Complete monotonicity for inverse powers of some combinatorially defined polynomials Alexander D. Scott Mathematical Institute University of Oxford 24–29 St. Giles’ Oxford OX1 3LB, UK
[email protected] Alan D. Sokal∗ Department of Physics New York University 4 Washington Place New York, NY 10003 USA
[email protected] January 9, 2013 revised November 10, 2013 Expanded version: Contains Appendices A and B that are not included, due to space constraints, in the version (arXiv:1301.2449v2) that will be published in Acta Math- ematica. Abstract We prove the complete monotonicity on (0, )n for suitable inverse powers ∞ of the spanning-tree polynomials of graphs and, more generally, of the basis generating polynomials of certain classes of matroids. This generalizes a result of Szeg˝oand answers, among other things, a long-standing question of Lewy and Askey concerning the positivity of Taylor coefficients for certain rational arXiv:1301.2449v3 [math.CO] 6 Jan 2014 functions. Our proofs are based on two ab initio methods for proving that P −β is completely monotone on a convex cone C: the determinantal method and the quadratic-form method. These methods are closely connected with harmonic analysis on Euclidean Jordan algebras (or equivalently on symmetric cones). We furthermore have a variety of constructions that, given such polynomials, can create other ones with the same property: among these are algebraic ana- logues of the matroid operations of deletion, contraction, direct sum, parallel connection, series connection and 2-sum. The complete monotonicity of P −β for some β > 0 can be viewed as a strong quantitative version of the half-plane property (Hurwitz stability) for P , and is also related to the Rayleigh property for matroids.