TinyOS: An Operating System for Sensor Networks Philip Levis1, Sam Madden1,2,3, Joseph Polastre1, Robert Szewczyk1, Kamin Whitehouse1, Alec Woo1, David Gay2, Jason Hill4, Matt Welsh2,5, Eric Brewer1 and David Culler1 1 EECS Department, University of California, Berkeley, Berkeley, California 94720 {pal, madden, polastre, szewczyk, kamin, awoo, brewer, culler}@cs.berkeley.edu 2 Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, California 94704 {madden, dgay, mdw}@intel-research.net 3 CSAIL, MIT, Cambridge, MA 02139,
[email protected] 4 JLH Labs, 35231 Camino Capistrano, Capistrano Beach, CA 92624,
[email protected] 5 Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138,
[email protected] Abstract We present TinyOS, a flexible, application-specific operating system for sensor networks. Sen- sor networks consist of (potentially) thousands of tiny, low-power nodes, each of which ex- ecute concurrent, reactive programs that must operate with severe memory and power con- straints. The sensor network challenges of limited resources, event-centric concurrent appli- cations, and low-power operation drive the design of TinyOS. Our solution combines flexible, fine-grain components with an execution model that supports complex yet safe concurrent op- erations. TinyOS meets these challenges well and has become the platform of choice for sensor network research; it is in use by over a hundred groups worldwide, and supports a broad range of applications and research topics. We provide a qualitative and quantitative evaluation of the system, showing that it supports complex, concurrent programs with very low memory requirements (many applications fit within 16KB of memory, and the core OS is 400 bytes) and efficient, low-power operation.