A Comparison of Two Methods for Building Astronomical Image Mosaics on a Grid Daniel S. Katz, Joseph C. Jacob G. Bruce Berriman, John Good, Anastasia C. Laity Jet Propulsion Laboratory Infrared Processing and Analysis Center California Institute of Technology California Institute of Technology Pasadena, CA 91109 Pasadena, CA 91125
[email protected] Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei-Hui Su Thomas A. Prince USC Information Sciences Institute Astronomy Department Marina del Rey, CA 90292 California Institute of Technology Pasadena, CA 91125 Abstract ence analysis, integrated into project and mission pipelines, or run on computing grids to support large-scale product This paper compares two methods for running an appli- generation, mission planning and quality assurance. This cation composed of a set of modules on a grid. The set of paper discusses two strategies that have been used by Mon- modules (collectively called Montage) generates large as- tage to demonstrate implementation of an operational ser- tronomical image mosaics by composing multiple small im- vice on the Distributed Terascale Facility (TeraGrid) [2], ages. The workflow that describes a particular run of Mon- accessible through a web portal. tage can be expressed as a directed acyclic graph (DAG), or Two previously published papers provide background on as a short sequence of parallel (MPI) and sequential pro- Montage. The first described Montage as part of the archi- grams. In the first case, Pegasus can be used to run the tecture of the National Virtual Observatory [3], and the sec- workflow. In the second case, a short shell script that calls ond described some of the initial grid results of Montage each program can be run.