water Article Examining the Effect of Heat Stress on Montastraea cavernosa (Linnaeus 1767) from a Mesophotic Coral Ecosystem (MCE) John E. Skutnik 1, Sango Otieno 2 , Sok Kean Khoo 3 and Kevin B. Strychar 1,* 1 Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA;
[email protected] 2 Department of Statistics, Grand Valley State University, Allendale, MI 49401, USA;
[email protected] 3 Department Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401, USA;
[email protected] * Correspondence:
[email protected]; Tel.: +1-616-331-8796 Received: 13 March 2020; Accepted: 29 April 2020; Published: 5 May 2020 Abstract: Coral reefs are under increasing pressure from global warming. Little knowledge, however, exists regarding heat induced stress on deeper mesophotic coral ecosystems (MCEs). Here, we examined the effect of acute (72 h) and chronic (480 h) heat stress on the host coral Montastraea cavernosa (Linnaeus 1767) collected from an upper MCE (~30 m) in Florida, USA. We examined six immune/stress-related genes: ribosomal protein L9 (RpL9), ribosomal protein S7 (RpS7), B-cell lymphoma 2 apoptosis regulator (BCL-2), heat shock protein 90 (HSP90), catalase, and cathepsin L1, as a proxy for coral response to heat stress. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate the gene expression. Overall, both acute and chronic heat stress treatments elicited a response in gene expression relative to control samples. Acute heat exposure resulted in up-regulation of catalase, BCL-2, and HSP90 at all time points from hour 24 to 48, suggesting the activation of an oxidative protective enzyme, molecular chaperone, and anti-apoptotic protein.