Greek Biology and Greek Medicine

Total Page:16

File Type:pdf, Size:1020Kb

Greek Biology and Greek Medicine BOOK REVIEWS Greek Biology and Greek Medicine. By Charles est investigators of living nature.” Singer Singer. Chapters in the History of Science. Gen­ quotes Muller’s studies on the embryology eral Editor Charles Singer, i. Oxford Univ. 1922. of the dogfish, made in 1840, which abso­ In this unpretentious little volume there lutely confirmed the observations of Aristotle is presented a most valuable study of the made two thousand years before. evolution of biology and medicine among The mode of reproduction of the cephalo­ the Greeks from the commencement of pods was quite accurately described by such studies down to the latest evidences Aristotle but his description was not gener­ of Greek influence in them. The remains of ally accepted nor was it confirmed until early Greek art dating from the seventh the nineteenth century. Singer quotes some and sixth century b.c. show “a closeness of Aristotle’s wonderfully vivid descriptions of observation of animal forms that tells of a of the somewhat obscure anatomy and people awake to the study of nature.” The physiology of marine animals. so-called Coan classificatory system a some­ Aristotle’s pupil and successor, Theo­ what crude classification of animals con­ phrastus (372-287 b.c.) may be justly tained in the work “On Regimen,” in the regarded as the founder of botanical science. Hippocratic Collection, dated the fifth As there was until the seventeenth century century b.c. “shows a close and accurate no adequate system of the classification of study of animal forms, a study that may be plants Theophrastus and his successors until justly called scientific.” The author pro­ that era had to content themselves with ceeds to quote a number of physiological descriptions of the individual plants accom­ and embryological studies and observations panied by pictorial representations. Those from the works of the Hippocratic physi­ contained in the works of Theophrastus are cians which are indicative of the really most accurate and valuable. He also made scientific methods used by them in their some very estimable efforts to elucidate the researches. There is a splendid description mystery of germination. of the contributions to the biology of With the death of Theophrastus, Greek Aristotle in which Singer demonstrates biology entered into its period of darkness the value which modern scientists attach only slightly brightened by the works of to them. While Aristotle’s writings on phys­ Pliny and Dioscorides in the first century ics exerted an enormous interest and gov­ of the Christian era, and once brilliantly erned the views of writers on physical illuminated by the works of Galen in the science for some two thousand years, they second century. The whole knowledge pos­ have fallen in esteem since the discoveries sessed by the world in the department of of Galileo. On the other hand the biological physiology from the third to the seven­ works of Aristotle which were not much teenth century, nearly all the biological regarded during the middle ages, are now conceptions till the thirteenth, and most of held in the greatest estimation: “From the anatomy and much of the botany until the beginning of the nineteenth century, the sixteenth century, all the ideas of the and especially as a result of the work of physical structure of living things through­ Cuvier, Richard Owen and Johannes Muller, out the Middle Ages, was contained in a Aristotle’s reputation as a naturalist has small number of these works of Galen. As risen steadily, and he is now universally Galen’s dissections were not made on the admitted to have been one of the very great­ body of man but on those of Barbary apes, dogs, cats, pigs, and other animals he made Hippocratic collection. The many quota­ innumerable errors because he ascribed to tions which he gives convey a fine idea of the human body the anatomical conditions the great value of these writings and he found in animals. Thus there is no rcte inspire a regretful reflection that they are mirabile such as he describes in the human so unfamiliar to most practitioners of medi­ brain though such an organ is found in the cine in our own time. The concluding sen­ calf. The human being has no hepatic tence of the book is well worth quoting for vein but the dog has. It was not until the its truthful summing up of the situation. Renaissance that anatomists such as Vesa­ The texts of Hippocrates and Galen have now lius realized the errors of those others ceased to occupy a place in any medical cur­ that were heretofore so highly regarded. riculum. Yet all who know these writings, When Vesalius and his colleagues and know too, not only that their spirit is still with followers began the actual dissection of the us, but that the works themselves form the human body they soon realized that Galen background of modern practice, and that had foisted upon it the structures apper­ their very phraseology is still in use at the taining to animals which were not human. bedside. Modern medicine may be truly de­ In the sixteenth century men returned to scribed as in essence a creation of the Greeks. To realize the nature of our medical system, the methods which had been taught by the some knowledge of its Greek sources is essential. great Greek masters, especially Aristotle, It would indeed be a bad day for medicine if and with this very return to his methods ever this debt to the Greeks were forgotten, they discovered and corrected the errors and the loss would be at least as much ethical in the works of the Master, which had been as intellectual. But there is happily no fear of slavishly copied throughout hundreds of this, for the figure and spirit of Hippocrates years by men who, while they imagined are more real and living today than they have they glorified thereby, were in reality but been since the great collapse of the Greek propagating his mistakes. With Vesalius scientific intellect in the third and fourth and with Fabricius ab Aquapendente and centuries of the Christian era. his even greater pupil, William Harvey, Francis R. Packard. modern physiology and anatomy began, both based on direct observation which Aristotle had practiced and inculcated but from which his followers had departed. To the Greeks alone belongs the distinc­ tion “that they practiced a system of medi­ cine based not on theory but on observation accumulated systematically as time went on.” The anatomists and physiologists who at the revival of learning found the pure fountains of Greek medicine in their hands may have been to blame for slavishly submitting to the masters of antiquity, but when the revolt against this submission arose among their successors, the revolution­ aries were as a matter of fact actually returning to the original methods of the ancient masters. Singer gives a most lucid description of the schools of Cnidus and Cos and a very excellent resume of the contents of the .
Recommended publications
  • Aristotelian Influence in the Formation of Medical Theory
    Aristotelian influence in the formation of medical theory Mythologic cradle of Greek medical thought Early Greek medicine contained both natural and supernatural elements. Pharmaka, a broad term for drugs, referred to applications for magic, for poison, and for curing. The gods had a large role. The Iliad opened with an epidemic sent by Apollo, and medical solutions were often a search to discover what offended a particular god. By the time of Hesiod (~700 B.C.), Asclepian healing ceremonies consisted of a normalized set of rituals involving abstinence from food and wine, a sacrifice or gift to the god, and a nocturnal “incubational” period.1 Aristotle stood at the portal between mythical and modern horizons of thought, and was a prime motivating agent in propelling medicine, not just philosophy, through that portal. As a natural philosopher, Aristotle’s influence on medicine is two-pronged – first in terms of immediate causation – his influence on his own students and their intellectual descendents – and secondly in terms of indirect causation – his influence on medical debates raging today. The shift The Sicilian philosopher (and some speculate physician) Empedocles, whose life straddled the sixth and fifth centuries B.C., is credited with the notion that everything existing is composed of four elements – earth, air, fire, and water.2 Alcmaeon of Croton (~470 B.C.) held to a similar natural scheme, claiming an equality of powers is responsible for health – moist and dry; cold and hot; bitter and sweet. An interesting schism over this model developed with which Aristotle was to contend. Following Empedocles’ lead, Plato ascribed to a four-element theory, having placed emphasis on universal principles, including the Forms.
    [Show full text]
  • Harvey, Clinical Medicine and the College of Physicians
    n MEDICAL HISTORY Harvey, clinical medicine and the College of Physicians Roger French † Roger French ABSTRACT – This article deals with the problems one of the principal therapeutic techniques of the D Phil, Former of seeing Harvey historically, rather than as a time, phlebotomy. For these and related reasons, Lecturer in the construction seen from the viewpoint of modern medicine was in a crisis as Harvey grew old, and History of medicine. It deals with his programme of work, when he died, in 1657, although the circulation of Medicine, Fellow of the expectations of his audience, his intellectual the blood was largely accepted, medicine itself was Clare Hall, training and the political and religious circum- very different 2. University of stances of seventeenth century Europe. It shows Cambridge that at the time the impact of Harvey’s discovery Medicine and history Clin Med JRCPL was negative on clinical medicine and its theory, 2002;2:584–90 but also shows ways in which that impact was In fact Harvey’s discovery exemplifies, perhaps in an favourable. extreme form, the problem of dealing historically with medical progress, that is, of evaluating it in its KEY WORDS: Aristotelianism, circulation, own terms. The discovery of the circulation was so Galenism, natural philosophy, seventeenth important that historians used to be especially century culture concerned with Harvey’s methods 3. More recently they have contrasted Harvey’s approach with the Introduction reluctance of those of his colleagues to see the truth – that is, the circulation – when it was made apparent This year it is four hundred years since the to them.
    [Show full text]
  • Names of Botanical Genera Inspired by Mythology
    Names of botanical genera inspired by mythology Iliana Ilieva * University of Forestry, Sofia, Bulgaria. GSC Biological and Pharmaceutical Sciences, 2021, 14(03), 008–018 Publication history: Received on 16 January 2021; revised on 15 February 2021; accepted on 17 February 2021 Article DOI: https://doi.org/10.30574/gscbps.2021.14.3.0050 Abstract The present article is a part of the project "Linguistic structure of binomial botanical denominations". It explores the denominations of botanical genera that originate from the names of different mythological characters – deities, heroes as well as some gods’ attributes. The examined names are picked based on “Conspectus of the Bulgarian vascular flora”, Sofia, 2012. The names of the plants are arranged in alphabetical order. Beside each Latin name is indicated its English common name and the family that the particular genus belongs to. The article examines the etymology of each name, adding a short account of the myth based on which the name itself is created. An index of ancient authors at the end of the article includes the writers whose works have been used to clarify the etymology of botanical genera names. Keywords: Botanical genera names; Etymology; Mythology 1. Introduction The present research is a part of the larger project "Linguistic structure of binomial botanical denominations", based on “Conspectus of the Bulgarian vascular flora”, Sofia, 2012 [1]. The article deals with the botanical genera appellations that originate from the names of different mythological figures – deities, heroes as well as some gods’ attributes. According to ICBN (International Code of Botanical Nomenclature), "The name of a genus is a noun in the nominative singular, or a word treated as such, and is written with an initial capital letter (see Art.
    [Show full text]
  • Four Treatises of Theophrastus Von Hohenheim Called Paracelsus
    510 NATURE MAY 9, 1942, VoL. 149 I regret that the juncture between the new theory dogmas of this physician born two thousand years of reaction rates and the 'electronic theory' of Flurs­ later. heim, Lapworth, Robinson and Ingold still does not The book under review, the first modem trans­ seem very close. The future valuation of the new lation into English of any works of Paracelsus, is a ideas may largely depend on the extent to which they labour of love to mark the four-hundredth anniver­ will prove able to explain more of the remarkable sary of his death. Like all such labours it has been rules which the organic chemist has discovered and carefully and well done by the four collaborators. has not yet related with any degree of precision to From it the reader may gather both the merits and the interplay of atomic forces. faults of "Lutherus medicorum", as Paracelsus was In the light of present achievement and in the styled, his interest in drugs, occupational diseases hope of further advance, we may recall for a moment and psychiatry, his self-assurance, conceit and the general expectations which have been enter­ tendency to wild speculation. The fourth treatise of tained on the subject of theoretical chemistry for the the book is scarcely medical at all, but throws light last thirty years or so. It was about 1912 that I on the mystic belief in sylphs, nymphs, pygmies and first heard it said in jest, that "You need not bother salamanders, the spirits living in the four so-called any longer to leam chemistry, because soon it will elements.
    [Show full text]
  • Dioscorides De Materia Medica Pdf
    Dioscorides de materia medica pdf Continue Herbal written in Greek Discorides in the first century This article is about the book Dioscorides. For body medical knowledge, see Materia Medica. De materia medica Cover of an early printed version of De materia medica. Lyon, 1554AuthorPediaus Dioscorides Strange plants RomeSubjectMedicinal, DrugsPublication date50-70 (50-70)Pages5 volumesTextDe materia medica in Wikisource De materia medica (Latin name for Greek work Περὶ ὕλης ἰατρικῆς, Peri hul's iatrik's, both means about medical material) is a pharmacopeia of medicinal plants and medicines that can be obtained from them. The five-volume work was written between 50 and 70 CE by Pedanius Dioscorides, a Greek physician in the Roman army. It was widely read for more than 1,500 years until it supplanted the revised herbs during the Renaissance, making it one of the longest of all natural history books. The paper describes many drugs that are known to be effective, including aconite, aloe, coloxinth, colocum, genban, opium and squirt. In all, about 600 plants are covered, along with some animals and minerals, and about 1000 medicines of them. De materia medica was distributed as illustrated manuscripts, copied by hand, in Greek, Latin and Arabic throughout the media period. From the sixteenth century, the text of the Dioscopide was translated into Italian, German, Spanish and French, and in 1655 into English. It formed the basis of herbs in these languages by such people as Leonhart Fuchs, Valery Cordus, Lobelius, Rembert Dodoens, Carolus Klusius, John Gerard and William Turner. Gradually these herbs included more and more direct observations, complementing and eventually displacing the classic text.
    [Show full text]
  • "You Can't Make a Monkey out of Us": Galen and Genetics Versus Darwin
    "You can't make a monkey out of us": Galen and genetics versus Darwin Diamandopoulos A. and Goudas P. Summary The views on the biological relationship between human and ape are polarized. O n e end is summarized by the axiom that "mon is the third chimpanzee", a thesis put forward in an indirect way initially by Charles Darwin in the 19 th century.The other is a very modern concept that although similar, the human and ape genomes are distinctly different. We have compared these t w o views on the subject w i t h the stance of the ancient medical w r i t e r Galen.There is a striking resemblance between current and ancient opinion on three key issues. Firstly, on the fact that man and apes are similar but not identical. Secondly, on the influence of such debates on fields much wider than biology.And finally, on the comparative usefulness of apes as a substitute for human anatomy and physiology studies. Resume Les points de vue concernant les liens biologiques existants entre etre humain et singe sont polarises selon une seule direction. A I'extreme, on pourrait resumer ce point de vue par I'axiome selon lequel « I'homme est le troisieme chimpanze ». Cette these fut indirectement soutenue par Charles Darwin, au I9eme siecle. L'autre point de vue est un concept tres moderne soutenant la similitude mais non I'identite entre les genomes de I'homme et du singe. Nous avons compare ces deux points de vue sur le sujet en mentionnant celui du medecin ecrivain Galien, dans I'Antiquite.
    [Show full text]
  • Medicine in the Renaissance the Renaissance Was a Period of Many
    Medicine in the Renaissance The Renaissance was a period of many discoveries and new ideas. Students need to be able to establish whether these discoveries led to improvements in the way that people were treated. Did the ideas of medical greats such as Vesalius, Harvey and Pare result in immediate, gradual or no improvements? William Harvey William Harvey became Royal Physician to James I and Charles I. He was a leading member of the Royal College of Surgeons and trained at the famous university in Padua, Italy. Harvey's contribution to medical knowledge was great but the impact of his work was not immediate. In 1615 he conducted a comparative study on animals and humans. He realised that many of his findings on animals could be applied to Humans. Through this study he was able to prove that Galen had been wrong to suggest that blood is constantly being consumed. Instead, he argued, correctly, that blood was constantly pumped around the body by the heart. Harvey went on to identify the difference between arteries and veins and noted that blood changes colour as it passes through the lungs. Harvey also identified the way in which valves work in veins and arteries to regulate the circulation of blood. An ilustration of William Harvey's findings. Source - wikimedia. Andreas Vesalius Vesalius was born into a medical family and was encouraged from an early age to read about medical ideas and practice. He went to Louvain University from 1528 to 1533 when he moved to Paris. Vesalius returned to Louvain in 1536 because of war in France.
    [Show full text]
  • Arrested Development, New Forms Produced by Retrogression Were Neither Imperfect Nor Equivalent to a Stage in the Embryo’S Development
    Retrogressive Development: Transcendental Anatomy and Teratology in Nineteenth- Century Britain Alan W.H. Bates University College London Abstract In 1855 the leading British transcendental anatomist Robert Knox proposed a theory of retrogressive development according to which the human embryo could give rise to ancestral types or races and the animal embryo to other species within the same family. Unlike monsters attributed to the older theory of arrested development, new forms produced by retrogression were neither imperfect nor equivalent to a stage in the embryo’s development. Instead, Knox postulated that embryos contained all possible specific forms in potentio. Retrogressive development could account for examples of atavism or racial throwbacks, and formed part of Knox’s theory of rapid (saltatory) species change. Knox’s evolutionary theorizing was soon eclipsed by the better presented and more socially acceptable Darwinian gradualism, but the concept of retrogressive development remained influential in anthropology and the social sciences, and Knox’s work can be seen as the scientific basis for theories of physical, mental and cultural degeneracy. Running Title: Retrogressive Development Key words: transcendentalism; embryology; evolution; Robert Knox Introduction – Recapitulation and teratogenesis The revolutionary fervor of late-eighteenth century Europe prompted a surge of interest in anatomy as a process rather than as a description of static nature. In embryology, preformation – the theory that the fully formed animal exists
    [Show full text]
  • Soul: the Form of a Living Thing
    Early mechanist ideas in biology: Harvey, Descartes, and Boyle It all starts with Aristotle! 384-322 BCE • Essentialism • 'hylomorphic' view — hylê 'matter', morphê 'form, shape‘ • bronze sphere: bronze matter and spherical form • Ax: wood and iron (matter) and the shape and organization required for chopping •Form: – More than mere shape – Realization of potentiality that specifies essence Soul: the form of a living thing • Three types of soul – Vegetative: nutrition, growth and reproduction: botany – Animal: add sensation and locomotion: zoology – Rational: add 'intellect' or 'thinking of' (nous) • Soul imposes form on matter—in nutrition: "the active principle of growth lays hold of an acceding food which is potentially flesh and converts it into actual flesh." • More precisely: different forms in different species and genera – Separated cetaceans (marine mammals) from fish and identified them as more like mammals • Life birth 1 Aristotelian classification Animals Without blood With blood cephalopods (e.g., octopus) Viviparious (live-bearing) crustaceans quadrupeds (mammals) insects (including also spiders, Birds scorpions, and centipedes) Oviparous (egg-laying) shelled animals (e.g., molluscs quadrupeds (reptiles and and echinoderms) amphibians) "zoophytes" or plant-animals Fishes (e.g., cnidarians) Whales Aristotle’s Anatomy and Physiology • Digestive system converted food into blood by the action of heat • Breathing functioned mainly to cool the body • Kidneys cleansed the body of wastes • The heart generated the heat required to turn food into blood • The heart also represented the location of the human mind, the source of intellect, consciousness, emotions, and motivations • The brain contributed to cooling of the body Aristotle’s Four “Causes”: Aitia • Material: that out of which something is, e.g.
    [Show full text]
  • Shared Structural Design of Herbal Descriptions in Šammušikinšu
    chapter 21 At the Dawn of Plant Taxonomy: Shared Structural Design of Herbal Descriptions in Šammu šikinšu and Theophrastus’Historia plantarum IX Maddalena Rumor* Case Western Reserve University When we think of the first scientific developments in botany we think of Theophrastus (ca. 370–ca. 287BCE), who, for many good reasons, earned the appellative of “Father of Botany”. His treatise Historia plantarum,1 which ap- peared ca. 300BCE, is considered the earliest fully-surviving example of Pre- Linnaean plant taxonomy (a systematic effort to describe, classify and name plants).2 But to what degree are the principles and the reasoning behind this remarkable achievement an exclusive product of Greek culture and the philo- sophical school to which Theophrastus owed so much? Is it possible to recog- nize elements of that same systematic thinking in an earlier scholarly milieu of the ancient world? Focusing merely on one aspect of taxonomy, namely on the description of medicinal plants, the present article explores the simple but important idea that a very precise method was already in place prior to Theophrastus for describing herbal remedies and that this method was not uniquely Greek, even * I feel privileged to have had Mark Geller as my teacher. Not only his deep knowledge, but also his endless enthusiasm and insightful intuition have always been an inspiration during my graduate studies. It is with great pleasure and gratitude that I offer this small essay to him. I would also like to thank Henry Stadhouders for kindly reading the manuscript of this article and for offering many valuable suggestions.
    [Show full text]
  • History of Taxonomy
    History of Taxonomy The history of taxonomy dates back to the origin of human language. Western scientific taxonomy started in Greek some hundred years BC and are here divided into prelinnaean and postlinnaean. The most important works are cited and the progress of taxonomy (with the focus on botanical taxonomy) are described up to the era of the Swedish botanist Carl Linnaeus, who founded modern taxonomy. The development after Linnaeus is characterized by a taxonomy that increasingly have come to reflect the paradigm of evolution. The used characters have extended from morphological to molecular. Nomenclatural rules have developed strongly during the 19th and 20th century, and during the last decade traditional nomenclature has been challenged by advocates of the Phylocode. Mariette Manktelow Dept of Systematic Biology Evolutionary Biology Centre Uppsala University Norbyv. 18D SE-752 36 Uppsala E-mail: [email protected] 1. Pre-Linnaean taxonomy 1.1. Earliest taxonomy Taxonomy is as old as the language skill of mankind. It has always been essential to know the names of edible as well as poisonous plants in order to communicate acquired experiences to other members of the family and the tribe. Since my profession is that of a systematic botanist, I will focus my lecture on botanical taxonomy. A taxonomist should be aware of that apart from scientific taxonomy there is and has always been folk taxonomy, which is of great importance in, for example, ethnobiological studies. When we speak about ancient taxonomy we usually mean the history in the Western world, starting with Romans and Greek. However, the earliest traces are not from the West, but from the East.
    [Show full text]
  • Origins of Systems Biology in William Harvey's Masterpiece On
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Int. J. Mol. Sci. 2009, 10, 1658-1669; doi:10.3390/ijms10041658 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Communication Origins of Systems Biology in William Harvey’s Masterpiece on the Movement of the Heart and the Blood in Animals Charles Auffray 1,* and Denis Noble 2 1 Functional Genomics and Systems Biology for Health, CNRS Institute of Biological Sciences - 7, rue Guy Moquet, BP8, 94801 Villejuif, France 2 Department of Physiology, Anatomy and Genetics, Balliol College, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom. E-Mail:[email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel. +33-1-49583498; Fax: +33-1-49583509 Received: 20 March 2009; in revised form: 13 April 2009 / Accepted: 14 April 2009 / Published: 17 April 2009 Abstract: In this article we continue our exploration of the historical roots of systems biology by considering the work of William Harvey. Central arguments in his work on the movement of the heart and the circulation of the blood can be shown to presage the concepts and methods of integrative systems biology. These include: (a) the analysis of the level of biological organization at which a function (e.g. cardiac rhythm) can be said to occur; (b) the use of quantitative mathematical modelling to generate testable hypotheses and deduce a fundamental physiological principle (the circulation of the blood) and (c) the iterative submission of his predictions to an experimental test.
    [Show full text]