., Jenniskens P., Grigsby B. (2011) JIMO ruary eta Draconids [2], a periodic shower caused by the dust 39, 131-136; [4] Holman D., Jenniskens P. (2012) trail of a long-period comet, the validation of the April rho JIMO 40 (in press); [5] Jenniskens P., Duckworth H., Cygnids [3], a Jupiter Family comet, the validation of the Grigsby B. (2012) JIMO 40 (in press); Kanamori T. et July gamma Draconids [4], a long period comet shower, and al. (2009) JIMO 37, 55-62. the confirmation that meteoroids of the Daytime Arietid Additional Information: The CAMS project shower move in orbits similar to those of the Marsden Sun- website is at http://cams.seti.org. CAMS is supported grazers [5]. Much more work is still ahead. and made possible by NASA’s Planetary Astronomy The results provide a validation of meteoroid orbits program. measured in the SonotaCo video meteor project [6]. The SonotaCo network operates up to 100 cameras by a consor-.
Recommended publications
  • Meteor Shower Detection with Density-Based Clustering
    Meteor Shower Detection with Density-Based Clustering Glenn Sugar1*, Althea Moorhead2, Peter Brown3, and William Cooke2 1Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305 2NASA Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, AL, 35812 3Department of Physics and Astronomy, The University of Western Ontario, London N6A3K7, Canada *Corresponding author, E-mail: [email protected] Abstract We present a new method to detect meteor showers using the Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN; Ester et al. 1996). DBSCAN is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all-sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large datasets. We apply this shower detection algorithm on a dataset that contains 25,885 meteor trajectories and orbits obtained from the NASA All-Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun-centered ecliptic radiant, we find 25 strong cluster detections and 6 weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false positive/negative analysis and with a comparison to an established shower detection algorithm. 1. Introduction A meteor shower and its stream is implicitly defined to be a group of meteoroids moving in similar orbits sharing a common parentage.
    [Show full text]
  • Meteor Showers # 11.Pptx
    20-05-31 Meteor Showers Adolf Vollmy Sources of Meteors • Comets • Asteroids • Reentering debris C/2019 Y4 Atlas Brett Hardy 1 20-05-31 Terminology • Meteoroid • Meteor • Meteorite • Fireball • Bolide • Sporadic • Meteor Shower • Meteor Storm Meteors in Our Atmosphere • Mesosphere • Atmospheric heating • Radiant • Zenithal Hourly Rate (ZHR) 2 20-05-31 Equipment Lounge chair Blanket or sleeping bag Hot beverage Bug repellant - ThermaCELL Camera & tripod Tracking Viewing Considerations • Preparation ! Locate constellation ! Take a nap and set alarm ! Practice photography • Location: dark & unobstructed • Time: midnight to dawn https://earthsky.org/astronomy- essentials/earthskys-meteor-shower- guide https://www.amsmeteors.org/meteor- showers/meteor-shower-calendar/ • Where to look: 50° up & 45-60° from radiant • Challenges: fatigue, cold, insects, Moon • Recording observations ! Sky map, pen, red light & clipboard ! Time, position & location ! Recording device & time piece • Binoculars Getty 3 20-05-31 Meteor Showers • 112 confirmed meteor showers • 695 awaiting confirmation • Naming Convention ! C/2019 Y4 (Atlas) ! (3200) Phaethon June Tau Herculids (m) Parent body: 73P/Schwassmann-Wachmann Peak: June 2 – ZHR = 3 Slow moving – 15 km/s Moon: Waning Gibbous June Bootids (m) Parent body: 7p/Pons-Winnecke Peak: June 27– ZHR = variable Slow moving – 14 km/s Moon: Waxing Crescent Perseid by Brian Colville 4 20-05-31 July Delta Aquarids Parent body: 96P/Machholz Peak: July 28 – ZHR = 20 Intermediate moving – 41 km/s Moon: Waxing Gibbous Alpha
    [Show full text]
  • Craters and Airbursts
    Craters and Airbursts • Most asteroids and comets fragments explode in the air as fireballs or airbursts; only the largest ones make craters. • Evidence indicates that the YDB impact into the Canadian ice sheet made ice-walled craters that melted away long ago. • The YDB impact also possibly created rocky craters, most likely along the edge of the ice sheet in Canada or underwater in the oceans. • Our group is planning expeditions to search for impact evidence and hidden craters, for example to North Dakota, Montana, Quebec, and Nova Scotia. The following pages show what could happen during an impact NOTE: this website is a brief, non-technical introduction to the YDB impact hypothesis. For in-depth information, go to “Publications” to find links to detailed scientific papers. NAME OF SHOWER NAME OF SHOWER Alpha Aurigids Leo Minorids Meteor Showers Alpha Bootids Leonids Alpha Capricornids Librids Alpha Carinids Lyrids Comet impacts are common, Alpha Centaurids Monocerotids Alpha Crucids Mu Virginids but usually, they are harmless Alpha Cygnids Northern Delta Aquariids Alpha Hydrids Northern Iota Aquariids Alpha Monocerotids Northern Taurids Alpha Scorpiids October Arietids • Earth is hit by 109 meteor Aries-triangulids Omega Capricornids Arietids Omega Scorpiids showers every year (listed at Beta Corona Austrinids Omicron Centaurids right), averaging 2 collisions Chi Orionids Orionids Coma Berenicids Perseids with streams each week Delta Aurigids Phoenicids Delta Cancrids Pi Eridanids Delta Eridanids Pi Puppids • Oddly, most “meteor showers”
    [Show full text]
  • NASA Chat: Stay 'Up All Night' to Watch the Perseids! Experts Dr. Bill Cooke, Danielle Moser and Rhiannon Blaauw August
    NASA Chat: Stay ‘Up All Night’ to Watch the Perseids! Experts Dr. Bill Cooke, Danielle Moser and Rhiannon Blaauw August 11, 2012 _____________________________________________________________________________________ Moderator Brooke: Good evening, everyone, and thanks for joining us tonight to watch the 2012 Perseid meteor shower. Your chat experts tonight are Bill Cooke, Danielle Moser, and Rhiannon Blaauw from NASA's Marshall Space Flight Center in Huntsville, Ala. This is a moderated chat, and we expect a lot of questions, so please be patient -- it may take a few minutes for the experts to get to your question. So here we go -- let's talk Perseids! Boady_N_Oklahoma: Good evening!! Rhiannon: Welcome! We look forward to answering your questions tonight! StephenAbner: I live in Berea, Kentucky. Can you please tell me which part of the sky I should focus on for best viewing? Bill: Lie on your back and look straight up. Avoid looking at the Moon. Victoria_C.: Because we pass through the cloud every year, does the amount of meteors decline in time, too? Rhiannon: The meteoroid stream is replenished as the particles are travelling around the orbit of the stream. We will have Perseids for a long time still. Jerrte: When will the Perseids end? What year will be the last to view? Bill: The Perseids will be around for the next few centuries. Victoria_C.: Why do meteors fall more on one night than different nights? Bill: On certain nights, the Earth passes closest to the debris left behind by the comet. When this happens, we get a meteor shower with higher rates. Boady_N_Oklahoma: I'm in central rural oklahoma with crystal clear skies.
    [Show full text]
  • Minor Planet 2008 Ed69 and the Kappa Cygnid Meteor Shower
    The Astronomical Journal, 136:725–730, 2008 August doi:10.1088/0004-6256/136/2/725 c 2008. The American Astronomical Society. All rights reserved. Printed in the U.S.A. MINOR PLANET 2008 ED69 AND THE KAPPA CYGNID METEOR SHOWER P. Jenniskens1 and J. Vaubaillon2 1 SETI Institute, 515 N. Whisman Rd., Mountain View, CA 94043, USA; [email protected] 2 Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA Received 2008 March 23; accepted 2008 May 22; published 2008 July 11 ABSTRACT Until recently, the kappa Cygnids (IAU#12) were considered an old shower, because the meteors were significantly dispersed in node, radiant, and speed, despite being 28–38◦ inclined. In 1993, an outburst of kappa Cygnids was observed, which implied that this meteoroid stream was relatively young, instead. At least some dust was still concentrated in dust trailets. Until now, no active comet parent body was known, however, and the wide 22◦ dispersion of nodes was difficult to explain. This work reports that a minor planet has been discovered that has the right orbital dynamics to account for the kappa Cygnids. Minor planet 2008 ED69 is intrinsically bright, with H = 16.7 ± 0.3, and moves in a highly inclined orbit (i = 36.3◦). With one node near Jupiter’s orbit, the perihelion distance, longitude of perihelion, and node quickly change over time, but in a manner that keeps dust concentrated for a long period of time. The stream is more massive than the remaining body, and a form of fragmentation is implicated.
    [Show full text]
  • Joe Orman's Naked-Eye
    Joe Orman’s Naked‐Eye 100 Title Description All‐Night Sky Stay up all night and watch the sky change as the earth turns. This faint patch of light is the farthest thing visible to the naked eye, over Andromeda Galaxy 2 million light‐years away! This red giant star in Scorpius is sometimes close to Mars, and they look Antares, The Rival Of Mars the same‐ bright and pink. Crepuscular rays converging on the antisolar point; often very faint and Anticrepuscular Rays diffuse. Follow the curve of the Big Dipper's handle to a bright star‐ Arcturus in Arc To Arcturus Bootes. ISS, HST etc. look like stars moving steadily across the sky. Check Artificial Satellites heavens‐above.com for visibility. Usually too faint to see, but on April13, 2029, asteroid 2004MN will Asteroids make a close naked‐eye pass. Bright glow around the sun or moon, colorless and only a few degrees Aureole across. Northern Lights. From the southern U.S., can occasionally be seen as a Aurora Borealis reddish glow in the northern sky. Sunlight peeking between the mountains of the moon during a total Bailey's Beads solar eclipse. A band of pink above the horizon; look opposite the sun just before Belt Of Venus sunrise or just after sunset Betelgeuse The Hunter's left shoulder is a red giant star, bright and pink to the eye. The body and tail of Ursa Major, the Big Bear. Close to Polaris in the Big Dipper northern sky. The star where the dipper's handle bends, Mizar, has a fainter Big Dipper Double‐Star companion Alcor‐ a good test of vision.
    [Show full text]
  • Characterization of the June Epsilon Ophiuchids Meteoroid Stream And
    Astronomy & Astrophysics manuscript no. aa37727-20 c ESO 2020 April 7, 2020 Characterization of the June epsilon Ophiuchids meteoroid stream and the comet 300P/Catalina Pavol Matlovicˇ1, Leonard Kornoš1, Martina Kovácovᡠ1, Juraj Tóth1, and Javier Licandro2;3 1 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia e-mail: [email protected] 2 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea sn, 38205 La Laguna, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain Received 2020 ABSTRACT Aims. Prior to 2019, the June epsilon Ophiuchids (JEO) were known as a minor unconfirmed meteor shower with activity that was considered typically moderate for bright fireballs. An unexpected bout of enhanced activity was observed in June 2019, which even raised the possibility that it was linked to the impact of the small asteroid 2019 MO near Puerto Rico. Early reports also point out the similarity of the shower to the orbit of the comet 300P/Catalina. We aim to analyze the orbits, emission spectra, and material strengths of JEO meteoroids to provide a characterization of this stream, identify its parent object, and evaluate its link to the impacting asteroid 2019 MO. Methods. Our analysis is based on a sample of 22 JEO meteor orbits and four emission spectra observed by the AMOS network at the Canary Islands and in Chile. The meteoroid composition was studied by spectral classification based on relative intensity ratios of Na, Mg, and Fe. Heliocentric orbits, trajectory parameters, and material strengths were determined for each meteor and the mean orbit and radiant of the stream were calculated.
    [Show full text]
  • Meteor News Cover
    2021 – 6 eMeteorNews Contents Esko Lyytinen (1942–2020) M. Gritsevich, P. Jenniskens and P. Roggemans ..................................................................................... 449 Perseid outburst 2021 P. Jenniskens and K. Miskotte ................................................................................................................. 460 Enhanced κ-Cygnid (KCG#0012) activity in 2021 P. Jenniskens ........................................................................................................................................... 462 Fireballs recorded between May and July 2021 by the Southwestern Europe Meteor Network J.M. Madiedo, J.L. Ortiz, J. Izquierdo, P. Santos-Sanz, J. Aceituno, E. de Guindos, P. Yanguas, J. Palacián, A. San Segundo and D. Ávila .................................................................................................. 464 A possible new meteor shower in August during the Perseids V. Velkov ................................................................................................................................................. 472 Spring 2021 observations from Ermelo (Netherlands) and Any Martin Rieux (France) K. Miskotte .............................................................................................................................................. 480 June 2021 report CAMS BeNeLux P. Roggemans .......................................................................................................................................... 487 Delta-Aquariids 2021 by
    [Show full text]
  • Some Observations Using the Meteor Orbits'databases of The
    6 Jaargang 22 nummer 1. February 2000 Comet and Meteor Associations: Some Observations Using the Meteor Orbits’ Databases of the DMS John Greaves 1 1. 15 Borrowdale Walk, Northampton, NN3 6PW, United Kingdom The photographic and video meteor orbit databases of the Dutch Meteor Society have been cross checked against a list of cometary orbits. Several previously unknown or little known associations are found, some possible associations are sug- gested, and some well known and lesser known associations are confirmed. Introduction pendent parameters, whereas ω corre- having to continually take into consid- lates with the perihelion distance, q, eration whether or not the data is accu- The Dutch Meteor Society conducts and eccentricity, e, correlates with the rately identified or reduced. multi-station photographic and video semimajor axis, a. q and e were not observations of meteors, and has done cross checked directly, as they define Table 1 lists the orbital details for the so now for over two decades. The the shape of the orbit, which was to be more interesting meteor and comet or- databases for both the photographic inspected visually: indeed, e is not al- bit associations, as detailed below. and video programmes can be down- ways usable, in any context, as many loaded via anonymous ftp at the DMS comets have parabolic rather than el- Discoveries website: www.dmsweb.org. liptical orbits, similarly a is rarely if The author has downloaded these da- ever quoted for comets. 1. Leo Minorids tabases and cross correlated them * against cometary orbits using a rela- Secondly, this method of investigation As can be seen in table one, the mete- tional database management program.
    [Show full text]
  • Minor Planet 2008 Ed69 and the Kappa Cygnid Meteor Shower
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main The Astronomical Journal, 136:725–730, 2008 August doi:10.1088/0004-6256/136/2/725 c 2008. The American Astronomical Society. All rights reserved. Printed in the U.S.A. MINOR PLANET 2008 ED69 AND THE KAPPA CYGNID METEOR SHOWER P. Jenniskens1 and J. Vaubaillon2 1 SETI Institute, 515 N. Whisman Rd., Mountain View, CA 94043, USA; [email protected] 2 Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA Received 2008 March 23; accepted 2008 May 22; published 2008 July 11 ABSTRACT Until recently, the kappa Cygnids (IAU#12) were considered an old shower, because the meteors were significantly dispersed in node, radiant, and speed, despite being 28–38◦ inclined. In 1993, an outburst of kappa Cygnids was observed, which implied that this meteoroid stream was relatively young, instead. At least some dust was still concentrated in dust trailets. Until now, no active comet parent body was known, however, and the wide 22◦ dispersion of nodes was difficult to explain. This work reports that a minor planet has been discovered that has the right orbital dynamics to account for the kappa Cygnids. Minor planet 2008 ED69 is intrinsically bright, with H = 16.7 ± 0.3, and moves in a highly inclined orbit (i = 36.3◦). With one node near Jupiter’s orbit, the perihelion distance, longitude of perihelion, and node quickly change over time, but in a manner that keeps dust concentrated for a long period of time.
    [Show full text]
  • Yearly Meteor Showers
    Yearly Meteor Showers Name Dates Peak dates Rating Quadrantids 1 January – 5 January 3 January Strong Gamma Velids 1 January – 15 January 5 January Weak Alpha Crucids 6 January – 28 January 15 January Weak Delta Cancrids 1 January – 31 January 17 January Medium Alpha Hydrids 5 January – 14 February 19 January Weak Eta Carinids 14 January – 27 January 21 January Weak Alpha Carinids 24 January – 9 February 30 January Weak Delta Velids 22 January – 21 February 5 February Weak Alpha Centaurids 28 January – 21 February 7 February Medium Omicron Centaurids 31 January – 19 February 11 February Weak Theta Centaurids 23 January – 12 March 21 February Weak February Leonids 1 February – 28 February several Medium Delta Leonids 15 February – 10 March 24 February Medium Gamma Normids 25 February – 22 March 13 March Medium Virginids 1 March – 15 April several Medium Delta Pavonids 11 March – 16 April 30 March Weak Librids 15 April – 30 April several Medium Lyrids 15 April – 28 April 22 April Strong Pi Puppids 15 April – 28 April 23 April Irregular Alpha Bootids 14 April – 12 May 28 April Weak Mu Virginids 1 April – 12 May 29 April Weak Omega Capricornids 19 April – 15 May 2 May Weak Eta Aquariids 19 April – 28 May 6 May Strong Alpha Scorpiids 1 May – 31 May 16 May Medium Beta Corona Austrinids 23 April – 30 May 16 May Weak Omega Scorpiids 23 May – 15 June 2 June Weak Arietids 22 May – 2 July 7 June Strong Sagittarids 1 June – 15 July 19 June Medium June Lyrids [2] 10 June – 21 June 15 June Irregular Tau Cetids 18 June – 4 July 27 June Weak June Bootids
    [Show full text]
  • Kappa-Cygnids: Search for Periodic Activity
    70 Proceedings of the IMC, Mistelbach, 2015 Kappa-Cygnids: search for periodic activity Jürgen Rendtel and Rainer Arlt Leibniz-Institut für Astrophysik Potsdam (AIP) An der Sternwarte 16, 14482 Potsdam, Germany [email protected] Various observations of the kappa Cygnids – most recently in 2007 and 2014 – have been considered as a hint at periodic rate/flux enhancement which may also be explained from model calculations. We analyzed visual data back to 1977 and found slightly enhanced rates in 1985, 1989 and 2014. This does neither correspond with any of the proposed periods nor can this be associated with a periodic appearance at all. 1 Introduction discriminating criterion to associate possible shower meteors with the radiants. Further, the κ-Cygnids occur The κ-Cygnids have been observed over a long period. during the late Perseid period so that the number of Reports back to the 1870s can be associated to meteors of reports is sufficiently large for most of the years. Due to this shower (Tupman, 1873) while less certain detections this situation it seemed promising to reanalyze visual data may go back to the middle ages (Roggemans, 1987). obtained before 1985. Despite the fortunate situation it is Often the reports refer to radiants in Draco and Cygnus. not possible to derive annual ZHR profiles and to Obviously, the radiant is complex. A recent study calculate separate values of the population index r. From (Koseki, 2014) has shown that radiants extend over a the average ZHR profile (Figure 1) as well as the maxima region of the order of 10 degrees in diameter extending in 2007 and 2014 we conclude that the ZHR does not into Lyra as well (see Figure 16 in Koseki's paper).
    [Show full text]