Predaceous Diving Beetle Representative Species

Total Page:16

File Type:pdf, Size:1020Kb

Predaceous Diving Beetle Representative Species predaceous diving beetle representative species Kingdom: Animalia Division/Phylum: Arthropoda Class: Insecta Order: Coleoptera Family: Dytiscidae ILLINOIS STATUS common, native FEATURES Predaceous diving beetles undergo complete metamorphosis (egg, larva, pupa, adult). The larva, called a water tiger, has mouthparts that allow it to puncture prey and suck out fluids. This slender larva ranges from one-fourth to three inches in length. It breathes through the body surface and through two spiracles on the tail. The adult has forewings that are hard and meet in a straight line down the middle of the back when not in flight. The hindwings are membranous and folded under the front wings when not in flight. The body is elongate, oval and streamlined. The hind legs are flattened and fringed with hairs. Antennae are threadlike. The body is black, brown or yellow. BEHAVIORS Predaceous diving beetles live in still water in ponds, lakes and streams. The adults move their legs in unison when swimming and surface for air tail-first. They are often seen flying around lights at night. The female lays eggs in plant stems, producing one generation per year. The pupal stage occurs under stones and plants along the shore. The adult and larva are aggressive and cannibalistic, eating prey items as large as small fishes. HABITATS Aquatic Habitats lakes, ponds and reservoirs; rivers and streams Woodland Habitats none Prairie and Edge Habitats none © Illinois Department of Natural Resources. 2019. Biodiversity of Illinois. .
Recommended publications
  • Current Classification of the Families of Coleoptera
    The Great Lakes Entomologist Volume 8 Number 3 - Fall 1975 Number 3 - Fall 1975 Article 4 October 1975 Current Classification of the amiliesF of Coleoptera M G. de Viedma University of Madrid M L. Nelson Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation de Viedma, M G. and Nelson, M L. 1975. "Current Classification of the amiliesF of Coleoptera," The Great Lakes Entomologist, vol 8 (3) Available at: https://scholar.valpo.edu/tgle/vol8/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. de Viedma and Nelson: Current Classification of the Families of Coleoptera THE GREAT LAKES ENTOMOLOGIST CURRENT CLASSIFICATION OF THE FAMILIES OF COLEOPTERA M. G. de viedmal and M. L. els son' Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations.
    [Show full text]
  • Coleoptera: Dytiscidae) on Larval Culex Quinquefasciatus (Diptera: Culicidae)
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2014 Differences In Consumption Rates Between Juvenile and Adult Laccophilus fasciatus rufus (Coleoptera: Dytiscidae) On Larval Culex quinquefasciatus (Diptera: Culicidae) Carmen E. Bofill University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biology Commons Recommended Citation Bofill, Carmen E., "Differences In Consumption Rates Between Juvenile and Adult Laccophilus fasciatus rufus (Coleoptera: Dytiscidae) On Larval Culex quinquefasciatus (Diptera: Culicidae)" (2014). Honors Theses. 254. https://aquila.usm.edu/honors_theses/254 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Differences in consumption rates between juvenile and adult Laccophilus fasciatus rufus (Coleoptera: Dytiscidae) on larval Culex quinquefasciatus (Diptera: Culicidae) by Carmen Bofill A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in the Department of Biological Sciences May 2014 ii Approved by ______________________________ Donald Yee, Ph.D., Thesis Adviser Assistant Professor of Biology ______________________________ Shiao Wang, Ph.D., Chair Department of Biological Sciences ______________________________ David R. Davies, Ph.D., Dean Honors College iii Abstract With the increase of global temperature and human populations, prevalence of vector-borne diseases is becoming an issue for public health. Over the years these vectors have been notorious for developing resistance to human regulated insecticides.
    [Show full text]
  • Diving Beetle Offspring Oviposited in Amphibian Spawn Prey on the Tadpoles Upon Hatching
    bioRxiv preprint doi: https://doi.org/10.1101/666008; this version posted June 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Diving beetle offspring oviposited in amphibian spawn prey on the tadpoles upon hatching John Gould1*, Jose W. Valdez2, Simon Clulow1,3, John Clulow1 1School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2308 NSW, Australia 2 Department of Bioscience - Biodiversity and Conservation, Aarhus University, 8410 Rønde, Denmark 3Department of Biological Sciences, Macquarie University, Sydney, 2019 NSW, Australia * [email protected] Abstract In highly ephemeral freshwater habitats, predatory vertebrates are typically unable to become established, leaving an open niche often filled by macroinvertebrate predators. However, these predators are faced with the challenge of finding sufficient food sources as the rapid rate of desiccation prevents the establishment of extended food chains and limits the number of prey species present. It could therefore be advantageous for adults to oviposit their offspring in the presence of future prey within sites of extreme ephemerality. We report the first case of adult diving beetles ovipositing their eggs within spawn of the sandpaper frog, Lechriodus fletcheri. This behaviour was found among several pools used by L. fletcheri for reproduction. Beetle eggs oviposited in frog spawn were found to hatch within 24 hours of the surrounding L. fletcheri eggs, with the larvae becoming voracious consumers of the hatched tadpoles.
    [Show full text]
  • Observations on the Cave-Associated Beetles (Coleoptera) of Nova Scotia, Canada Max Moseley1
    International Journal of Speleology 38 (2) 163-172 Bologna (Italy) July 2009 Available online at www.ijs.speleo.it International Journal of Speleology Official Journal of Union Internationale de Spéléologie Observations on the Cave-Associated Beetles (Coleoptera) of Nova Scotia, Canada Max Moseley1 Abstract: Moseley M. 2009. Observations on the Cave-Associated Beetles (Coleoptera) of Nova Scotia, Canada. International Journal of Speleology, 38(2), 163-172. Bologna (Italy). ISSN 0392-6672. The cave-associated invertebrates of Nova Scotia constitute a fauna at a very early stage of post-glacial recolonization. The Coleoptera are characterized by low species diversity. A staphylinid Quedius spelaeus spelaeus, a predator, is the only regularly encountered beetle. Ten other terrestrial species registered from cave environments in the province are collected infrequently. They include three other rove-beetles: Brathinus nitidus, Gennadota canadensis and Atheta annexa. The latter two together with Catops gratiosus (Leiodidae) constitute a small group of cave-associated beetles found in decompositional situations. Quedius s. spelaeus and a small suite of other guanophiles live in accumulations of porcupine dung: Agolinus leopardus (Scarabaeidae), Corticaria serrata (Latrididae), and Acrotrichis castanea (Ptilidae). Two adventive weevils Otiorhynchus ligneus and Barypeithes pellucidus (Curculionidae) collected in shallow cave passages are seasonal transients; Dermestes lardarius (Dermestidae), recorded from one cave, was probably an accidental (stray). Five of the terrestrial beetles are adventive Palaearctic species. Aquatic beetles are collected infrequently. Four taxa have been recorded: Agabus larsoni (Dytiscidae) may be habitual in regional caves; another Agabus sp. (probably semivittatus), Dytiscus sp. (Dytiscidae), and Crenitis digesta (Hydrophilidae) are accidentals. The distribution and ecology of recorded species are discussed, and attention is drawn to the association of beetles found in a Nova Scotia “ice cave”.
    [Show full text]
  • The Water Beetles of Maine: Including the Families Gyrinidae, Haliplidae, Dytiscidae, Noteridae, and Hydrophilidae
    The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 9-1-1971 TB48: The aW ter Beetles of Maine: Including the Families Gyrididae, Haliplidae, Dytiscidae, Noteridae, and Hydrophilidae Stanley E. Malcolm Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the Entomology Commons Recommended Citation Malcolm, S.E. 1971. The aw ter beetles of Maine: Including the families Gyrinidae, Haliplidae, Dytiscidea, Noteridae, and Hydrophilidae. Life Sciences and Agriculture Experiment Station Technical Bulletin 48. This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE WATER BEETLES OF MAINE: INCLUDING THE FAMILIES GYRINIDAE, HALIPLIDAE, DYTISCIDAE, NOTERIDAE, AND HYDROPHILIDAE STANLEY E. MALCOLM TECHNICAL BULLETIN 48 SEPTEMBER 1971 LIFE SCIENCES AND AGRICULTURE EXPERIMENT STATION UNIVERSITY OF MAINE AT ORONO ACKNOWLEDGMENTS To my wife, Joann, whose patience and hard work have contributed so much, I dedicate this work. I am deeply indebted to Dr. David C. Miller, Dr. Paul J. Spangler, Mr. Brian S. Cheary, and Mr. Lee Hellman for their advice on particular taxonomic problems. I am further indebted to the chairman of my graduate committee, Dr. John B. Dimond, and the members of my com­ mittee, Dr. Richard Storch and Dr. Richard Hatch, who have at all times been willing to advise me. Finally, I must thank all the members of the Entomology Department for their interest in my work and for their constructive criticism.
    [Show full text]
  • Water Beetles As Models in Ecology and Evolution
    EN64CH20_Bilton ARI 25 November 2018 14:38 Annual Review of Entomology Water Beetles as Models in Ecology and Evolution 1, 2 David T. Bilton, ∗ Ignacio Ribera, and Andrew Edward Z. Short3 1Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; email: [email protected] 2Institute of Evolutionary Biology (CSIC-Pompeu Fabra University), 08003 Barcelona, Spain; email: [email protected] 3Department of Ecology and Evolutionary Biology; and Division of Entomology, Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USA; email: [email protected] Annu. Rev. Entomol. 2019. 64:359–77 Keywords The Annual Review of Entomology is online at Coleoptera, habitat shifts, model organisms, biogeography, sexual ento.annualreviews.org selection, indicator taxa https://doi.org/10.1146/annurev-ento-011118- 111829 Abstract Copyright c 2019 by Annual Reviews. ⃝ Beetles have colonized water many times during their history, with some of All rights reserved these events involving extensive evolutionary radiations and multiple transi- Annu. Rev. Entomol. 2019.64:359-377. Downloaded from www.annualreviews.org ∗Corresponding author tions between land and water. With over 13,000 described species, they are one of the most diverse macroinvertebrate groups in most nonmarine aquatic habitats and occur on all continents except Antarctica. A combination of wide geographical and ecological range and relatively accessible taxonomy makes Access provided by CSIC - Consejo Superior de Investigaciones Cientificas on 01/11/19. For personal use only. these insects an excellent model system for addressing a variety of ques- tions in ecology and evolution.
    [Show full text]
  • Deretaphrus Interruptus Head, Ventral; Fig
    1. 2. Figures 1-2. Examples of ESEM images of metal incorporated mandibles. Fig. 1: Deretaphrus interruptus head, ventral; Fig. 2: Deretaphrus piceus head, anterior. 465 3. 4. 5. 6. 7. 8. 9. 10. Figures 3-10. Mandibles with incorporated metals. Fig. 3: Ambrosiodmus leconti rt. dorsal; Fig. 4: Ips grandicollis rt. dorsal; Fig. 5: Scolytus muticus rt. dorsal; Fig. 6: Myoplatypus flavicornis rt. dorsal; Fig. 7: Thanasimus dubius rt. dorsal; Fig. 8: Thanasimus dubius left ventral; Fig. 9: Stegobium paniceum rt. dorsal; Fig. 10: Stegobium paniceum left ventral. 466 1 30 2 14 31 32 3 15 33 26 27 28 29 4 34 16 35 17 36 38 5 37 39 40 18 6 41 42 43 19 44 45 7 46 85 47 48 49 51 50 52 8 20 53 55 54 56 57 58 59 2 60 2 61 9 62 63 67 69 21 68 70 24 71 72 25 74 10 73 75 23 76 77 11 22 78 79 12 80 13 84 81 82 83 Figure 11. Consensus Bayesian topology of trees sampled from the posterior distribution (at stationarity) of 86 representative taxa from Hunt et al. 2007. The values above nodes indicate posterior probabilities. The values below nodes indicate clade number (refer to Table 2 for ancestral state reconstruction likelihood values for each node). 467 CHRYSOPIDAE Chrysoperla carnea SIALIDAE Sialis lutaria RAPHIDIIDAE Phaeostigma notata Priacma serrata ARCHOSTEMATA ARCHOSTEMATA Hydroscapha natans MYXOPHAGA MYXOPHAGA Gyrinus sp. Macrogyrus sp. GYRINIDAE Patrus sp. Dytiscus sp. DYTISCIDAE HYDRADEPHAGA Hydroporus sp. Haliplus sp. HALIPLIDAE Euryderus grossus Clinidium sp.
    [Show full text]
  • Water Beetles by Richard Chadd, Kevin Rowley & Henry Stanier What? Water Beetles Are Insects Belonging to the Order Coleoptera Great Diving Beetle Dytiscus Marginalis
    Monitoring & Research Ecology Groups Wildlife Profiles: Water Beetles By Richard Chadd, Kevin Rowley & Henry Stanier What? Water beetles are insects belonging to the Order Coleoptera Great Diving Beetle Dytiscus marginalis. which means ‘sheathed wings’ as the wings are covered by hard Photo by Kim Taylor wing cases (elytra). The order is huge and includes a wide variety of groups, some of which have a close association with water, living on or in it for most of their adult life. These have representatives from two main Sub-orders, Adephaga (the water beetles in this group are often referred to as Hydradephaga) and Polyphaga. The Hydradephaga are more your typical diving beetles, include 5 families, and are purely aquatic. The Polyphaga are more loosely associated with water and usually termed scavenger water beetles. They include 9 families but study is usually limited to the 6 that are more commonly aquatic or semi-aquatic as adults. All species are adapted in some way to an aquatic lifestyle, often flattened and oval in outline, with their 6 limbs modified to varying extents, to enhance their swimming or submerged crawling ability. Their wing cases meet in a straight line down the centre of the back, unlike bugs, and are modified to not only create an efficient suit of armour but also to store air like an aqualung. They can spend prolonged periods underwater but still have to return to the surface to breathe and restore their air supply, though some, the polyphagous Elmidae, can use the bubble as a rudimentary ‘lung’ and stay submerged more-or-less permanently.
    [Show full text]
  • A Gigantic Marine Ostracod (Crustacea: Myodocopa) Trapped in Mid-Cretaceous Burmese Amber Received: 16 November 2017 Lida Xing 1,2, Benjamin Sames 3,4, Ryan C
    www.nature.com/scientificreports OPEN A gigantic marine ostracod (Crustacea: Myodocopa) trapped in mid-Cretaceous Burmese amber Received: 16 November 2017 Lida Xing 1,2, Benjamin Sames 3,4, Ryan C. McKellar5,6, Dangpeng Xi1,2, Ming Bai7 & Accepted: 9 January 2018 Xiaoqiao Wan1,2 Published: xx xx xxxx The mid-Cretaceous Burmese amber (~99 Ma, Myanmar), widely known for exquisite preservation of theropods, also yields microfossils, which can provide important contextual information on paleoenvironment and amber formation. We report the frst Cretaceous ostracod in amber—the gigantic (12.9 mm) right valve of an exclusively marine group (Myodocopa: Myodocopida) preserved in Burmese amber. Ostracods are usually small (0.5–2 mm), with well-calcifed carapaces that provide an excellent fossil record extending to at least the Ordovician (~485 million years ago), but they are rarely encountered in amber. The new specimen efectively doubles the age of the ostracod amber record, ofering the frst representative of the Myodocopa, a weakly calcifed group with a poor fossil record. Its carapace morphology is atypical and likely plesiomorphic. The preserved valve appears to be either a moulted exuvium or a dead and disarticulated specimen, and subsequent resin fows contain forest foor inclusions with terrestrial arthropods, i.e., fragmentary remains of spiders, and insect frass. These features resolve an enigmatic taphonomic pathway, and support a marginal marine setting for resin production. Ostracods are aquatic microcrustaceans, with a calcareous, bivalved shell (carapace) that can enclose the whole body and all appendages. Few Mesozoic to Recent taxa exceed 3 mm in size and these are termed ‘gigantic’ ostra- cods, such as species of the living marine planktonic genus Gigantocypris (subclass Myodocopa, up to around 30 mm), or of the non-marine genus Megalocypris (subclass Podocopa, 5–8 mm in size).
    [Show full text]
  • A New Subterranean Aquatic Beetle from Texas ( Coleoptera: Dytiscidae-Hydroporinae )X
    A New Subterranean Aquatic Beetle from Texas ( Coleoptera: Dytiscidae-Hydroporinae )x FRANK N. YOUNG AND GLENN LONGLEY Indiana University, Bloomington, IN 47401 and Aquatic Station, Southwest Texas State University, San Marcos, TX 78666 ABSTRACT The 1st blind, depigmented, aquifer-adapted water bee- and middle coxae and the relationship of the prosternal tle of the family Dytiscidae is described from North process to the metasternum among Haideoporus, Mori- America. Haidcopoms texanus Young and Longley (n. motoa, and Siettitia (a cave-adapted genus from south- genus, n. sp.) is superficially similar to Morimotoa ern France) is thought to be due to convergence as an phrcatica Ueno from Japan, but differs in possessing adaptation to subterranean life parallel to the condition minute, apparently nonfunctional eyes, and in sensory seen in many cave carabids (Coleoptera: Carabidae). setal vestiture and structure of the tarsi and external The world fauna of subterranean aquatic beetles and the male genitalia. The remarkable similarity of the fore associates of Haideoporus are discussed. Cave or aquifer-adapted aquatic beetles are ex- caves and sinkholes near Gainesville, but cave speci- tremely rare. The 1st cave dytiscid discovered was mens seem indistinguishable from those from hypo- Siettitia balsentensis (Fig. 3) described in 1904 by geal streams (Young 1954). Abeille de Perrin from southern France. Since then a 2nd species of Siettitia has been described from Haideoporus GENUS NOV. southern France (Guignot 1925, 1931-33, a Uvarus Diagnosis.—A subterranean dytiscid showing the from Africa (Peschet 1932), Morimotoa phreatica basic characteristics of the subfamily Hydroporinae (Fig. 1) from Japan (Ueno 1957), and Troglo- and tribe Hydroporini but blind, depigmented, lack- guginotus concii from a cave in Venezuela (San- ing hind wings, and with lengthened body and leg fillipo 1958).
    [Show full text]
  • Predaceous Diving Beetles (Coleoptera: Dytiscidae) May Affect the Success of Amphibian Conservation Efforts
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 March 2019 Predaceous diving beetles (Coleoptera: Dytiscidae) may affect the success of amphibian conservation efforts 1Jose W. Valdez 1Department of Bioscience - Kalø, Aarhus University, Grenåvej 14, 8410, Rønde, Denmark Correspondence: [email protected] Abstract During weekly monitoring of a compensatory habitat reintroduction for an endangered frog species, a group of a dozen adult diving beetles (Coleoptera: Dytiscidae) were encountered attacking and quickly dismembering and consuming a tadpole. A single adult diving beetle was also discovered burrowing its head deep inside and consuming a tadpole approximately three to four times its size. Although Dytiscidae are known to occasionally consume vertebrates such as tadpoles, adults are typically considered scavengers, and this communal predatory behavior and feeding method have not been previously documented. Besides these interesting novel behaviors, these observations may have implications for amphibian conservation since management efforts are not typically concerned with naturally occurring ubiquitous threats such as those from small invertebrate predators, as it is rarely been observed in nature. However, this may be perhaps due their ability to consume prey rapidly, especially if working in packs. Although amphibian conservation plans always expect some losses from natural predation, diving beetles may seriously affect conservation efforts such as captive breeding and reintroductions with populations already on the threshold of extinction and where every individual critical to success. Keywords. compensatory habitat, frog, invertebrate, predation, reintroduction, tadpoles Introduction In-situ and ex-situ conservation programs, including reintroductions to formerly occupied sites and translocations to compensatory habitats, have emerged as key management tools to mitigate the global decline of amphibians (Biega et al.
    [Show full text]
  • Fossil Perspectives on the Evolution of Insect Diversity
    FOSSIL PERSPECTIVES ON THE EVOLUTION OF INSECT DIVERSITY Thesis submitted by David B Nicholson For examination for the degree of PhD University of York Department of Biology November 2012 1 Abstract A key contribution of palaeontology has been the elucidation of macroevolutionary patterns and processes through deep time, with fossils providing the only direct temporal evidence of how life has responded to a variety of forces. Thus, palaeontology may provide important information on the extinction crisis facing the biosphere today, and its likely consequences. Hexapods (insects and close relatives) comprise over 50% of described species. Explaining why this group dominates terrestrial biodiversity is a major challenge. In this thesis, I present a new dataset of hexapod fossil family ranges compiled from published literature up to the end of 2009. Between four and five hundred families have been added to the hexapod fossil record since previous compilations were published in the early 1990s. Despite this, the broad pattern of described richness through time depicted remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter term patterns. Corrections for rock record and sampling effort change some of the patterns seen. The time series produced identify several features of the fossil record of insects as likely artefacts, such as high Carboniferous richness, a Cretaceous plateau, and a late Eocene jump in richness. Other features seem more robust, such as a Permian rise and peak, high turnover at the end of the Permian, and a late-Jurassic rise.
    [Show full text]